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Abstract: Flooded mine workings have good potential as low-enthalpy geothermal 

resources, which could be used for heating and cooling purposes, thus making use of the 

mines long after mining activity itself ceases. It would be useful to estimate the scale of the 

geothermal potential represented by abandoned and flooded underground mines in Europe. 

From a few practical considerations, a procedure has been developed for assessing  

the geothermal energy potential of abandoned underground coal mines, as well as for 

quantifying the reduction in CO2 emissions associated with using the mines instead of 

conventional heating/cooling technologies. On this basis the authors have been able to 

estimate that the geothermal energy available from underground coal mines in Europe is on 

the order of several thousand megawatts thermal. Although this is a gross value, it can be 

considered a minimum, which in itself vindicates all efforts to investigate harnessing it.  
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1. Introduction 

Large mining areas in Europe are currently being affected by closure processes, which are mainly 

due to the progress in mining works and changes in mining activities. Mine closure creates negative 

social, economic, urban and environmental effects on the affected areas. Although mines present high 

potential for geothermal utilization of low-temperature water, which could be used for heating and 
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cooling purposes, only a few cases have been reported in Europe, Canada, USA or China where this 

potential geothermal energy from underground mines has been actually detected and used. 

In Europe, some cases from The Netherlands, Germany, Poland, United Kingdom, Norway and 

Spain have been reported by several authors [1–3]. Power obtained from mine water can only be a  

few kilowatts thermal (kWt) from small installations, like Freiberg (Germany) or Shettleston and 

Lumphinnans (Scotland, UK); but there are also large installations which extract several megawatts 

thermal (MWt) from mine waters like those in Heerlen (Netherland), Mszczonow (Poland), and Mieres 

(Spain). Therefore, a vast geothermal potential is not being exploited; nevertheless, there is always a 

problem before the start of any project using the geothermal power of a mine. The procedure begins 

when there is an abandoned mine, as in the two cases shown in Figure 1 (one is an old gallery, and the 

other is an old shaft). These photos illustrate the reality of the initial stage of these projects: just 

evidence of the existence of two underground mines which were in operation in the past. 

Figure 1. (A) Abandoned underground mine, Mariana mine (Asturias); (B) Abandoned 

underground mine, Olloniego colliery (Asturias).  

  

(A) (B) 

Without doubt, there are strong reasons related to sustainability and ecology which make this kind 

of projects worthy of research; nevertheless, economic viability is always a strong point helping 

support the project. Thus, the first question that should be solved is: could the use of geothermal power 

from these mines be profitable? When revising the specialized literature, not many cases have been 

described. Relevant research has been carried out mainly in Canada [4–10] (the Springhill case is of 

special interest because it has been operating since 1988) and Europe [11–18]. Another few more cases 

of geothermal use of mines have also been reported concerning mines in other countries such as the 

USA [19,20] and China [21–23]. An interested reader can find more complete information about these 

cases in [1–3] and [16]. In many of these works, hydrogeological models are described. In any cases, a 

great deal of information is needed to conduct these studies successfully. When the mine is in 

operation, to find this information is easy. On the contrary, it is difficult to obtain such information 

when the mine was closed many years ago and the company has disappeared. It is often necessary to 

study old public administration documents or even visit historic libraries or registries, making this an 

archaeological and/or industrial patrimony task rather than technical research. Such an amount of work 

would be only justified in those cases where a significant geothermal energy extraction is expected. 

The same question can be asked at another level. For example, in countries having a long mining 
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tradition, is it reasonable to carry out actions related to geothermal use from abandoned mines which 

imply a large investment? How much geothermal energy is expected to be extracted from abandoned 

mines? In this sense, the main objective of this research work is to develop a method which allows 

estimating lower and upper limits easily for the geothermal potential of an abandoned underground 

coal mine. This is important in order to evaluate the possibility of an actual geothermal use of an 

abandoned mine or of a future use for a mine near closure. The method would help to decide under 

which conditions it becomes interesting to start a project for using this energy from mines. 

