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Abstract: This paper presents a novel impedance-based approach to efficiently estimate 

the state of charge (SOC) of a Li-ion battery. By using an AC impedance analyzer,  

a database is constructed, containing records of AC impedance versus SOC. In practical 

applications, the SOC values can be found instantly once the contents of the database are 

referenced. For validation purposes, AC impedance comparisons are conducted using AC 

impedance analyzer as a benchmark at SOC of 0%, 50% and 100%, which indicate errors 

of 8.636%, 2.604% and 0.600%, respectively. 
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1. Introduction 

As environmental pollution worsens, the development of various types of electric vehicles such as 

electric bicycles, hybrid vehicles, electric cars, and electric motorcycles, is receiving plenty of 

attention like never before. All these vehicles are battery powered, and Li-ion batteries are one of the 

most popular choices for this task. Li-ion batteries have the advantages of high energy density, high 

power density, low self-discharge, fast charging, high energy weight ratios, no memory effect and high 

durability [1]. However, there is no easy way to accurately display the battery SOC and acquire 

information on the current battery status. Definitely, SOC can serve as an indicator to remind users to 

recharge batteries and to prevent batteries from overcharging [2]. 
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There are a variety of approaches to estimate the SOC for Li-ion batteries. The Coulomb counting 

method is a commonly seen rechargeable battery capacity estimation method, using an open-loop 

algorithm and counting the battery charge and discharge capacity. However, this method requires  

a high accuracy current measurement device and is incapable of performing real-time SOC 

measurements. Moreover, there is no easy way to acquire the initial SOC values and the defects  

of larger measurement error accumulation due to uncertain disturbances, leading to an inaccurate 

estimation [3,4]. The open circuit voltage method measures a family of open circuit voltage curves 

with the SOC value as a parameter in advance, but it doesn’t consider parameter variations in 

electrochemical batteries and aging effects. Since it requires a long period of rest time after each 

measurement, it is hence inapplicable to hybrid vehicles applications [5,6]. The Kalman filter method 

has to build an accurate battery model first, which considers both the open circuit voltage and internal 

resistance of the battery. Using the built battery model, the open circuit voltage can be formulated, but 

this model cannot practically simulate the nonlinear dynamic behavior of the plant. In an attempt to 

achieve high accuracy in SOC estimation, the major disadvantages of the Kalman filter method are that  

it necessitates an accurate battery model and a complex mathematic operation [7–10]. 

This paper presents an efficient SOC estimation approach for Li-ion batteries. Using records of the 

AC impedance versus the SOC value contained in a pre-built database, the SOC value corresponding 

to the measured AC impedance, can be found instantly. AC impedance comparisons are made with an 

AC impedance analyzer as a benchmark at SOC of 0%, 50% and 100%, which indicates errors of 

8.636%, 2.604% and 0.600%, respectively. 

2. AC Impedance Analysis 

This paper aims are to explore the AC impedance influence of a 18650 Li-ion battery on SOC. 

Presented in Figure 1 is the complete Li-ion battery AC impedance model for an electrolyte battery 

where the equivalent AC impedance in the electrochemical process between the anode and cathode  

is described in detail. In most cases, electrodes are made of porous materials, partially accounting for 

the electrode impedance at high frequencies [11–13]. Furthermore, curled electrodes used for 

manufacturing purposes inevitably yield electrode inductances Ld1 and Ld2. Ro represents the ohmic 

resistance caused by electrode metals, electrolyte and battery terminals. The charge transfer resistance, 

Rct1 and Rct2, indicate the rate of charge delivery on the electrode surface, (i.e., the chemical reaction 

rate and activation energy on electrodes dominated by materials). The double-layer capacitances, Cd1 

and Cd2, refer to the capacitance caused by the valence charges on the electrode surface immersed in 

electrolyte and ions with opposite charge attached to surface. Double-layer capacitances exist across 

the electrode-electrolyte interfaces, and vary with temperature, ion concentration and electrode 

roughness. The Warburg impedance Zw1 and Zw2 denotes the reactance caused by ion diffusion, when 

reactant approaches or combustion products escapes from electrode surface [14–16]. Finally, a battery 

is modeled as an ideal voltage source Eb in series with the above-stated AC impedance [17–19]. 

A simplified model of the complete one in Figure 1 is illustrated in Figure 2. Accordingly, a battery 

is modeled as a cascade of a charge transfer resistance Rct and a Warburg impedance Zw, connected  

in parallel with a double-layer capacitance Cd, then connected in series with an ohmic resistance Ro,  

an electrode inductance Ld and an ideal voltage source Eb [20]. 
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Figure 1. The complete Li-ion battery AC impedance model. 

