
Energies 2015, 8, 233-256; doi:10.3390/en8010233 
 

energies 
ISSN 1996-1073 

www.mdpi.com/journal/energies 

Article 

A Dynamic Economic Dispatch Model Incorporating Wind 
Power Based on Chance Constrained Programming 

Wushan Cheng and Haifeng Zhang * 

School of Mechanical Engineering, Shanghai University of Engineering Science, Shanghai 201620, 

China; E-Mail: cwushan@163.com 

* Author to whom correspondence should be addressed; E-Mail: hfzhang@sei.xjtu.edu.cn;  

Tel.: +86-21-6779-1178; Fax: +86-21-6779-1176. 

Academic Editor: Erik Gawel 

Received: 30 September 2014 / Accepted: 18 December 2014 / Published: 29 December 2014 

 

Abstract: In order to maintain the stability and security of the power system, the 

uncertainty and intermittency of wind power must be taken into account in economic 

dispatch (ED) problems. In this paper, a dynamic economic dispatch (DED) model based 

on chance constrained programming is presented and an improved particle swarm 

optimization (PSO) approach is proposed to solve the problem. Wind power is regarded as 

a random variable and is included in the chance constraint. New formulation of up and 

down spinning reserve constraints are presented under expectation meaning. The improved 

PSO algorithm combines a feasible region adjustment strategy with a hill climbing search 

operation based on the basic PSO. Simulations are performed under three distinct test 

systems with different generators. Results show that both the proposed DED model and the 

improved PSO approach are effective. 

Keywords: wind power; dynamic economic dispatch; spinning reserve; chance constraint 

programming; particle swarm optimization 

 

1. Introduction 

Dynamic economic dispatch (DED), which determines the optimal generation scheme to meet the 

predicted load demand over a time horizon satisfying the constraint such as ramp-rate limits of 

generators between time intervals, is crucial for power system operation [1–3]. Prior to the widespread 
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use of alternate sources (solar, wind) of energy, the DED problem involved only conventional 

generators. In recent years, wind power has experienced an explosive growth, and has shown great 

potential in fuel savings and environmental protection. However, its uncertainty and intermittency also 

makes it challenging to find a proper dispatch scheme for a wind penetrated power system. 

The key issue associated with the incorporation of wind power is how to deal with its fluctuation 

and intermittence considering the required reliability and security of power systems [2]. Up to now, 

different authors have proposed models to solve economic dispatch (or unit commitment) problems for 

wind-penetrated power systems [4–16]. Chen [4] proposed a method to incorporate wind generators 

into the generation scheduling problem. Special reserve constraints are established to operate the power 

system within the required stability margin, which is also adopted by Zhou et al. [5] and Jiang et al. in [6]. 

These models are deterministic and cannot accurately describe the effect of wind fluctuations on 

system operation. 

To effectively and safely use wind power, researchers usually forecast the wind speed or wind 

generation over a time horizon in advance, and then obtain the statistic distribution of wind speed or 

wind generation. Based on the distribution function and estimated loads, researchers can determine the 

dispatch scheme. Hetzer et al. presented an ED model incorporating wind power with the stochastic 

wind speed characterization based on the Weibull probability density function [7]. Penalty costs for 

overestimation and underestimation of available wind energy are also considered. In [8], a modified 

ED optimization model with wind power penetration is presented, and risk-based up and down 

spinning reserve constraints are presented considering the uncertainties of available wind power,  

load forecast error and also generator outage rates. It has been discussed in [9–11] that forecasted wind 

generation usually follows a beta distribution function, and following this, the authors of [12] and [13] 

proposed ED models incorporating the impact of wind variability. Miranda and Hang developed in [14] 

an ED model including wind generators using concepts from the fuzzy set theory, and they added a 

penalty cost factor for not using the available wind power capacity. It is noted clearly in  

references [7,8,12–14] that the constraints of ramp rates are not taken into account. In [15] and [16],  

a scenario-based approach is utilized to model the uncertainty of wind power and stochastic models are 

proposed to solve the optimal scheduling of the generators in wind penetrated power system.  

This scenario approach requires a large number of scenarios to ensure the quality of solution, and 

usually suffers huge computation cost. 

Chance constrained programming (CCP) is a kind of stochastic optimization approach [17]. It is 

suitable for solving optimization problems with random variables either included in constraints or in 

the objective function. CCP has been studied to solve the transmission planning problem in [17,18] and 

the stochastic unit commitment problem with uncertain wind power output in [19]. In [17] and [18], 

the same formulation of chance constraint is applied to transmission planning, and it is in the form that 

the not-overload probability for transmission line is required to be more than a specified confidence 

level. In [19], the chance constraint is applied to describe policies to ensure the utilization of wind 

power, and a two stage stochastic optimization is presented to solve the unit commitment problem.  

In this paper, the chance constraint is used to describe that the probability that actual wind generation 

is greater than or equal to the scheduled wind power is more than a given confidence level. 