In this work, the “geothermal potential” of a mine is the total amount of geothermal energy  

(or geothermal power) which can be obtained from this mine. It is easy to understand that one of the 

factors influencing geothermal potential is the volume and characteristics of the voids created by 

mining activity (i.e., these voids can be stable in the long run and remain open, or they can cave in 

immediately and be filled with rock debris). This value is directly related to coal output. Our goal is to 

relate the present geothermal potential of an underground coal mine with the total saleable coal 

production yielded by the mine through its operation history. The main advantage of this proposal is 

that the coal output of a mine is a well-known parameter, which is always easy to find because it has 

been recorded over the years by public administration. On the other hand, wide coal mining experience 

helps us to establish an easy-to-use method. 

Thus, a simple formula is proposed: 

Wt ≈ k × PT (1) 

where Wt is the value for geothermal power of the mine in MW thermal (MWt); PT is the total saleable 

coal production in millions of tonnes (Mt); and k is the factor of proportionality which has to be 

estimated empirically. 

Before starting a project for the use of geothermal power of an abandoned mine, it would be very 

interesting to make a “reasonable estimation” of the minimum and maximum thermal energy which 

can be recovered from mine water. If the minimum quantity is sufficiently high, a project for its use 

could be proposed. Nevertheless, under some unfavorable conditions (as for example a mine located 

far away from inhabited areas) the project could be rejected if it were not economically feasible, even 

assuming maximum heat recovery. 

A “reasonable” maximum and minimum value for the ratio Wt/PT will be determined in the 

following. Regarding our mines, the authors have determined that kmin ≈ 0.25 and kmax ≈ 1.0. It is not 

possible to make accurate predictions using this methodology; nevertheless, if technicians were able to 

predict a minimum value (or lower limit) for the geothermal potential of a mine and this value is high 

enough, the development of a project can be justified. On the other hand, if a maximum value of 

geothermal power is calculated and it is not sufficiently high to support a project, it is clear that it is 

better not to spend resources in this project. 

In order to define this empirical method, coal output and two other parameters of the mine also  

have to be known: maximum water pumping and average quantity of air flow. Two different mines 

(different coalfields, history, exploitation methods, hydrogeological conditions…) are described here 

below. An analysis of these mines helps to understand the method and the value of the characteristic 

parameters, kmin and kmax. 
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It has to be pointed out that the method is only proposed for underground coal mines. As is well 

known, due to its sedimentary origin, coal usually appears in Nature as coal seams. This fact makes 

underground coal mines have a more topologically arranged structure than base-metals mines. 

Consequently, it is easy to find relationships between different parameters which allow the final 

relationship between geothermal power and total coal ouput to be found. For example, in a given coal 

field, the total length of galleries is approximately proportional to coal production. In base-metals 

mines it is more difficult to establish these kinds of relationships due to variable metal concentration in 

the rockmass. This does not mean that in this kind of mines it could not occur; in fact, a similar 

formula could probably be established for base-metals mines, but since no data is available a similar 

empirical law cannot be defined. 

2. Brief Description of the Proposed Method 

As previously mentioned, the method is reduced to a simple formula (Equation (1)). This formula 

allows estimation of the geothermal power of the mine Wt (in MW thermal or MWt), from a well-known 

parameter which is the total saleable coal output PT (in millions of tonnes or Mt) produced by this mine 

during operation period. In effect, PT is easy to find, since it has always been recorded over the years 

by different administrations. In order to define the method, the parameter k has to be defined or estimated, 

which implies knowing both the geothermal power and coal output of a mine at a given moment. 

In any active mine, there is always a constant flow of two fluids which interchange heat with the 

rockmass: water and ventilation air. An estimation of the geothermal power which could be supplied 

by the mine can be deduced from the total heat extracted by these two fluids from the mine. 

Assuming that a certain quantity of water flow Qw (m
3
/s) is pumped from the mine and assuming 

that the temperature of the water has increased in ∆T (°C) in its flow through the rockmass, the heating 

power Ww (Watts) which heats the water is: 

Ww = Qw × dw × sw × ∆Tw (2) 

dw and sw are respectively the density (kg/m
3
) and the specific heat (J/kg∙°C) of water. 

In the same way, if the air flow rate Qa (m
3
/s) is extracted from the mine by the main exhaust fans 

and its temperature has increased by ∆Ta (°C), the heating power Wa which heats the air is: 

Wa = Qa × da × sa × ∆Ta (3) 

where da and sa are respectively the density and the specific heat of air. 