 

Figure 2. The Li-ion battery AC impedance model. 

 

The Warburg coefficient is expressed as: 

2

1
 

2

1
 

ωδωδ
−−

+= www jZ  (1)

where δw and ω denote the ion diffusion coefficient and the angular frequency, respectively. The 

equivalent impedance of the battery in Figure 2 is written as: 
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where R and X respectively represent the real and the imaginary parts, and rewritten as: 
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The Warburg impedance Zw is found to demonstrate very little influence on the overall equivalent 

impedance at high frequencies. The battery can be divided into three frequency parts: a high frequency 

region at frequencies >1 kHz; an intermediate frequency region frequency between 10 Hz and 1 kHz;  

a low frequency region at frequency <1 Hz [21]. Since the battery discussed in this work is operated at 

frequencies beyond 1 Hz, Zw is hence not taken into account in the simplified model, as illustrated  

in Figure 3. The simplified model is employed herein for subsequent simulations, as illustrated in 

Figure 4. 
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Figure 3. The simplified Li-ion battery AC impedance model. 

 

Figure 4. The Li-ion battery equivalent circuit model. 

 

A battery is modeled as an ideal voltage source connected in series with an equivalent impedance, 

represented as: 
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3. Experimental Analysis 

Figure 5 shows the battery SOC test platform. It mainly involves a digital oscilloscope, a current 

amplifier, a current shunt, a voltage probe(s), a programmable AC source, and a voltage/current converter. 

Figure 5. The battery SOC test platform. 

 

 

 

 

Digital Oscilloscope

OP-A
+

-

MOSFET

Q

Vcc

Current

Voltage

V/I Converter
Rs

ic(t)

vb(t)

Programmable 
AC Source 

t
vs(t)



Energies 2014, 7 3442 

 

 

The programmable AC source consists of a signal produced as a unit to specify the charging 

frequency, while the voltage/current converter is composed of an MOSFET and an operational 

amplifier (OPA). 

The test platform works as follows: the programmable AC source produces a sinusoidal ripple 

voltage vs(t) as follows: 

( )ftVVtvs π2sin)( avgavg +=  (6)

where Vavg stands for the average voltage level. The waveform is shown in Figure 6 Through the 

voltage/current converter, a sinusoidal ripple current ic(t) is obtained as: 
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where Rs is the series resistance in the battery SOC test platform. 

Figure 6. A waveforms of a sinusoidal ripple voltage vs(t). 
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Figure 7 shows the charge current and battery voltage waveforms containing DC components, a low 

AC current signal, as expressed in Equation (8) and then applied to the battery, sets off an output 

voltage, as represented in Equation (9): 

)θωsin()( ++= tIIti mdc  (8)

)ωsin()( tVVtv mdc +=  (9)

where Idc is equal to Im. 

The filtered waveforms, iac(t) and vac(t), are illustrated in Figure 8, respectively expressed as: 

)θωsin()( += tIti mac  (10)

)ωsin()( tVtv mac =  (11)

According to Equations (10) and (11), the ratio of vac(t) to iac(t) gives the AC impedance, 

represented as: 
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Figure 7. The charge current and battery voltage waveforms containing DC components. 
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Figure 8. The charge current and battery voltage waveforms with DC components filtered. 
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Expressing Equation (12) in complex form, the battery impedance can be expressed as: 

θ||"' −∠=−= ZjZZZ  (13)

where Z' represents the real part of the complex; Z" represents the imaginary part of the complex; |Z| 

represents the magnitude of AC impedance; and θ represents the angle of AC impedance [22–24]. 

The AC impedance of an 18650 battery can be expressed on the complex plane in several forms. 

Figure 9 exhibits the Nyquist plot of a battery. A review of Figure 9 reveals that the battery internals 
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are resistive, inductive and capacitive components, and the capacitive components of the Nyquist plot 

of a battery is presented in a semicircle case [25–27]. 

Figure 9. Nyquist plot of a Li-ion battery. 

 

Figure 10a,b shows the AC impedance spectrum of test battery measured by the Solartron 1280 B 

AC impedance Bode plot analyzer. 

Figure 10. A typical Li-ion test battery AC impedance Bode plots (a) The relation  

between impedance magnitude; and frequency (b) The relation between impedance angle  

and frequency. 