In a manner somewhat similar to the wind model in [12] and [13], this paper uses a beta distribution 

to characterize the actual wind generation for each individual period. Up spinning reserve (USR) and 
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down spinning reserve (DSR) are required to deal with the forecasting errors in load and the sudden 

fluctuations in wind generation [15]. In general, the reserve requirement with respect to forecast errors 

in load is defined to be a fixed percentage [5] (e.g., 5%) of the load demand. As to the reserve 

requirements caused by variation of wind generation, up reserve requirement (URR) induced by the 

sudden fall in wind generation and down reserve requirement (DRR) induced by the sudden raise in 

wind generation are both taken into account in our work. The conditional expectation when actual 

wind generation is smaller than the scheduled wind is calculated, and URR is defined as the difference 

between the scheduled wind power and the conditional expectation of wind power. Similarly, DRR is 

defined as the difference between the conditional expectation when actual wind generation is greater 

than or equal to the scheduled wind power and the scheduled wind power. 

This paper proposes a stochastic DED model based on chance constraints in wind power penetrated 

systems. New formulations of the spinning reserve constraints are considered under the expected 

meaning. An improved particle swarm optimization (PSO) approach is proposed to optimize the 

model. In order to demonstrate the efficacy of the proposed model and the PSO approach, various 

comparisons are performed under two different test systems. Results show that the above-mentioned 

model is effective and the proposed PSO approach is able to solve such model. 

The rest of this paper is organized as follows: in Section 2, the stochastic DED model is formulated. 

Section 3 introduces the beta distribution as the basis of the equivalent transformation of the proposed 

DED model, and a deterministic DED model is obtained. In Section 4, an improved PSO approach 

including feasible region adjustment (FRA) strategy and hill climbing search operation (HCSO) is 

applied to solve the deterministic model. Section 5 presents a discussion of the numerical results. 

Finally, conclusions are drawn in Section 6. 

2. DED Problem Formulation 

In this section, the objective function of DED problem is described and the DED model based on 

CCP is formulated. 

2.1. Objective Function  

In wind penetrated power systems, wind production is usually regarded as zero cost, the DED 

model with the valve point effect usually takes the following form [20–24]: 

cos , ,
1 1

min [ ( ) ( )]
T I

t i i t i i t
t i

f C p E p
= =

= +  (1)

where: 

cos tf  is the total generation cost over the whole time horizon; 

T  is the number of periods; 

I  is the number of thermal units; 

,i tp  is the power output (MW) of the i th unit corresponding to time period t ; 

,( )i i tC p  is the generation cost of the i th unit corresponding to time period t ; 

,( )i i tE p  is the valve point loading effect of the i th unit corresponding to time period t ; 
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For the thermal units, the generation cost can be approximated by a quadratic function of the power 

output, which is practical for most of the cases, and is given by: 
2

, , ,( )i i t i i t i i t iC p a p b p c= + +  (2)

where ia , ib  and ic  are cost coefficients for the i th unit. ,( )i i tE p  is expressed as follows: 

, min ,( ) sin[ ( )]i i t i i i i tE p e f p p= −  (3)

where ie  and if  are coefficients related to valve point effect of the ith unit. minip  is the minimum 

generation limit of unit i. 

2.2. System and Unit Constraints 

This DED problem is subjected to a variety of system and unit constraints, which include power 

balance constraints, generation limits of units, ramp rate limits and spinning reserve constraints. These 

constraints are discussed below. 

2.2.1. Power Balance Constraints 

Total power generation must equal the load demand pd,t in all time period: 

, , ,
1

I

i t w t d t
i

p p p
=

+ =  (4)

where pw,t is the scheduled wind power of wind farm at time t. 

2.2.2. Generation Limits of Thermal Units and Wind Farm 

The output of each thermal unit and wind farm must lie in between a lower and an upper bound. 

These constraints are represented as follows: 

min , maxi i t ip p p≤ ≤  (5)

, max0 w tp w≤ ≤  (6)

where maxip  is the maximum generation limit of thermal unit i, and wmax is the installed capacity of 

wind farm. 

2.2.3. Chance Constraint on Wind Power 

Due to the stochastic nature of wind power, the schedule for wind may not be realized on a 

scheduled day. So we introduce the following chance constraint: 

{ },P ρt w tw p≥ ≥  (7)

where wt is a random variable representing the wind power generation at time t. ρ is the confidence 

level. Equation (7) defines the probability that the scheduled wind power can be realized is greater than 

or equal to ρ. Furthermore, Equation (7) sets a reasonable upper bound for wind power generation, and 

the probability that this upper bound can be realized is no less than ρ. The larger the confidence level is, 
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the less stochastic the wind power is, and hence the more reliable the power system is. Especially, when 

ρ = 1, there is no wind power in system, and the DED problem is changed into a deterministic one. 

2.2.4. Ramp Rate Limits of Thermal Units 

The ramp rate limits restrict the operating range of all the units for adjusting the generation between 

two periods. The generation may adjust the dispatch level as: 

, 60 , , 1 , 60i d i t i t i uT p p T−−Δ × ≤ − ≤ Δ ×  (8)

where , 1i tp −  is the output of unit i at time 1t − , and ,i uΔ  and ,i dΔ  are the upper and lower ramp rate 

limits, respectively. T60 is the operating period, i.e., 1 h. 

2.2.5. Spinning Reserve Constraints 

Due to the penetration of wind power and its intermittent nature, additional reserve needs to be 

provided to support the wind generation variation [15]. The USR supports the forecast errors in load 

and a sudden decrease in wind power, and the DSR contributes to the sudden raise in wind power. 