Nevertheless, the increase of water and air temperature can be produced by other heat sources in the 

mine which are not related to the heating capacity of the ground. In underground coal mines, the most 

important artificial heating source is the electrical equipment which also contributes to increasing the 

water and air temperature. 

Assuming a total electrical power E (MW) installed in the mine and an electrical performance of r (%), 

the total power transferred to the air/water would be: 

We = (100 − r) × E (4) 

Under these conditions, the total thermal power effectively released from the rockmass or 

transferred from the rockmass to water and air is: 
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Wtmin = Ww + Wa − We (5) 

This is a real value, since it has been directly obtained from experience and, without doubt,  

the available geothermal power of this mine is at less equal to it. 

In Asturias, the average temperature of water pumped from mines is about 18 °C [24,25] whereas 

the average temperature of water at the surface is around 12 °C, and consequently, ∆Tw ≈ 6 °C. On the 

other hand, the water density and specific heat are dw = 1000 kg/m
3
 and sw = 4186 J/kg∙°C 

respectively. The heating power which heats the water, which is a part of geothermal power of the 

mine, can be estimated by: 

Ww = 25.1 × Qw (6) 

where Ww is in megawatts thermal (MWt) when Qw is in cubic meters per second (m
3
/s). 

In winter, the average temperature of mine air is also about 18 °C and the temperature of the air at 

the surface is about 7 °C. On the other hand, taking into account that the air humidity within the mine 

is almost constant and close to 90%, its density and specific heat are 1.18 kg/m
3
 and 1020 J/kg∙°C 

respectively; the thermal power necessary to heat the air is thus: 

Wa = 0.013 × Qa (7) 

Wa is in megawatts thermal (MWt) when Qa is in cubic meters per second (m
3
/s). 

On the other hand, assuming an electrical performance of 90%, the total power is: 

We = 0.10 × E (8) 

Under these conditions, the total thermal power released from the rockmass or transferred from the 

rockmass to water and air is: 

Wt= Ww + Wa − We= 25.1 × Qw + 0.013 × Qa – 0.10 × E (9) 

Taking into account the previous explanation, the ratio can be easily calculated as: 

k = Wt/PT (10) 

The analysis of two mines where this ratio reaches low and high values respectively allows us to 

estimate a minimum and maximum value for k. 

The method is useful to perform geothermal resource estimates for given mining regions where coal 

extraction data are available; nevertheless, it is important to point out that it should not be used to 

design a geothermal system at a mine site. 

The most important factor when using geothermal energy from flooded mines is that there must be a 

customer for the energy nearby. However, villages or even towns and cities have typically grown due 

to a mine having started its mining activity nearby. Consequently, a lot of mines in Europe are near 

populated areas and the geothermal energy can be used directly in district heating or similar systems. 

3. Empirical Estimation of Limit Values for Parameter k 

3.1. Case History 1: La Camocha Colliery  

This mine has exploited an independent coal field in the past. Coal seams were mainly very steep 

(70° dips) and of low-medium thickness (1.5 m in average). The mining method used initially was the 
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traditional inverted steps method (with backfilling) when mining was manual by means of pick 

hammers. More recently, sublevel caving with explosives has been used successfully. 

This is an example of estimating the geothermal power of abandoned coal mine from historic coal 

output data, air flow rate and quantity of water pumped. As the quantity of water pumped out of this 

mine can be considered rather low, data will be used for the estimation of a minimum value kmin. 

In this case, coal output data are known from the first year of the mine until the last year of 

exploitation. Annual coal production of the mine during its history is represented in Figure 2A. 

The exploitation of the mine started during the 1930’s. During the Second World War in Europe, 

the price of coal increased and this caused an increase in coal production. The maximum was reached 

in 1960 and then, output decreased quickly mainly due to emigration of miners to other coal fields in 

Europe which offered better working conditions (in this case, to Germany and Belgium). This 

tendency continued until 1970. However, the energy crisis in the 70s made the production of coal 

interesting and coal output increased again. Such an increase continued until about 1995. Then, 

changes in the world market and in European politics caused coal output to decrease drastically until 

mining ceased, in 2007. Until then, total accumulated production was about 16 million tonnes of 

saleable coal (Figure 2B). 

Figure 2. Coal production at La Camocha Colliery (Asturias, Spain). (A) Coal output,  

in t/year; (B) Cumulative total output from approximately 1932 to mine closure.  