(a) (b) 

4. Experimental Process 

Figure 11 shows the flow chart of the presented SOC estimation approach for Li-ion battery 

proposed in this paper. As the first step, a database containing records of AC impedance versus SOC 

for a 18650 Li-ion battery is built using an AC impedance analyzer. Subsequently, the impedance Z, as 

stated in the preceding section and then measured in the presented test platform, is compared with the 

contents in the constructed database for the corresponding SOC value. Since the SOC value is fully 

determined by the measured AC impedance in this work, there is a definite need to perform high 

accuracy measurements. Tabulated in Table 1 are the measurement facilities employed, and presented in 

Figure 12 is a photo of the experimental setup. Besides, exhibited in Figure 13 is a photo of the AC 



Energies 2014, 7 3445 

 

 

impedance analyzer employed for a database construction, a device comprising an impedance recorder 

and a voltage and current perturbator. 

Figure 11. Flowchart of the experiment. 

 

Table 1. Apparatus. 

Apparatus Type 

Digital Oscilloscope GW GDS-1152A-U 
Programmable AC Source GW AFG-2025 

Power Supply GW GPS-3303 
Shunt SH-0002A-200 

AC Impedance Analyzer Solartron 1280B 
Digital Oscilloscope GW GDS-1152A-U 

Programmable AC Source GW AFG-2025 

Figure 12. The picture of the battery charging test platform. 
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Figure 13. The AC impedance analyzer. 

 

Figure 14 shows an illustration of the charge current and the battery terminal voltage waveforms in 

an AC impedance measurement. Enlargement of the waveforms in Figure 14 with DC components 

filtered indicates that both waveforms only contain AC components, as demonstrated in Figure 15. 

Figure 14. The charge current and the terminal voltage waveforms. 

 

Figure 15. The filtered DC components charge current and the terminal voltage waveforms. 
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The AC impedance measurement of an 18650 Li-ion battery can be made in real time using the 

charge current and the battery voltage waveforms, and the SOC is available instantly once the contents 

of a pre-built database are referenced. 

5. Experiment Result 

An IBR18650BC Li-ion battery is employed as a battery under test in this work. Cases with  

open circuit output voltage of 2.8 V, 3.7 V and 4.2 V are treated as the 0%, 50% and 100% SOC  

cases, respectively. Figures 16 and 17 show the unfiltered and filtered charge current and battery 

output voltage waveforms in the 0% SOC case, respectively. 

Figure 16. The measured charge current and terminal voltage waveforms at an SOC of 0%. 

 

Figure 17. The charge current and the terminal voltage waveforms with DC components 

filtered at an SOC of 0%. 

 

Figures 18 and 19 are the unfiltered charge current and battery output voltage waveforms in the 50% 

and 100% SOC cases, while in Figures 20 and 21 are the filtered versions of Figures 18 and 19, respectively. 
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Figure 18. The measured charge current and terminal voltage waveforms at an SOC of 50%. 

 

Figure 19. The measured charge current and terminal voltage waveforms at an SOC of 100%. 

 

Figure 20. The charge current and the terminal voltage waveforms with DC components 

filtered at an SOC of 50%. 
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Figure 21. The charge current and the terminal voltage waveforms with DC components 

filtered at an SOC of 100%. 

Terminal voltage 2.8mV

500us

500mA

10mV
Charge current 180mA

 

Figure 20 shows the filtered waveforms corresponding to an AC impedance of 0.01556 Ω. Figure 21 

shows the filtered waveforms corresponding to an AC impedance of 0.01556 Ω. Table 2 shows the AC 

impedance compared with a database, provided by the Industrial Technology Research Institute 

(ITRI), Taiwan, as a benchmark. AC impedance errors are 8.636%, 2.604% and 0.6% in the 0%, 50% 

and 100% SOC cases, respectively. 

Table 2. Accuracy comparison of proposal method and ITRI database. 

SOC Proposal values (Ω) Database values (Ω) Error (%) 

SOC 0% 0.02000 0.018410 8.636 
SOC 50% 0.01556 0.015165 2.604 
SOC 100% 0.01556 0.015654 0.600 

Figure 22 shows the accuracy comparison of AC impedance values measured by the proposed method 

and ITRI at various battery SOC. Figure 23 shows the estimation errors of the AC impedance value. 

Figure 22. The accuracy comparison of AC impedance values measured by the proposal 

method and ITRI at various battery SOC. 
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Figure 23. The estimation errors of the AC impedance value. 

 

6. Conclusions 

This paper presents a novel approach to efficiently estimate SOC. As the first step, the AC impedance 

measurement of an 18650 Li-ion battery is made in a test platform at various values of SOC, and then 

a database is built accordingly. In practical uses, the pre-built database is referenced instantly to locate 

the corresponding SOC value, once the AC impedance of a battery under test is found experimentally. 

For validation purposes, an impedance comparison between this proposal and ITRI database is made  

in three cases. AC impedance errors of 8.636%, 2.604% and 0.600% are seen at SOC of 0%, 50% and 

100%, respectively. 
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