Both the USR and DSR are supplied by the ramping capacity of thermal units, and are formulated by 

Equations (9) and (10) respectively: 

max
, , , 10 , ,min( , )

n
u

i t i t i u r t w t
i

p p T p r− Δ × ≥ +  (9)

min
, , , 10 ,min( , )

n
d

i t i t i d w t
i

p p T r− Δ × ≥  (10)

where ,r tp  is the reserve level to support forecast error in demand. T10 is 10 min. max
,i tp  and min

,i tp  are 

upper and lower generation limits of unit i including ramp rate limits at time t, and 
max
, max , 1 ,min( , )i t i i t i up p p −= + Δ , min

, min , 1 ,max( , )i t i i t i dp p p −= − Δ . ,
u

w tr  and ,
d

w tr  are the URFW and the 

DRRW to follow the sudden decrease and increase in wind power at time t. 
Figure 1 shows the conceptual illustration of ,

u
w tr  and ,

d
w tr . ,

u
w tr  is calculated by the difference 

between the scheduled wind power and conditional expectation of wind power when the actual wind 

generation is less than scheduled, and is shown in Equation (11): 

, , ,( | )u
w t w t t t w tr p E w w p= − <  (11)

The conditional expectation is obtained by the following equation: 

,

,

0

0

( )d
( | )

( )d

w t

t

w t

t

p

t W t t

t t w p

W t t

w f w w
E w w p

f w w
< = 


 (12)

where ( )
tW tf w  is the probability density function of wind power at time t. 

Similarly, ,
d

w tr  is calculated using the two equations as mentioned in Equations (13) and (14):  

, , ,( | )d
w t t t w t w tr E w w p p= ≥ −  (13)
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max

,

max

,

( )d
( | )

( )d

t
w t

t
w t

w

t W t tp

t t w w

W t tp

w f w w
E w w p

f w w
≥ =




 (14)

,w tp

1 ,( | )t t w tx E w w p= ≥

2 ,( | )t t w tx E w w p= <
1x

2x

,
d

w tr

,
u

w tr

 

Figure 1. Concept illustration of ,
u

w tr  and ,
d

w tr . 

Taking a closer look at the optimization model (1)–(14), it contains chance constraint and thus is a 

stochastic DED model. In the next section we will discuss the equivalent transformation of the 

stochastic model to a deterministic one. 

3. Equivalent Transformation of the DED Model  

3.1. Beta Distribution of Wind Power 

In the real word, the actual wind generation is a function of wind speed that randomly changes all the 

time [13]. In our study, normalized wind power in each period is regarded as a random variable which 
follows beta distribution [9–13]. We denote the probability density function (PDF) by ( )

tX tf x  as follows: 

1 11
(1 ) ,0 1

( , )( )

0,                                otherwise
t

t t t

X t

x x x
Bf x

α− β− − < < α β= 


 (15)

where max/t tx w w= , and [0,1]tx ∈ . 0α > , 0β > , and ( , )B α β  is the well-known beta function defined as: 

1 1 1

0
( , ) (1 ) dB u u u− β−αβ =α −  (16)

Parameters α and β can be determined by following equations: 

max

2
2

max

( )
( ) ( 1)

t

t

w

w

μ = + β
 σ αβ =
 α + β α +

α
α

+ β

 
(17)

where tμ  and tσ  are the mean value and standard deviation of the predicted wind generation at time t 

on the scheduling day, respectively. The cumulative density function (CDF) of X can be easily 

obtained as shown below: 
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1 1

0

0,  0

1
( ) (1 ) d ,  0 1

( , )

1,   1

t

x

X

x

F x u u u x
B

x

α− β−

 − ∞ < ≤

= − < < α β
 ≥

  
(18)

3.2. Equivalent Transformation 

Putting the aforementioned discussion of the beta distribution, we can get the following CDF  
( ( )W tF w ) of tw : 

{ } { }max max( ) P P ( / )
t tW t t t t t X tF w W w w X w F w w= ≤ = ≤ =  (19)

Then, Equations (12) and (14) are transformed into the following equations as expressed in 

Equations (20) and (21) respectively: 

, max

, max

/

0
, max , max max /

0

( )d
( | ) ( | / )

( )d

w t

t

w t

t

p w

t X t t

t t w t t t w t p w

X t t

x f x x
E w w p E w x x p w w

f x x
< = < = ⋅ 


 (20)

max

, max

max

, max

/

, max

/

( )d
( | )

( )d

t
w t

t
w t

w

t X t tp w

t t w t w

X t tp w

x f x x
E w w p w

f x x
≥ = ⋅




 (21)

Both Equations (20) and (21) will be solved using numerical integration methods because of the 

complexity. In addition, we rewrite the Equation (7) as follows: 

{ },P  ( )
tt w t Xw p F z≥ = ≥ ρ  (22)

where , max/w tp w z= , form ( )
tXF z = ρ , we learn that z is the upper quantile of ( )

tX tF x , then we get 
1

, max (1 )
tw t Xp w F−≤ ⋅ −ρ , and thus obtain the following constraint of scheduled wind power: 

1
, max0 (1 )

tw t Xp w F−≤ ≤ ⋅ −ρ  (23)

Given all that, the equivalent transformation of the stochastic DED model is mathematically 

represented as: 

{ }2
, , min ,

1 1

, , ,
1

min , max

1
, max

, 60 , , 1 , 60

max
, , , 10 , , max

min sin[ ( )]

0 (1 ρ)

