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Abstract: When vehicle manufacturers are developing new hybrid and electric vehicles, 

modeling and simulation are frequently used to predict the performance of the new 

vehicles from an early stage in the product lifecycle. Typically, models are used to predict 

the range, performance and energy consumption of their future planned production vehicle; 

they also allow the designer to optimize a vehicle’s configuration. Another use for the 

models is in performing sensitivity analysis, which helps us understand which parameters 

have the most influence on model predictions and real-world behaviors. There are various 

techniques for sensitivity analysis, some are numerical, but the greatest insights are 

obtained analytically with sensitivity defined in terms of partial derivatives. Existing 

methods in the literature give us a useful, quantified measure of parameter sensitivity, a 

first-order effect, but they do not consider second-order effects. Second-order effects could 

give us additional insights: for example, a first order analysis might tell us that a limiting 

factor is the efficiency of the vehicle’s prime-mover; our new second order analysis will 

tell us how quickly the efficiency of the powertrain will become of greater significance. In 

this paper, we develop a method based on formal optimization mathematics for rapid 

second-order sensitivity analyses and illustrate these through a case study on a C-segment 

electric vehicle. 
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1. Introduction 

Most readers will be well aware that automotive powertrain technology has changed radically in 

recent years. In much of the world, there is strong consensus that there is a need to move away from 

high-CO2 gasoline and diesel vehicles; in markets that are less environmentally-conscious, there are 

drivers such as high fuel cost and national security that are pushing the market away from fossil fuels; 

and there is also the basic engineering fact that in a traditional internal combustion engine vehicle 

(ICEV), the engine is inefficiently “oversized” to accommodate high-torque demands. Hybrid and 

electric vehicles are attracting an increasing market share and this creates an exciting opportunity for 

automotive engineers, but it does come with many challenges. In the traditional ICEV, the topology of 

the powertrain is relatively known and the interactions between powertrain components are relatively 

weak. By contrast, in a battery electric vehicle (BEV) a designer must make decisions about the sizing 

of several interacting components: the interactions between the battery, the motor and even the 

fundamental vehicle topology are all very significant. Key tools in our understanding and our decision 

making are modeling and optimization: given a target application, these help us size components 

correctly [1], and they are key to exploring fundamental trade-offs between different design objectives: 

this process is called “multi-objective optimization”. A traditional use for multi objective optimization 

is in designing to minimize energy consumption, but the literature includes examples of work done in a 

plug-in hybrid (PHEV) to balance energy costs against battery degradation [2], and work done to 

understand the trade-offs between powertrain cost, energy consumption and battery degradation in 

BEVs and battery-super capacitor hybrids [3] and articles on using genetic algorithms for the purpose 

of hybrid powertrain optimizations [4,5]. 

Many researchers have considered the application of formal optimization techniques to modeling: 

there is an excellent text on the subject by Guzzella and Sciarretta [6], and a recent article by  

Egardt et al. considered the subject in detail [7]. Broadly, there are two families of techniques: 

“forward-facing” modeling and “backwards-facing” modeling. Backward-facing model aims to drive a 

vehicle from velocity profile without a driver model. Simulation starts at speed reference form the 

driving cycle and determine required power and energy consumption. While forward-facing model 

utilises a driver model to obtain torque required for vehicle traction. Figure 1 shows a diagram of these 

modeling techniques. 

Figure 1. Schematic diagram of (a) vehicle backward-facing modeling and (b) vehicle 

forward-facing modeling. 
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The literature contains some discussion of the merits and disadvantages of the two [8,9]:  

“forward-facing” models can contain considerably more detail (in particular dynamics), but this has to 

be traded-off against the fact that quasi-static; “backwards-facing” models execute much more quickly. 

In some sources, the models which must be free from dynamics are expressed as algebraic equations [6]: 

if the driving cycle is fixed, it is often possible to express the energy consumed as a pure function of 

several parameters: 

        
 
   
 
     

n
  (1) 

When there is more than one source of power, models of this can be extended to facilitate the 

design of optimal control trajectories and after some development implementable supervisory control 

laws. It is also possible to explore the sensitivity to parameter changes, giving an indication of which 

aspects of the design have the greatest influence on energy consumption and which areas of modeling 

require the greatest degree of accuracy. 