  

The use of this method implies knowing not only coal output but also another two parameters of  

the mine: water pumping and quantity of air flow. It is not always possible to obtain the necessary 

information; nevertheless, in this case, a record for the water pumping over several years has been 

obtained (Figure 3A). 

This is a characteristic curve which decreases over time. There is a initial period of transient regime 

when the water originally contained in rockmass flows towards the mine. Afterwards, a stationary 

regime is reached (the water inflow into the mine is equal to the water inflow within the rockmass) and 

the quantity of water flow remains more constant during the years. The greatest water flow rate 

pumped was 200 m
3
/h. 

As can be seen from Figure 3B, water pumping is related to coal output because underground voids 

created by mining works become channels for water flow. On the other hand, ground movements 
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caused by caving and land subsidence generate an increasing rock mass permeability. But, the 

relationship between water and coal production is a gross estimation because other significant factors, 

such as the rainfall, influence the mine water inflow. In many cases, water inflow increases more with 

the extension of the mine than—for a given extension—with depth. 

Figure 3. (A) Water pumped at La Camocha colliery per year; (B) Water pumped at  

La Camocha colliery versus annual coal output. 

  

The second factor required is the air flow rate in the mine. This parameter does not vary greatly 

year by year; so, to develop a simple procedure, a unique representative value will be chosen. Thus, the 

average quantity of air flow extracted from mine by the main fans determined from measurements 

taken during the last years of the history of the mine is a representative value. Here, air flow rate 

supplied to the mine by two main exhaust fans was aproximately 60 m
3
/s, and was practically constant 

over the years. When the value of this parameter is not known, it can be deduced from mining 

experience. Figure 4A,B represent the specific methane emissions in m
3
 of methane per raw ton and 

the average methane flow in m
3
 of gas per day for a typical underground mine in Asturias [26–28].  

In this mine, the average output in the last 50 years is 300,000 tonnes of saleable coal per year  

(about 2500 of raw tonnes per day). This mine was not very gassy so, for this output level, the methane 

flow is of about 10,000 m
3
 of gas per day or 0.115 m

3
/s. Methane concentration in ventilation return in 

our coal mines is usually about 0.20%; consequently, the fresh airflow rate is about 60 m
3
/s.  

The last factor is electrical power. Traditionally, these mines have low mechanisation. We can 

assume that electrical power of mining equipment in the mine is lower than E = 1.0 MW. 

It now becomes easy to estimate kmin. The maximum value of recorded Qw has to be selected. In this 

case, for 200 m
3
/h, Qw= 0.055 m

3
/s. On the other hand, Qa = 60 m

3
/s. 

By replacing these values in Equation (9): 

Wtmin = 25.1 × Qw + 0.013 × Qa – 0.10 × E = 1.38 + 0.78 – 0.10 ≈ 2.1 MWt (11) 

This is a real value for geothermal power that can be extracted from La Camocha mine and, 

although Qw is a maximum, Wtmin is a minimum because the water inflow in this mine can be 

considered low. 
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Figure 4. Typical methane emissions parameters from underground coal mines in Asturias 

(A) Specific emissions; (B) Average methane flow. 

  

In order to estimate a geothermal power for a given total accumulated coal output, the relationship 

between Wtmin and PT is calculated for all the years for which PT is known (Figure 5A and Equation (10)): 

kmin(t) = Wtmin/PT(t) = 2.1/PT(t) (12)  

In order to better understand the results, this relationship is represented against the accumulated 

output PT in Figure 5B. 

Figure 5. (A) Relationship between geothermal power and output per year (La Camocha 

colliery); (B) Relationship between geothermal power and output versus accumulated 

output (La Camocha colliery). 

  

3.2. Case History 2: Figaredo Colliery  

The second example is similar to the previous one in some aspects; for example, in the latter also 

vertical coal seams were also mined. However, there are several factors which significantly influence 

the water inflow into the mine, making it greater than in the former case. One factor is that the 

longwall method with caving was used more extensively thereby increasing the permeability of the 

rockmass. The second aspect is that there is a river above the mine and it has been demonstrated that a 
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stream of water had flown from the river into the mine. The last issue is that this mine is connected to 

three other collieries and could receive water from them. For all these reasons, this practical case will 

be used to estimate a maximum value of k. 