. .  
( )d

min( , )

t

t

T I

i i t i i t i i i i i t
t i

I

i t w t d t
i

i i t i

w t X

i d i t i t i u

I
t X t

i t i t i u r t w t
i

a p b p c e f p p

p p p

p p p

p w F

T p p T

s t
x f x

p p T p p w

= =

=

−

−

+ + + −

+ =

≤ ≤

≤ ≤ ⋅ −
−Δ × ≤ − ≤ Δ ×

− Δ × ≥ + − ⋅






, max

, max

, max

, max

/

0
/

0

1

/min
, , , 10 max ,1

/

   

( )d

( )d
min( , )

( )d

w t

w t

t

t
w t

t
w t

p w

t

p w

X t t

I t X t tp w

i t i t i d w t
i

X t tp w

x

f x x

x f x x
p p T w p

f x x











− Δ × ≥ ⋅










 −










 

(24)
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4. Improved PSO Approach  

The problem in Equation (24) is a high-dimension and non-convex optimization problem, so it is 

very difficult to find analytical solutions. In recent decades, many salient approaches have been 

developed to solve such problems, such as genetic algorithm [20,21], differential evolution [22], 

evolutionary programming [25,26], and PSO [6,27–32]. PSO, first introduced by Kennedy and 

Eberhart, is a population-based optimization technique, and conducts its search using a population of 

particles [27,28]. Each particle is a candidate solution to the problem and is moved toward the optimal 

point by adding a velocity with its position. The position and the velocity of the jth particle in the D 
dimensional search space can be expressed as T

1 2[ , , , ]j j j jDY y y y=   and T
1 2[ , , , ]j j j jDV v v v=  , 

respectively. Each particle has its own best position ( , 1,2,k
jpbest j J=  ) corresponding to the 

personal best objective value obtained at generation k. The global best particle is denoted by kgbest , 

which represents the best particle found so far at generation k among the whole population. The new 

velocity and position of each particle at generation k + 1 are calculated as shown below [6,29]: 
1

1 1 2 2( ) ( ) ( ) ( ) ( )k k k k k k k k
j j j j jV k V k rand pbest Y k rand gbest Y+ = ω ⋅ + ϕ ⋅ ⋅ − + ϕ ⋅ ⋅ −  (25)

1 1  ,1k k k
j j jY Y V j J+ += + ≤ ≤  (26)

where: 

J is the population size; 
ω( )k  is the dynamic inertia weight factor, and can be dynamically set with the following equation [6]: 

max max min( ) ( ) /k k Kω = ω − ω − ω ⋅  (27)

where maxω  and minω  are initial and final inertia weight factors and set to 0.9 and 0.4 respectively. K is 

the maximum iteration number. 1( )kϕ  and 2( )kϕ  are time-varying acceleration coefficients 

corresponding to cognitive and social behavior [6], and are set with the following equations shown in 

Equations (28) and (29): 

1 1 1 1( ) ( ) /i f ik k Kϕ = ϕ + ϕ − ϕ ⋅  (28)

2 2 2 2( ) ( ) /i f ik k Kϕ = ϕ + ϕ − ϕ ⋅  (29)

where 1iϕ , 2iϕ  are the initial values of 1( )kϕ  and 2( )kϕ , and are set to 2.5 and 0.5 respectively; 1 fϕ , 

2 fϕ  are the final values of 1( )kϕ  and 2( )kϕ , and are set to 0.5 and 2.5 respectively. 

It is not always effective to solve the problem with equality and inequality constraints using basic 

PSO, and the particles (solutions) which satisfy the inequality constraints usually violate the equality 

constraints. In this section, we propose a FRA strategy over these particles which violate equality 

constraints. In addition, in order to improve the quality of the best solution, HCSO is applied to update 

the global best particle along with the iteration. In subsections 4.1 and 4.2, we will separately discuss 

the FRA strategy and the HCSO in detail. 

4.1. Feasible Region Adjustment Strategy 

Let us rewrite the position of the jth particle as the following matrix: 
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1,1 1,2 1, 1, 1,1 1,2 1, 1,

2,1 2,2 2, 2, 2,1 2,2 2, 2,

,1 ,2 , , ,1 ,2 ,

,1 ,2 , ,

,1 ,2 , ,

        

     

t T t T

t T t T

m m m t m T i i i t ij

I I I t I T

M M M t M T

y y y y p p p p

y y y y p p p p

y y y y p p p pY

y y y y

y y y y

 
 
 
 
 

= = 
 
 
 
 
 

   
   

           
   

    

 

 

,

,1 ,2 , ,

,1 ,2 , ,

   

T

I I I t I T

w w w t w T

p p p p

p p p p

 
 
 
 
 
 
 
 
 
 
 

     

 

 

 (30)

where M is the number of generators including thermal units and one wind farm, i.e., M = I + 1, and 

M·T = D. The element of matrix ymt is the output of the mth generator at time t. The row vectors 

represent the output of the individual generator each hour one day. 