The techniques in the literature provide methods of calculating sensitivity, but these only tell us 

about “first-order” sensitivities with very limited number of parameters, and do not give us insight into 

the cross-coupling between different parameters. In this paper, we develop formal techniques for 

exploring the cross-sensitivities between parameters and illustrate their application with a case study of 

a C-segment electric vehicle. 

2. Mathematical Techniques for Sensitivity Analysis 

2.1. First Order Sensitivity Analyses from the Literature 

It is well-established in the literature [6] that when there is a fixed-drive cycle, optimizing an aspect 

of a system’s performance such as  say  energy consumption  it is possible to formulate a quasi-static 

model as a function of the key system parameters: 

          (2) 

where         
 
   
 
     

n
  represents the vehicle key’s parameters. In optimization terms,    is our “cost 

function” or “objective function”. While our primary aim in a single-objective optimization is to find the 

parameters that will minimize this function, it is also interesting to see how sensitive any given result is 

to changes in parameters. Sensitivity to parameter  
i
 is defined in terms of the calculus of variations: 
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In other words: 
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(following the reference, the mathematical description of the parameters has been simplified for 

compactness, but the meaning should be clear: we will have a “nominal” parameter set  nom , and  

we are looking at small changes relative to this). 

If all we are interested in doing is working out these first-order sensitivities, then the mathematics in 

the literature is sufficient: it tells us which parameters are most important, which in turn tells us which 
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parts of our system we should consider improving first and which parts of our models need to be the 

most accurate. However, it tells us nothing about the interactions between different parameters.  

In practice, we might find that improving the efficiency of a gearbox will mean that the efficiency of 

the electric machine connected to it becomes more significant. If we are developing a new vehicle,  

it is helpful to know whether we should be focusing all our efforts optimizing one thing, or whether  

we need to split our attention between several factors that will each in turn become important. We can 

address this by changing parameters and recalculating sensitivities for different possible scenarios, but 

it would be helpful to have a quicker, more intuitive way to understand things. We propose to address 

this through second-order calculus. 

2.2. Change of Variables and Expression of Sensitivity via the Jacobian 

The first step in our journey towards a second-order analysis is a change in variables. As before,  

let us assume we have a particular vehicle configuration described by the parameter set  nom. Our first 

step is to perform a change of variables so we have an equation of the form: 

            (5) 

where    is a vector of “normalized” parameters scaled such that for the nominal parameter set     , 

all values are unity, i.e., 

  nom               (6) 

and the overall scaling of    has been chosen such that: 

  nom        nom      (7) 

To get back to    we note that              nom. 

To see the strength of this transformation, let us look again at  pi
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The full set of sensitivities is then described by the Jacobian of       : 
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 (9) 

This expression will result in exactly the same values as the original expressions from the literature. 

This form is also easier to use when developing a second-order sensitivity analysis. 

2.3. Expression of Second-Order Sensitivities via the Hessian with Illustrative Examples 

We have seen that we can conveniently express (first-order) sensitivities through the Jacobian  

of our objective function. It is straightforward to find the second-order sensitivities from the Hessian  

of       : 
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This second-order sensitivity matrix   
 

 gives us an indication of which sensitivities are  

cross-coupled. This will be examined by the following examples. 

To start with, let us consider a problem where: 

               .   
 
   .   

 
 (11) 

In this case the Jacobian is: 

               .  .   (12) 

We can see here that    and therefore    is equally sensitive to each parameter. The Hessian is: 

  
             

  

  
  (13) 

Which shows that the sensitivities are not cross-coupled: if we make a small change in p1, say,  

then the sensitivity to p2 will not change. Let us now consider another problem where: 
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Here, the Jacobian is: 
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As we might expect, this tells us that    will increase in response to a small relative change in p1 but 

a comparable change in p2 will cause a similarly-sized decrease. The Hessian is: 
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This yields some interesting results: we can see that if we start to increase p1 the sensitivity to p2 

will increase and vice versa. We can also see that if we increase p2, the problem quickly becomes more 

sensitive to p2 itself; however, there is not a corresponding relationship for p1. We would see the 

potential power of this approach if we could imagine for a moment that p1 represents a vehicle’s 

powertrain efficiency and p2 represents its mass. We could conclude that if we were able to make the 

vehicle lighter, we would quickly find that the powertrain efficiency became a more significant factor 

in fine-tuning our design. 
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2.4. Expression of Second-Order Sensitivities in Original Unit Bases 

The original definitions of sensitivity from the literature were stated in terms of the un-scaled  

“real-world parameters”, but we have expressed the second-order sensitivities in terms of normalized 

parameters. It may be more convenient to work with the original, untransformed units: 
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Note that with the untransformed variables, the second-order sensitivities are not given by the 

Hessian. To use the Hessian, we would need to apply appropriate scaling: 
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Here, the symbol “ ” represents the Schur (element-wise) product. 