The history of coal production in this colliery is shown in Figure 6. The exploitation of coal started 

at the end of the XIX century (Figure 6A). It had increased during the second half of the 20th century 

due to the Second World War and the subsequent petroleum crisis. Peak production was reached in the 

decade of the 80s and afterwards production felt until the closure of the mine in 2007. Total accumulated 

production was about 10 million tonnes of saleable coal over more than 100 years (Figure 6B). 

Figure 6. Coal production at Figaredo colliery (Asturias, Spain) (A) Coal output, in t/year; 

(B) Cumulative total output from 1910 to mine closure.  

  

Figure 7A shows the water pumped from the mine for 20 years and, in Figure 7B, water flow rate 

pumped from the mine is related to the coal output. As can be inferred from Figure 7, water inflow in 

this mine is greater than in the mine previously analysed, in particular it is as much as five times 

higher. The maximum quantity of pumped water reached 1000 m
3
/h or 0.277 m

3
/s. On the other hand, 

the air flow rate recorded in the last year of the mine was 90 m
3
/s and the electrical power of mining 

equipment is lower than E = 1.0 MW. 

Figure 7. (A) Water pumped at Figaredo colliery per year; (B) Water pumped at Figaredo 

colliery versus yearly coal output. 
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Proceeding as in the previous case, geothermal power could be obtained from Equation (9): 

Wtmax = 25.1 × Qw + 0.013 × Qa – 0.10 × E = 6.97 + 1.17 − 0.10 = 8.1 MWt (13)  

This is a real value for geothermal power which can be extracted from the mine and it can be 

considered as a maximum by comparing it with other mines in Asturias. In order to estimate 

geothermal power for a given total accumulated coal output, the relationship Wtma/PT is calculated for 

all the years in which PT is known (Figure 8A and Equation (10)): 

kmax(t) = Wtmax/PT(t)= 8.1/PT(t) (14)  

This relationship is represented as a function of the accumulated output PT in Figure 8B, in order to 

better understand the results. 

Figure 8. (A) Relationship between geothermal power and output per year (Figaredo colliery); 

(B) Relationship between geothermal power and output versus accumulated output 

(Figaredo colliery). 

  

3.3. Determination of Parameter k Based on Experience  

In Figure 9, the value of k has been represented as a function of the accumulated coal output for the 

period of activity of these two representative mines. This method for selecting the proper value of k 

would be useful for mines producing, at least, 5 million tonnes of saleable coal. 

As it can be deduced directly from experience (Figure 9), a reasonable minimum value for k would 

be kmin = 0.2 − 0.4 while, a reasonable maximum for the parameter would be kmax = 0.90 − 1.20. 

This means that, with regard to the assessing geothermal power in Asturias, the value kmin would be 

a conservative value and this geothermal power could be actually reached, while kmax is an optimistic 

value and it would be hard (even impossible) to reach the corresponding estimated geothermal power. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1980 1990 2000 2010

Year

R
e
la

tio
n
s
h
ip

 k

A

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

6 7 8 9 10 11 12

Accumulated output (millions of tonnes)

R
e
la

tio
n
s
h
ip

 k

B



Energies 2014, 7 4251 

 

 

Figure 9. (A) Minimum relationship between geothermal power and output versus 

accumulated output; (B) Maximum relationship between geothermal power and output 

versus accumulated output. 

  

4. Analytical and Semi-Empirical Estimation of Limit Values for Parameter K 

It is not easy to estimate “theoretically” reasonable maximum and minimum values for geothermal 

power. But a semi-empirical approach could be used if the total length of galleries in the mine is 

known. If this length parameter is unknown it could be either obtained from historical data or it could 

also be deduced from coal output as explained below. 

After a study carried out in Spain in 1990 [29], the length of galleries excavated in rock in Spanish 

coal mines varies from 4 to 9.5 km per million of saleable tonnes. In the case of gateroads or galleries 

advanced in coal seams this value ranges from 6 to 12 km. The report gave data from a total of about 

25 underground mines in Spain (pit-coal, anthracite and lignite). In this period, a number of large-scale 

mines were in operation and these values can be taken as representative for any mine. In the following, 

a minimum value for the gallery length excavated in rock and a maximum value for the total length of 

excavated galleries (rock + coal) will be necessary. Taking into account the above, limits of 5 km and 

20 km per million of tones have been chosen. 