The sum of the output of individual generator (i.e., power supply) each hour must be equal to the 

demand, i.e., , , ,
1

I

i t w t d t
i

p p p
=

+ = , 1,2, ,t T=  . If the power supplied in each hour is greater or smaller 

than the demand, the FRA strategy will be applied to the jth particle. The FRA strategy is described  

as follows: 

(1) if , , ,
1

I

i t w t d t
i

p p p
=

+ <  

We use the following equation to adjust the output of the thermal units and the wind farm as shown 

in Equation (31): 

max
, ,*

, , , , ,max 1
, max , ,

( )
(1 )

t

i t i t
i t i t d t i t w t

ii t X i t w t
i i

p p
p p p p p

p w F p p−

−
= + ⋅ − −

+ ⋅ − ρ − −  
 (31)

In Equation (31), max
, ,i t i tp p−  is the range that the output of thermal unit i can be increased at time t. 

max
, ,

max 1
, max , ,(1 )

t

i t i t

i t X i t w t
i i

p p

p w F p pρ−

−
+ ⋅ − − − 

 refers to the fraction of the adjustable range of unit i compared with 

the total adjustable range of all generators. 
max
, ,

, , ,max 1
, max , ,

( )
(1 )

t

i t i t
i t w t d t

ii t X i t w t
i i

p p
p p p

p w F p p−

−
⋅ + −

+ ⋅ − ρ − −  
 is 

the adjustable value of unit i. It can be easily seen that the value of 
, , ,

max 1
, max , ,(1 )

t

d t i t w t
i

i t X i t w t
i i

p p p

p w F p p−

− −

+ ⋅ − ρ − −


 

 is 

less than 1, so the value of *
,i tp  after adjusted still satisfies * max

, ,i t i tp p≤ .  

Similar to Equation (31), we use the Equation (32) to adjust the output of the wind farm, as  

shown below: 

1
max ,*

, , , , ,max 1
, max , ,

(1 )
( )

(1 )
t

t

X w t
w t w t d t i t w t

ii t X i t w t
i i

w F p
p p p p p

p w F p p

−

−

⋅ − ρ −
= + ⋅ − −

+ ⋅ − ρ − −  
 (32)

and the output of wind farm *
,w tp  after adjusted is still smaller than 1

max (1 )
tXw F−⋅ −ρ . 
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(2) if , , ,
1

I

i t w t d t
i

p p p
=

+ >  

Similar analysis can be applied to the condition , , ,
1

I

i t w t d t
i

p p p
=

+ > . We use the following  

Equations (33) and (34) to adjust the output of the thermal units and the wind farm respectively: 
min

, ,*
, , , , ,min

, , ,

( )i t i t
i t i t i t w t d t

ii t w t i t
i i

p p
p p p p p

p p p

−
= − ⋅ + −

+ −  
 (33)

,*
, , , , ,min

, , ,

( )w t
w t w t i t w t d t

ii t w t i t
i i

p
p p p p p

p p p
= − ⋅ + −

+ −  
 

(34)

and we can obtain that min *
, ,i t i tp p≤  and *

, 0w tp ≥ . 

From above discussion, we can learn that the FRA strategy ensures that the particles after adjusted 

still satisfy the generation limit constraints. 

4.2. Hill Climbing Search Operation 

Hill climbing is an optimization technique which belongs to the local search family. It is an iterative 

algorithm that starts with an arbitrary solution, and then attempts to find a better solution by 

incrementally changing a single element of the solution. In our work, in order to obtain a better 

solution, we adopt HCSO to update the global best particle along with the iteration. When the fitness 

of the global best particle does not change continuously for a fixed number of times, HCSO can be 

used as explained in Equations (35) and (36): 
'

, , min( , )m t m t m np p= + Δ Δ ⋅ε  (35)

'
, , min( , )n t n t m np p= − Δ Δ ⋅ε  (36)

where ,m tp  and ,n tp  are generations of thermal unit m and n, which belong to the same period and are 

randomly selected from all the thermal units. '
,m tp  and '

,n tp  are generations of thermal units after hill 

climbing operation. mΔ  and nΔ  are the upper ramp rates of unit m and n. In this paper, we adopt the 

upper ramp rates in simulation. However, the lower ramp rates can be used either. min( , )m nΔ Δ ⋅ε  is 

the linear decrease step size of hill climbing operation and ε is listed in Table 2 in Section 5. Both 

Equations (35) and (36) have the same step size and the opposite direction, which ensures that the 

global best particle will not violate equality constraints after hill climbing operation. 

4.3. DED Constraints Handling Using PSO-HCSO 

The fitness function of particle is the generation cost bounded with the penalty functions as shown 

in Equation (37): 

6

cos ,
1 1

T

t g t
g t

fitness f PF
= =

= + λ   (37)
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and: 

1, , , ,
1

max(0,| |)
I

t i t w t d t
i

PF p p p
=

= + −  (38)

2, min , , maxmax(0, ) max(0, )t i i t i t iPF p p p p= − + −  (39)

1
3, , , maxmax(0, ) max(0, (1 ))

tt w t w t XPF p p w F−= − + − ⋅ −ρ  (40)

4, , 60 , , 1 , , 1 , 60max(0, ) max(0, )t i d i t i t i t i t i uPF T p p p p T− −= −Δ × − + + − − Δ ×  (41)

, max

, max

/

max0
5, , , max , , , 10/

0

( )
max(0, min( , ))

( )

w t

t

w t

t

p w
I

t X t t

t r t w t i t i t i up w
i

X t t

x f x dx
PF p p w p p T

f x dx
= + − ⋅ − − Δ × 


 (42)

, max

, max

1

/ min
6, max , , , , 101

/

( )
max(0, min( , ))

( )

t
w t

t
w t

It X t tp w

t w t i t i t i d
i

X t tp w

x f x dx
PF w p p p T

f x dx
= ⋅ − − − Δ ×





 (43)

where λ is the penalty factor corresponding to the constraints. Here, we use uniform penalty factor for 

,g tPF , i.e., 1 8eλ = + ; ,g tPF  is the penalty function. It is noted that the solution should not contain any 

penalty for the constraint violation. 