In this section, we have developed techniques for applying formal second-order sensitivity  

analyses to our quasi-static vehicle models. These techniques will allow us to gain insight into the 

interdependencies of different parameters. The mathematics has been demonstrated using trivial examples, 

but a more elaborate case study based on a passenger car will be presented in the following section. 

3. Case Study in Powertrain Optimization 

In the previous section, we have introduced formal mathematics for sensitivity analysis; in this 

section we will apply these to a case study based on a popular real-world vehicle. Battery Electric 

Vehicles (BEVs) have now entered the mass consumer market. The Nissan LEAF a production  

C-segment vehicle is perhaps the best known. This section aims to present a simplified analytical BEV 

model and perform the first and second order sensitivity analysis. Vehicle parameters and powertrain 

components are based on publically available data [10] where possible, and are otherwise based on the 

authors’ assumptions: we have based our assumptions on the range performance data provided by the 

vehicle manufacturer [11]. In particular, we have aimed to reproduce the stated “combined” range of 

175 km on the New European Driving Cycle (NEDC) with a 24 kWh battery. 

Figure 2 shows a schematic diagram of BEV powertrain of the Nissan LEAF. This vehicle is driven 

by a single 80 kW motor with a 7.9:1 constant ratio transmission at the front wheels. In backward 

facing simulation, to compute energy consumption, the calculations are started at the wheels. Driving 
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cycle gives information of vehicle speed and losses due to environment are computed as functions of 

speed and acceleration then the required power at transmission, electric machine and battery is 

determined. Finally all losses are combined and the energy consumption of the vehicle is calculated. 

Figure 2. Schematic diagram of case study vehicle powertrain. 

 

For this paper, we have assumed that the nominal average fixed ratio transmission efficiency is 

97%, the nominal average combine motor and inverter efficiency is 85% and we will associate this 

losses with motor losses, the battery average voltage (modeled as constant) is assumed to be 345 V, 

and the charge and discharge battery resistances are taken to be 216 × 10
−3

 ohm and 192 × 10
−3

 ohm. 

We have also assumed that the vehicle is driving on a level surface, so we have ignored gradient 

effects. We have considered two driving cycles: the NEDC as specified in international testing 

standards [12], and a combined “real-world” cycle made from combinations of the well-known 

ARTEMIS cycles [13]. We have used a “combined” ART MIS cycle made from two cycles of the 

“urban” segment followed by two cycles of the “road” segment then one cycle of the “motorway” 

segment as we present in Figure 3. In the following subsections we will derive algebraic equations for 

describing the vehicle’s energy consumption  and then we will subject them to sensitivity analysis.  

Figure 3. Standard test cycle used in this presentation (a) NEDC and (b) Combined Artemis. 

  

(a) (b) 
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3.1. Vehicle Model and Energy Calculation 

In this paper, we have considered the energy balance associated with the following elements: 

aerodynamic drag force, rolling friction force, inertial forces, transmission losses, losses in the motor, 

and losses in the battery. The reader is likely to be familiar with these, though a good text book can 

supply any deficit. Following [6], we will derive an energy equation based on the driving cycle: 

Energy Balance Based on the Driving Cycle 

Energy balance can be classified from the integral of summing force acting onto the vehicle and 

average speed on each of the driving cycle: 

               dt
T

 

 (19) 

Note that for practical reasons, we will scale E so that it is expressed per unit distance rather than 

per unit time. (This is consistent with the way standards are presented and enables a better 

understanding of the results). In the following equations, xtotal is the driving distance (m). 

The consumption due to aerodynamic losses, EAero, is given by: 
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The energy consumption from rolling resistance is given by: 
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The energy consumption from inertia is given by: 
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(22) 

The energy recovered through regenerative braking is a function of inertia energy and percentage of 

regenerative braking. 