Figure 10 shows the total yearly length of galleries excavated in rock and gateroads excavated in 

coal seams for several mines in Asturias. The value is related to the yearly coal output and it is given in 

mm per ton (equivalent to kilometre per million tonnes). These Figures illustrate that these values,  

5 and 20 km, could be accepted for mines in Asturias rather than show data from which these values 

could be deduced mathematically. 

In order to define a procedure, a typical mine in Asturias with a total output of about 10 million of 

saleable coal has been assumed. The total necessary gallery length would be about 200 km. This value 

is in agreement with real data, since the total length of galleries excavated in Figaredo Colliery has 

been about 254 km. 
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Figure 10. (A) Yearly ratio of length of new galleries excavated to coal output; (B) Yearly 

ratio of length of new gateroads excavated to coal output. 

  

After research in a typical mine in Asturias [30], it has been found that the potential geothermal 

power of a 1 km gallery is approximately 50 kWt = 0.050 MWt. This means that the total geothermal 

power of a mine which has produced PT tonnes along its life would be: 

Wtmax = 0.050 × 20 × PT = 1.0 × PT (15) 

Therefore the value of k which can be taken as a maximum would be a constant: 

kmax(t) = Wtmax/PT(t) = 1.0 (16) 

This value has to be considered a “maximum” because the factor 50 kW/km was deduced from data 

of galleries at a depth of 500 m, where rockmass temperature was about 28 °C. It is clear that galleries 

at a lower depth would have smaller geothermal potential. On the other hand, it is assumable that most 

of the galleries excavated in rock maintain their section, with no significant convergences. Another 

assumed factor is that the distance between galleries is enough to allow extraction of the maximum 

heat from the rockmass, which is not always realistic. Finally, in order to recover this amount of heat, 

large quantities of water should be used (which is not always possible). 

A more conservative value can be estimated if it is assumed that gateroads (galleries following coal 

seams) would collapse and water could not flow through them. In this case, only galleries excavated in 

rock are stable in the long term and only these galleries could behave as paths for water flow. Moreover, 

the smaller ratio of galleries’ length excavated in rock to coal output is chosen. Consequently, only 5 km 

of galleries are useful per million of coal tonnes: 

Wtmax = 0.050 × 5 × PT = 0.25 × PT (17) 

Consequently the value of k which can be taken as a minimum is constant and its value is: 

kmin(t) = Wtmin/PT(t) = 0.25 (18) 

These theoretical results are represented in Figure 11, in a graphical output similar to the one that 

shows the more experimental results previously deduced (in Figure 9). 
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Figure 11. (A) Minimum relationship between geothermal power and output versus 

accumulated output; (B) Maximum relationship between geothermal power and output 

versus accumulated output. 

  

5. Using the model  

5.1. Estimation of the Geothermal Power of a Mine  

It now becomes easy to estimate the geothermal power potential of any mine in Asturias, by 

applying the above-described method. 

The case example selected to validate the method is a coal mine having mainly low, steep coal 

seams at a moderate depth of 400 m. The coal is anthracite, without methane and the exploitation 

method is longwall with caving. This coal field did not have easy access to the rest of the region, so its 

mining history starts about the middle of the 20th century, when a power station was built near the 

coalfield (Figure 12). Production drastically increased in 2000, due to the mechanisation of the works 

in order to mine a 4 m thick coal seam by the longwall method [31]. 

Figure 12. Coal production of an underground mine in Asturias (A) Coal output, in t/year; 

(B) Cumulative total output from approximately 1954 to present time.  
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Studies conducted during 2003 have provided some valuable information, which can be used to 

validate the approach. Up to this date, the mine had produced about PT = 5 × 10
6
 tonnes of saleable 

coal. Taking the value kmin ≈ 0.25, the minimum expected geothermal power of the mine would be: 

Wtmin = 0.25 × 5 = 1.25 MWt (19)  

This minimum value can be verified from real data obtained from the mine. In 2003, the total water 

inflow into the mine was Qw ≈ 162 m
3
/h = 0.045 m

3
/s while the air flow rate was Qa ≈ 25 m

3
/s [24,32]. 

In this case, it can also be assumed that the electrical power of mining equipment is about E = 1.0 MW. 