4.4. The Procedure of Improved PSO Approach 

The procedures for implementing the PSO approach are given as the following steps: 

Step 1: Initialize the parameters, such as population size J, the maximum iteration number K, and 

the maximum number of hill climbing search operation H. Set the sequence number of iteration K = 1 

and the number of times that the global best particle does not change continuously 1hcount = . 

Step 2: Create a swarm of particles as the initial population, including random position and velocity. 

For any particle which violates the equality constraints, FAR strategy is utilized. Evaluate the fitness of 
particles and obtain the initial 0gbest  and 0

jpbest , 1,2, ,j J=  . 

Step 3: Calculate ( )kω , 1( )kϕ  and 2( )kϕ , and then update the position and velocity of each particle 

among the population according to Equations (25) and (26). FAR strategy is applied to any particle 

which violates the equality constraints. 
Step 4: Evaluate the fitness of particles and update , 1, 2,k

jpbest j J=   and kgbest  of the 

population. Check kgbest . If hcount reaches the fixed number of times, hill climbing search operation 

is applied until the maximum number H is reached; otherwise, set 1hcount = . 
Step 5: k = k + 1, if k > K, stop the algorithm and output the global best solution ( kgbest ) with the 

best fitness value; otherwise, go back to step 3. 

5. Simulation Results and Discussions  

In order to verify the effectiveness of the proposed DED model with wind power, three distinct test 

systems (i.e., system 1, system 2 and system 3) are employed in this paper. System 1 contains six 

thermal units and one wind farm (WF) which is also used in system 2 and 3. System 2 contains 15 
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thermal units. The characteristics of the 6 and 15 thermal units can be obtained from [27]. System 3 

has 26 thermal units derived for a IEEE 24-bus system. The wind farm is located in the Inner Mongolia 

Autonomous Region in China, and contains 132 wind turbines. The total installed capacity is 198 MW. 

Table 1 gives the hourly expected value and standard deviation of wind power forecast on the 

scheduled day, and also the corresponding beta parameters which are calculated by Equation (17). 

The parameters of improved PSO are shown in Table 2. In the table, h is the sequence number of 

Hill climbing search operation. The improved PSO approach has been implemented on a personal 

computer with four processors running at 3.2 GHz and equipped with 4 GB of RAM memory using 

Matlab 7.9.0. 

Table 1. Hourly expected value and standard deviation of wind power forecast and beta parameters. 

Period 

Expected 

Value 

(MW) 

Standard 

Deviation 

(MW) 

α β Period

Expected 

Value 

(MW) 

Standard 

Deviation 

(MW) 

α β 

1 70.4 17.25 10.38 18.81 13 133.24 33.25 4.58 2.23 

2 55.50 13.87 11.24 28.87 14 129.50 32.37 4.88 2.58 

3 34.50 9.63 10.43 49.45 15 147.15 36.75 3.37 1.17 

4 28.3 10.23 6.42 38.47 16 140.7 35.40 3.86 1.57 

5 42.1 10.54 12.35 45.73 17 133.4 33.25 4.58 2.22 

6 59.50 14.87 10.90 25.37 18 108.5 27.13 6.68 5.51 

7 70.56 17.17 10.51 18.99 19 84.7 21.06 8.83 11.81 

8 80.50 20.12 9.09 13.27 20 77.3 19.25 9.44 14.74 

9 94.50 23.62 7.89 8.64 21 66.5 16.62 10.30 20.36 

10 112.4 28.84 5.99 4.57 22 42.2 10.5 12.50 46.14 

11 126.7 31.53 5.17 2.91 23 35.3 8.75 13.20 60.82 

12 130.5 32.62 4.80 2.48 24 63.8 15.75 10.80 22.72 

Table 2. Parameters for improved PSO algorithm. 

J K H hcount ε 

40 200 200 4 h/(H+0.00001)

5.1. Comparisons Among the Three Cases of the DED Model 

In each test system, we perform 50 trials using the improved PSO approach considering three cases 

as follows: 

Case (1): the DED model without considering wind power; 

Case (2): the DED model without considering wind effect in the reserve constraint; 

Case (3): the proposed DED model in this paper. 

Both casea (1) and (2) can be derived from case (3). The first case can be obtained by setting the 

confidence level (ρ) of case (3) to 1, and the latter is obtained by removing the URFW and DRRW in 

the reserve constraint. Comparison results among three cases mentioned above are shown in Table 3. 
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Table 3. Comparisons among the three cases in the three systems. 