ReGen Inertia ReGenηE E 

  

(23) 

where EReGen is the energy recovery by regenerative braking and ηReGen is regenerative braking 

efficiency. Gear losses include losses due to the energy transfer between environmental losses and 

electric machine:
 
 

GearLoss Aero Rolling Inertia ReGen Gear( ) (1 η )E E E E E     

  
(24) 

where EGearLoss is the energy loss in transmission in both traction and regenerative braking, and ηGear is 

the transmission efficiency. 

Motor losses are computed as:
 
 

MotorLoss Aero Rolling Inertia ReGen GearLoss Motor( ) (1 η )E E E E E E      

  
(25) 



Energies 2014, 7 3741 

 

 

where EMotoLoss is the energy loss in motor in both traction and regenerative braking and ηMoto is the 

motor efficiency. 

Battery energy dissipation is calculated on both discharge and charge current: 

  att ischarge     Traction      RMS  att
 

  d      
 

    att
 

 

  d  

 

(26) 

2ReGen
BattCharge c

Batt

[ ]
E

E R T
TV
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(27) 

where EBattDisCharge and EBattCharge are losses in the battery due to discharge and charge the battery. The 

terms IRMS,Batt, VBatt, Rd, Rc and T are average battery current, battery voltage, battery discharge/charge 

resistant and simulation time, respectively. This leads us to the result we have been working towards: 

the total energy equation for the vehicle is: 

Total Aero Rolling Inertia ReGen GearLoss MotorLoss BattDischarge BattcahrgeE E E E E E E E E       

  
(28) 

where the terms are the expressions above. 

3.2. Energy Consumption 

Before we perform a sensitivity analysis, we will take a look at the predictions of energy 

consumption for our models and check that they are reasonable. Table 1 shows the energy 

consumption on each of the vehicle and powertrain components on both NEDC and combined Artemis 

driving cycles. Energy consumption presented on this table is in kWh (kilowatt-hour) per 100 km 

range based on the Equation (28) and using component sizes associated with the Nissan Leaf 

powertrain. Our assumption on the nominal regenerative braking efficiency is assumed to be 40%, but 

in this table the percentage of regenerative braking efficiency is selected differently to see the variation 

in energy consumption on each powertrain component. It is clear to see that the most consumed energy 

in both NEDC and combined Artemis are associated with the vehicle inertia. The other biggest losses 

are due to aerodynamic drag force and followed by rolling resistant losses. The regenerative energy 

recovery is simply calculated from the percentage of the energy from vehicle inertia. Battery losses are 

also included in this calculation as we present in the Equations (26) and (27). However, battery energy 

losses are very small and it is therefore safe to ignore these losses. 

For the purposes of this paper, it is not critical that our model is exact, but we have demonstrated 

that it is at least reasonably representative. To see how sensitive our predictions are to parameter errors, 

we can use the results of the sections that follow. We can also see how improving any given 

component is likely to affect the overall energy consumption. 

3.3. First-Order Sensitivity Analysis 

The techniques of Section 2 have been applied to the model and the results are shown in Figure 4. 

We can see that for both the NEDC and ARTEMIS cycles, the major parameter sensitivities are 

weight. As the regenerative braking efficiency improves, gear and motor efficiency become even more 

sensitive (note that changing the regenerative braking fraction from 40% to 100% results in a large 

relative change). Vehicle inertia sensitivity is reduced when the regenerative braking efficiency is 
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improved; however, the relative change is much smaller compared with the sensitivity changes of gear 

and motor efficiencies. The aerodynamic and rolling resistance sensitivities are also increased as the 

regenerative braking energy efficiency is improved, but with a smaller relative change. 

Table 1. Energy consumption on the Nissan Leaf in different percentage of regenerative braking. 