Consequently, a realistic value for geothermal power would be: 

Wt = 25.1 × Qw + 0.013 × Qa – 0.10 × E = 1.13 + 0.32 – 0.10 = 1.35 MWt (20) 

This value is greater than the previously calculated minimum value. 

Taking kmax ≈ 1.0, the upper limit for geothermal power (which is not expected to be reached) 

would thus be: 

Wtmax = 1.0 × 5 = 5.0 MWt (21) 

Nevertheless, in opposition to estimation of the minimum parameter, the assessment of the 

maximum value cannot be proved. 

5.2. Estimation the Geothermal Power for Several Mines in the Same Coalfield  

This section shows the typical problem of estimating the geothermal power potential of many 

abandoned mines for a given coalfield in Europe, applying it to Asturian mines. The total underground 

coal output in Asturias during the last 200 years is shown in Figure 13. It is a fairy moderate 

production of only 110 million tonnes. Actually, the output is about 1 million tonnes per year. Data is 

only referred to pit-coal produced in the Central Coal Basin. 

Actual data from 1980 and 2004 allow verification of the simplified method. In 1980, total coal 

ouput of mines in Asturias was about 89 million tonnes of saleable coal (PT = 8.9 × 10
7
 tonnes). This 

production was obtained mainly from 25 collieries, so the average saleable production reached was 

about 3.5 Mt per mine facility. So, at the present time these mines could be considered “old mines” and 

the approach could be used. 

For the following minimum and maximum values, kmin ≈ 0.25 and kmax ≈ 1.0, the minimum and 

maximum expected geothermal power of the mines would thus be: 

Wtmin = 0.25 × 89 = 22.2 MWt (22) 

Wtmax = 1.00 × 89 = 89.0 MWt (23) 

It can be estimated that the total mine water evacuated from underground mines in Asturias was 

more 4.0 × 10
7
 m

3
 per year or Qw = 1.2 m

3
/s, as a study about mine water carried out in 1980 reports [33]. 

On the other hand, following the procedure explained above, coal output for this year was  

5.5 × 10
6
 tonnes, and the total air flow rate supplied to the mines would be more than 1500 m

3
/s. With 

this input data, the actual geothermal power could then be estimated as: 

Wt = 25.1 × Qw + 0.013 × Qa = 30.1 + 19.5 = 49.6 MWt (24) 
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Figure 13. Total coal production of underground mines in Asturias (A) Coal output,  

in thousand t/year; (B) Cumulative total output from 1850 to present time, in million tonnes. 

  

This value is higher than the minimum geothermal power estimated before and, it is obviously 

lower than the maximum one. In 2004, the total coal output of mines in Asturias was about 104 million 

tonnes of saleable coal (PT = 1.04 × 10
8
 tonnes). Taking the values kmin ≈ 0.25 and kmax ≈ 1.0, the 

minimum and maximum expected geothermal power would be: 

Wtmin = 0.25 × 104 = 26.0 MWt (25) 

Wtmax = 1.00 × 104 = 104.0 MWt (26) 

A study carried out in 2004 [25] demonstrated that the total mine water pumped from underground 

mines in the Central Coal Basin in Asturias was more than 36 × 10
6
 m

3
 per year or Qw = 1.1 m

3
/s. On 

the other hand, following the procedure developed in this research, for a yearly coal output of 

approximately 1.8 × 10
6
 tonnes, and a total air flow rate supplied to the mines of more than 500 m

3
/s in 

2004, the estimated geothermal power is: 

Wt = 25.1 × Qw + 0.013 × Qa = 27.6 + 6.5 = 34.1 MWt (27) 

A value which is also between the minimum and maximum values previously estimated. 

It is important to point out that, as recorded in [25], the population of villages and towns close to 

these mines reaches 500,000 inhabitants which could directly use this geothermal power. 

5.3. Could the Total Geothermal Power of Abandoned Mines in Europe be Estimated?  

An accurate quantification of the geothermal power of abandoned mines in Europe would not only 

contribute to making the right decisions but also help to find proper uses for existing funds. This is 

obviously an interesting problem which cannot be solved at this stage of research; the main but not the 

only reason, is that at the present time, thousands of mines remain abandoned in Europe with no 

information available and without reported data; nevertheless, at least, an attempt to estimate the 

potential of abandoned coal mines could be made by applying the proposed method. 