Cases Confidence Level 
Average Generation Cost ($) 

System 1 System 2 System 3 

Case (1) 1 278,903.3311 736,673.0726 952,079.3252 

Case (2) 

0.9 264,895.0451 723,729.9923 939,455.4055 

0.5 258,950.8628 719,280.7467 928,252.2498 

0.1 253,792.2061 717,075.4436 921,874.4037 

Case (3) 
0.9 265,158.6006 724,077.6842 937,747.6542 
0.5 260,537.2281 720,665.7621 930,092.0212 
0.1 257,194.5871 717,358.1034 920,580.2708 

It is evident that the average generation cost in case (1) is the highest among the three systems; this 

is because that no wind power is utilized in case (1). Wind power in cases (2) and (3) affords a certain 

proportion of the load and thus reduces the fuel consumption. Average generation cost decreases 

gradually as the confidence level decreases for cases (2) and (3) among the three systems. The smaller 

the confidence is, the lower the average generation cost is. Taking system 1 for example, the average cost 

in cases (2) and (3) decreases by 5.02% and 4.93%, respectively, compared to case (1) when ρ = 0.9. 

When ρ decreases to 0.1, the average generation cost decreases by 9.00% and 7.78%, respectively, 

compared to case (1). 

Figures 2–4 show the average cost change trend for different confidence level scenarios for cases 

(2) and (3) among the three systems. As seen in the figures, the average cost in the three systems 

increases gradually while the confidence level increases. There is not much difference in the average 

cost between case (3) and case (2), however, case (3) considers the URFW and DRRW in the reserve 

constraints, and this makes the systems more reliable. 

 

Figure 2. Average generation cost under different confidence level in system 1. 
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Figure 3. Average generation cost under different confidence level in system 2. 

 

Figure 4. Average generation cost under different confidence level in system 3. 
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Figure 5. Optimal generation output of units and wind farm in system 1 with ρ = 0.9. 

 

Figure 6. Generation output of units and wind farm in system 2 with ρ = 0.9. 
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Table 4. Optimal output of units and wind farm (WF) in system 3 with ρ = 0.9. 

Unit Index 
Output/MW  

(t = 1) 
Output/MW 

(t = 5) 
Output/MW 

(t = 9) 
Output/MW 

(t = 13) 
Output/MW  

(t = 17) 
Output/MW 

(t = 21) 

1 6.3027 2.4145 3.8440 3.1906 7.1055 6.0383 
2 2.4001 3.8585 3.0919 3.8967 4.2176 4.7125 
3 5.0852 2.4041 2.4051 5.3315 6.9680 5.5158 
4 2.4005 2.4001 3.7132 2.4245 9.1081 5.4245 
5 2.4008 2.4000 2.4001 7.7075 2.7151 2.4124 
6 4.0328 9.1759 4.0017 7.5375 14.5461 7.5095 
7 7.0616 4.0334 13.6143 8.2265 16.3442 6.4664 
8 11.4758 4.0024 15.0108 13.5385 4.1028 8.2579 
9 4.0005 4.0094 4.0025 13.9355 14.7954 4.0497 
10 19.2252 47.0962 75.9820 75.9848 75.9389 52.5536 
11 18.3423 55.2031 61.0610 53.5547 75.6070 31.5227 
12 75.8896 15.4675 73.2103 75.9948 75.6298 53.2694 
13 44.3981 62.5945 21.5289 40.1115 62.9386 75.9777 
14 29.0682 78.5853 67.5916 75.0436 93.0661 91.2458 
15 25.1687 25.0787 99.7008 58.6896 80.7636 69.7929 
16 66.9136 25.1137 90.0044 60.3383 78.6772 97.6501 
17 111.8911 54.4301 150.9160 129.1319 151.3966 102.5665 
18 127.2128 91.5275 119.8840 105.7696 155.0000 148.3436 
19 82.4911 81.7769 142.5084 101.8499 149.4214 104.2932 
20 103.2164 84.7880 154.9953 152.8019 136.8211 102.9801 
21 149.4256 79.7549 94.8661 176.8049 163.8401 167.1249 
22 131.0308 142.1999 108.1115 171.1631 182.4127 84.5785 
23 127.8570 125.8213 135.2337 154.7178 163.3203 153.6023 
24 276.5693 158.4972 306.4523 290.2500 284.4019 287.2902 
25 239.6986 270.5251 379.2529 328.7933 398.3654 331.9537 
26 359.0842 372.9581 320.0320 329.1593 378.8603 275.4983 

WF 19.3572 19.3837 54.5853 62.0524 63.6360 27.8695 

5.2. Wind Penetration as a Function of the Confidence Level Under Two Systems 

Comparisons between wind penetration ( , ,100% /w t d tp p×  ) and wind penetration limits  

( 1
max ,(1 ) 100%/

tX d tw F p−⋅ −ρ ×  ) under the optimal solutions in each system are shown in  

Figures 7–9. As shown, wind penetration in each system under ρ = 0.9 is the lowest, because under 

that situation each system requires the highest reliability and security. As the confidence level 

decreases, wind penetration almost increases and does not exceed the wind penetration limits in the 

three systems. 
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Figure 7. Wind penetration and its limit under different confidence levels in System 1. 

 

Figure 8. Wind penetration and its limit under different confidence levels in System 2. 

 

Figure 9. Wind penetration and its limit under different confidence levels in system 3. 
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5.3. Discussion about the Optimal Reserve Allocation 

Due to the stochastic and intermittent nature of wind power, the USR and DSR are used to ensure 

the reliability and security of systems with wind farms. According to Inequations (9) and (10), the 

USR, DSR, URFW and DRRW for each period are calculated based on the optimal solutions when ρ = 0.9 

serves as an example. Figures 10 and 11 show the optimal USR and DSR allocation for 24 h in system 1 

respectively. Figures 12 and 13 give the optimal USR and DSR allocation for 24 h in system 2. It can 

be learned that the USR and DSR provided by thermal units in both systems can effectively cover the 

sudden fall and increase in wind power. The same conclusion can also be drawn for system 3, so the 

corresponding figures for USR and DSR are not displayed.  