Energy (kWh·100 km
−1

) 
NEDC  

0% regen 

NEDC 

40% regen 

NEDC 

50% regen 

NEDC 

80% regen 

NEDC 

100% regen 

Aerodynamics 4.03 4.03 4.03 4.03 4.03 

Rolling Resistance 3.05 3.05 3.05 3.05 3.05 

Vehicle Mass 4.95 4.95 4.95 4.95 4.95 

Regenerative Recovery 0.00 −1.98 −2.47 −3.96 −4.95 

Transmission Loss 0.36 0.42 0.44 0.48 0.51 

Motor Loss 1.86 2.16 2.24 2.47 2.62 

Battery Discharge Loss Negligible 

Battery Charge Loss Negligible 

Total Energy (kWh·100 km
−1

) 14.25 12.63 12.23 11.02 10.21 

Energy (kWh·100 km
−1

) 
Artemis 

0% regen 

Artemis 

40% regen 

Artemis 

50% regen 

Artemis 

80% regen 

Artemis 

100% regen 

Aerodynamics 6.42 6.42 6.42 6.42 6.42 

Rolling Resistance 3.05 3.05 3.05 3.05 3.05 

Vehicle Mass 7.91 7.91 7.91 7.91 7.91 

Regenerative Recovery 0.00 −2.37 −3.95 −6.33 −7.91 

Transmission Loss 0.52 0.59 0.64 0.71 0.76 

Motor Loss 2.68 3.05 3.30 3.66 3.91 

Battery Discharge Loss Negligible 

Battery Charge Loss Negligible 

Total Energy (kWh·100 km
−1

) 20.58 18.64 17.35 15.42 14.13 

Figure 4. First-order sensitivity analysis of the nominal vehicle parameters. (a) NEDC and 

(b) Artemis Cycle. 
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When comparing these two driving cycles, we can see a large difference in energy consumption, as 

illustrated in Table 1, but the relative change in sensitivities are comparable. We have observed some 

trends in the sensitivities for a single parameter, and to do so, we needed to produce several plots. In 

the following section, we will see whether a second-order analysis could have predicted this as well, 

and also that we can achieve similar results far more quickly and easily. 

3.4. Second-Order Sensitivity Analysis 

Figure 5 illustrates the results of second-order sensitivity analysis at the vehicle nominal points for 

NEDC and Artemis. Figure 5a shows the results for the NEDC in number values and text explanations 

and the same for Artemis cycle, as shown in Figure 5b.  

Figure 5. Second-order sensitivity analysis for the nominal vehicle parameters. (a) NEDC and (b) Artemis. 
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(b) 

where the symbols are: 

 

It can be seen that the cross-coupling between the gear efficiency and the motor efficiency is very 

strong, as is the cross-coupling between gear efficiency and vehicle mass: the numerical values are 

close in magnitude to one. There is also strong cross-coupling between vehicle mass and motor 

efficiency. In fact, the gear and motor efficiency are also cross-coupled to every parameter.  

Cross-coupling between other parameters is smaller, and there are some cases where the  

cross-coupling is so small that it could be ignored. The same results are broadly true for both driving 

cycles. This relates well to the results shown in Figure 4: we see that that there is significant coupling 

between the sensitivities to regenerative braking efficiency, vehicle mass, gear efficiency and motor 

efficiency, but not much with the aerodynamic drag area and the rolling resistance. 

Figure 6 shows second order sensitivity results from selected parameters. In Figure 6a, energy 

consumption on NEDC of two parameters between aerodynamics and vehicle mass are presented. 

Black solid line illustrates change in vehicle mass only; blue dash-dot line shows change in 









































0~14.018.013.000

14.00~91.069.021.028.0

18.091.00~88.027.036.0

13.069.088.00~28.00~

021.027.028.00~0~

028.036.00~0~0~

's









































0~15.02.014.000

15.00~94.069.015.031.0

2.094.00~87.019.039.0

14.069.087.00~20.00~

015.019.020.00~0~

031.039.00~0~0~

's

SC VSC Very Strong CouplingNC MCNo Coupling Medium Coupling Strong Coupling



Energies 2014, 7 3744 

 

 

aerodynamic area only. Red dash line shows changing in energy consumption while both parameters 

are changed simultaneously. We can see that there is no coupling between aerodynamic drag area and 

vehicle mass. As a result, when varying both parameters simultaneously, the impact on the energy 

consumption is linear due to the parameters being decoupled. 

Figure 6b shows the coupling sensitivities for mass and rolling resistance and Figure 6c illustrates 

these sensitivities for mass and gear efficiency. The coupling between mass rolling resistance and mass 

gear efficiency are respectively medium and very strong as presented in Figure 5. When two 

parameters are varying simultaneously, the impact on the energy consumption changes non-linearly as 

shown in red-dash line. This is due to the coupling effect between the aforementioned parameters as 

presented in Section 3.4. 