The graphical output in Figure 14A shows a gross estimation of the total coal production in the 

European Union for the last 150 years [34,35]. The accumulated coal output could reach the value of 

11,000 million tonnes (Figure 14B). 
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Figure 14. Estimation of total coal production of underground mines in Europe (A) Coal 

output, in million t/year; (B) Cumulative total output from 1850 to 2000, in million tonnes. 

  

Taking the value kmin ≈ 0.25, the total geothermal power potential in Europe could be assessed: 

Wtmin ≈ 0.25 × PT = 0.25 × 11000 = 2750 MWt (28) 

This is, about 3000 MWt could be extracted only from abandoned underground coal mines. The 

conclusion is that, as stated above, a vast geothermal potential from abandoned mines is not being 

exploited in Europe. 

Furthermore, at this point, it would be interesting to make a gross estimation of hypothetical 

reduction in CO2 emissions due to the use of this unexploited geothermal power. 

Assuming that Wt = 3000 MWt, and for a coefficient of performance COP = 4, the useful thermal 

power is: 

Wu = Wt × COP/(COP − 1) = 3000 × 1.33 ≈ 4000 MW (29) 

Assuming that the power is used h = 24 h/day and d =30 days/month during m = 6 months/year,  

the total energy would thus be: 

Eu = Wu × (12 − m) × d × h = 4000 × 6 × 30 × 24 ≈ 17,280,000 MWh/year = 17.3 TWh/year (30) 

The ratio between tonnes of CO2 emissions and MWh produced depends on the source. In order to 

produce 1 MWh of thermal energy, it is necessary to emit 0.850, 0.450 or 0.200 tonnes of CO2 to the 

atmosphere depending on wether electrical, fuel or natural gas has been used as a primary energy 

source [30]. Assuming an average ratio of 500 t/MWh the production of 17.3 TWh/year would imply a 

total emission of more than 8.5 million tonnes per year. 

The value of this ratio is 0.170 for geothermal power by means of heat pumps. Consequently, in this 

case, CO2 emissions would be only 3 million tonnes per year, thus yielding a reduction of CO2 

emissions of about 5 million of tonnes/year. 

Finally, it is important to point out that this 3000 MWt could be extracted only from abandoned coal 

mines. It is unquestionable that a quantity of similar magnitude could be extracted from base-metals 

mines. So, the total amount of geothermal energy which could be recovered from underground mines 

in Europe could be as much as 6000 MWt. This value is equivalent to the energy supplied by 6000 eolic 

generators or equivalently, to the energy supplied by a wind power park with more than 150 generators 
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for each country in the European Union. For this reason, promoting the widespread use of this source 

of renewable energy is of the most importance. 

6. Conclusions  

The following conclusions can be deduced from research carried out so far: 

- Although mines present a high potential for geothermal utilization, there are only few cases 

known in Europe where this potential has been detected, and accurately used. 

- A method has been developed to allow a non-complex estimation of the limits for the 

geothermal potential of an abandoned underground coal mine, from the value of its  

total production. 

- The method is useful for making geothermal resource estimates for given mining regions where 

coal extraction data are available; it should not be used to design a geothermal system at a  

mine site. 

- The specific maximum and minimum values, kmin = 0.25 and kmax = 1.0, could also be applied 

in coal regions similar to Asturias. Many parameters can influence these values, as for example 

thermal properties and hydrogeological characteristics of the rockmass, average temperature of 

virgin rock and gradient of temperature with depth, climate and average temperatures of the air 

and the river water and mining methods…etc. Consequently, values of kmin and kmax could be 

different in other regions. 

- Assuming that the application of the formula has a high level of uncertainity, it has been 

estimated that an underground coal mine has a geothermal power of approximately 2.5 MWt 

per each 10,000,000 of tonnes produced. 

- At least approximately 3000 MWt could be used from underground coal mines in the European 

Union, without including base-metals mines; the potential for coal mines is equivalent to 3,000 

eolic generators or thereabouts, to the energy supplied by a wind power park with 90 generators 

for each country in the European Union. 

- If this energy potential were used, an important reduction in CO2 emissions of approximately  

5 million tonnes of CO2 per year could be reached. 

- A good practice in mining management would be to make some mine-measurements, such as 

recording air flow rates, quantity of water actually pumped or air and water temperatures; this 

data would be of the most interest for future studies, especially when approaching the mine 

closure date. 
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