 

Figure 10. The optimal USR allocation and URR plus reserve for load forecast error in 

system 1 with ρ = 0.9. 

 

Figure 11. The optimal DSR allocation and DRR for 24 h in system 1 with ρ = 0.9. 
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Figure 12. The optimal USR allocation and URR plus reserve for load forecast error for  

24 h in system 2 with ρ = 0.9. 

 

Figure 13. The optimal DSR allocation and DRR for 24 h in system 2 with ρ = 0.9. 
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In order to investigate the effect of the parameter H on the improved PSO algorithm, we set H as 

100, 200, 300, 400 and perform the algorithm on system 1 with ρ = 0.9 for 50 trials. The average 

generation cost and average time are listed in Table 5. The average generation costs decrease gradually 

and average time increases as H increases.  

Table 5. Effect of H on the improved PSO algorithm with ρ = 0.9. 

H Average Generation Cost ($) Average Time (s) 

100 269,280.7296 328.2577 
200 265,158.6006 386.8114 
300 262,533.7753 436.2356 
400 261,153.0924 538.3722 

0 5 10 15 20 25
0

50

100

150

200

250

300

Period/H

R
es

er
ve

 c
ap

ac
ity

/M
W

 

 

USR URR plus reserve for load forecast error

0 5 10 15 20 25
0

50

100

150

200

250

300

Period/H

R
es

er
ve

 c
ap

ac
ity

/M
W

 

 

DSR DRR



Energies 2015, 8 252 

 

 

Finally, in order to show the effectiveness of HCSO, PSO without HCSO is used for comparison. 

Parameter K for PSO without HCSO is set as 300. Results of the proposed DED model under three 

confidence levels are shown in Table 6. Although PSO without HCSO consume less computation time 

than PSO-HCSO, it leads to much higher generation costs. From this point of view, the improved PSO 

algorithm is more efficient. 

Table 6. Comparisons between PSO-HCSO and PSO without HCSO among three systems. 

Approach 
Confidence 

Level 

Average Generation Cost ($) Average Time (s) 

PSO-HCSO PSO without HCSO PSO-HCSO PSO without HCSO

System 1 
0.9 265,158.6006 273,039.6325 386.8114 336.6071 
0.5 260,537.2281 263,514.4852 359.3236 308.3647 
0.1 257,194.5871 262,368.0024 373.6618 317.1135 

System 2 
0.9 724,077.6842 731,239.0336 418.3461 409.6045 
0.5 720,665.7621 727,088.0353 402.1863 386.9233 
0.1 717,358.1034 720,196.5471 447.1164 422.8967 

System 3 
0.9 937,747.6542 945,013.2889 456.7289 420.0858 
0.5 930,092.0212 938,816.0995 428.3801 416.1260 
0.1 920,580.2708 929,187.2603 470.2236 436.2757 

6. Conclusions  

Wind power provides energy savings and environmental protection benefits. However, the 

intermittency and uncertainty of wind power generation require that conventional units provide 

additional reserve to ensure the stability and reliability of a wind power-penetrated power system. This 

paper formulates a DED model incorporating wind power based on CCP. The uncertain nature of wind 

generation is represented by a beta distribution function. In order to ensure the reliability of the power 

system, a chance constraint is included, and conditional expectation is presented to calculate the up and 

down spinning reserves. The proposed DED model is then numerically solved using an improved PSO 

approach in three different test systems. Results show that the proposed model can effectively respond 

to sudden wind power falls or raises. The improved PSO approach is fit to solve the DED model. 

The results also show that the average generation cost and wind penetration are dependent on the 

confidence level. If the confidence level is increased, the wind penetration will be reduced, which 

results in higher reliability of the power system, and the average generation cost will be increased. 

Conversely, if the confidence level is decreased, less reliability allows more wind power to be 

incorporated in the power system. The average generation cost will be reduced. 
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Abbreviations 

ED Economic dispatch 

DED Dynamic economic dispatch 

USR Up spinning reserve 

DSR Down spinning reserve 

URR Up reserve requirement  

DRR Down reserve requirement 

PSO Particle swarm optimization 

HCSO Hill climbing search operation 

PSO-HCSO Particle swarm optimization with hill climbing search operation 

PDF Probability density function 

CDF Cumulative density function 

FRA Feasible region adjustment  

Symbols 

T Number of Periods 

I Number of thermal units 

t Index of time period, 1, 2, ,t T=   

i Index of thermal unit, 1,2, ,i I=   

costf  Total generation cost 

,i tp  Power output of thermal unit i at time t 

,w tp  Scheduled wind power of wind farm at time t 

,d tp  Load demand at time t 

,( )i i tC p  Generation cost of thermal unit i at time t 

ia , ib, ic Cost coefficients of thermal unit i 

,( )i i tE p  Valve point loading effect of thermal unit i at time t 

ie, if  Coefficients related to valve point effect of thermal unit i 

minip , maxip  Minimum and Maximum generation limits of thermal unit i 

tw  Actual wind generation, a random variable 

maxw  Installed capacity of wind farm 

ρ Confidence level 
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