Figure 6. Second-order sensitivity analysis results. (a) Coupling between mass and 

aerodynamic drag area (no coupling); (b) Coupling between mass and rolling resistance 

(medium coupling); (c) Coupling between mass and gear efficiency (very strong coupling). 
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area and mass, but also adding detailed characteristics of the powertrain such as the gearbox efficiency 

and the motor efficiency. For the legally-mandated NEDC and the more realistic ARTEMIS driving 

cycle, it has been shown that the greatest sensitivity is to the efficiency of the gearbox. This is 

particularly interesting because there are examples in the literature of attempts to reduce BEV energy 

consumption through the use of multiple transmission ratios to improve motor efficiency [14,15]. 

Typically, the use of multiple transmission ratios makes the gearbox efficiency worse. The sensitivity 

results of this paper suggest that in this particular case energy consumption is actually more sensitive 

to gearbox efficiency than motor efficiency, so we may want to keep the more-efficient single-speed 

transmission for the vehicle we have considered. 

The first-order analysis has shown us which parameters have the greatest sensitivities, but the 

second-order analysis has shown how the parameters interact with each other. For example, we can see 

that there is very strong cross-coupling between the gearbox efficiency and the motor efficiency: this 

tells us that if we make the motor more efficient, the gearbox becomes (relatively) even more of a 

problem. If we are trying to produce optimal designs, we know that we need to be mindful of changes 

that will affect these parameters. We may need to make small changes together, for example. 

Conversely, we saw that some other parameters are not strongly-coupled together. For those 

parameters, we do not need to take cross-coupling into account. As well as informing our design 

process, these sensitivities tell us about the accuracy of our results: if our model is very sensitive to a 

certain parameter, we need to be sure that we are accurate, because a small change would result in 

significantly misleading results. 

For the vehicle manufacturer, insight into cross-coupling is useful since it can act as a guide as to 

which aspects of a vehicle configuration are particularly interconnected. A vehicle manufacturer will 

often want to use multi-objective optimization to address the trade-offs between design parameters.  

A second-order sensitivity analysis would aid in selecting the correct set of parameters for this type of 

optimization. A first-order analysis tells the manufacturer which components to improve first, but a 

second-order analysis gives an idea which components will be of significance next. In the case study, 

for example, we saw that drag area was only lightly coupled to drag gearbox efficiency, so we can 

work on one or the other in confidence, knowing that any gains will not be swamped by a new limiting 

factor. Conversely, we know that as we make the gearbox more efficient, the efficiency of the motor 

will become more of a relative problem. It would be interesting though probably not tractable to 

weight sensitivities with development costs as a tool to directing research investment. 

The model we have used in this example is illustrative and some assumptions were made: we have 

assumed that the electric machine efficiency is a constant 85% efficiency both when motoring and 

generating; in practice, it varies. The model of regenerative braking is also simplified: some sources in 

the literature estimate an efficiency of around 50% [6], though this can depend greatly on the driving 

cycle and limitations imposed in the interest of good vehicle dynamics. We have also assumed a 

nominal transmission efficiency of 97%, which we feel is reasonable, but may not be perfect. Despite 

these limitations, we feel that our model is adequate for the purposes of this paper: sensitivity analysis 

shows which parameters will have the greatest effect on the results, if inaccuracies in our model are 

significant, sensitivity analysis will highlight this. 
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5. Conclusions 

This paper has presented an extended technique for analyzing parameter sensitivities in modern 

road vehicles. The new techniques consider first-order and second-order effects, showing both the 

effects on individual parameters and also the cross-coupling between different parameter sensitivities. 

This method is quick and intuitive, and will help a vehicle designer quickly gain extra insights and 

identify cross-coupled parameters. The techniques have been demonstrated on an energy-minimization 

problem for a C-segment BEV. The parameter set considered was larger than that typically 

encountered in the literature, and highlighted the sensitivity of the result to the powertrain efficiency. 

The work to date has considered only a single topology in a theoretical context, and it would be 

interesting to conduct further work determining how useful second-order analyses are in practice.  

Second-order analysis could potentially inform research and development work, aiding engineers to 

understand how “limiting factors” interact and giving insight into the technical challenges that will 

arise once today’s problems have been addressed. However, to be certain of benefits, it would be  

worth evaluating the techniques in the context of a development project and determining whether the 

theory translates into useful practice. The authors plan to test these techniques with different 

powertrain topologies. 
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