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Abstract: This paper considers the effect of nonlinear atmospheric disturbances on 

wind power prediction. A Lorenz system is introduced as an atmospheric disturbance 

model. Three new improved wind forecasting models combined with a Lorenz 

comprehensive disturbance are put forward in this study. Firstly, we define the form of 

the Lorenz disturbance variable and the wind speed perturbation formula. Then, 

different artificial neural network models are used to verify the new idea and obtain 

better wind speed predictions. Finally we separately use the original and improved 

wind speed series to predict the related wind power. This proves that the corrected 

wind speed provides higher precision wind power predictions. This research presents a 

totally new direction in the wind prediction field and has profound theoretical research 

value and practical guiding significance. 

Keywords: wind energy; wind speed and power prediction; Lorenz system; atmospheric 

disturbance; artificial neural network 
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1. Introduction 

New energy generally refers to unconventional energy sources, such as wind power, solar power, 

ocean energy, hydropower, biomass energy, geothermal energy, and so on. In recent years, the 

development and utilization of new energy has become one of the most important approaches to solve 

the strain on resources and environmental deterioration. Wind energy, which is clean, renewable, and 

widely distributed, can be effectively used for large-scale wind power generation. According to 

statistics from the Global Wind Energy Council (GWEC) [1], global installed wind power capacity had 

reached 318,117 MW by the end of 2013, which is six times as much as it was 10 years ago.  

Wind energy is one of the most crucial meteorological factors during wind farm operation [2,3].  

The stochastic volatility and intermittent nature of wind energy make wind power possess similar 

instability. A wide range of wind power integrated into a power system would exert a significant 

influence on power quality and security. High-precision wind power prediction thus is an imperative 

for wind energy development.  

Lots of mature and stable wind power prediction systems have been developed by international 

scholars in recent years [4–6]. The most representative forecasting systems abroad include the 

Prediktor system from the Danish National Laboratory, the WPPT system of Technical University of 

Denmark, the eWind system in the United States, and the AWPPS system in France, etc. The typical 

prediction systems in China generally include the WINPOP system developed by the China 

Meteorological Administration, and the WPPS system developed by the Meteorological Service Center 

in Hubei Province, etc. 

According to the different modeling methods used the current wind power prediction models can be 

divided into physical models, statistical models, artificial intelligence, and hybrid models. Some 

physical and geographical factors, such as air temperature, atmospheric pressure, atmospheric density, 

topography and surface roughness, are applied in physical models to obtain wind speed at the axial fan 

hub. Thus high resolution numerical weather prediction is realized by this means, which is especially 

suitable for long-term wind power prediction [7–9]. Based on large amounts of historical data, 

statistical models, which generally include the persistence model (PM), time series model (TSM),  

and Kalman filtering model (KFM), are aimed at establishing a linear relationship between input and 

output of prediction models [8,10,11]. In recent years, artificial intelligent technology has been widely 

used in the field of wind power prediction. Artificial intelligence takes many forms such as wavelet 

neural network (WNN) [12], error back propagation neural network (BP), radial basis function neural 

network (RBF), support vector machine (SVM) [13], and fuzzy logic (FL) [14]. In order to avoid the 

limitations of individual forecasting methods, hybrid models are being increasingly proposed in recent  

years [15–17].  

WNN, SVM and BP networks are used in this prediction research. The WNN model needs large 

amounts of historical data to obtain a good prediction result. The BP network, which is especially 

suitable for small sample wind power prediction, has fast convergence speed and satisfactory 

performance. SVM has stable predictive ability but low convergence speed. Based on the above three 

prediction models, the corresponding disturbance models are proposed in this study, which fully 

consider the nonlinear disturbance effects in the atmosphere system. 
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This paper is organized as follows: Section 2 overviews the basic dynamics of the Lorenz system. 

Section 3 describes the modeling data and proposes three new short-term wind speed and power 

prediction models considering the Lorenz disturbance effect. Section 4 presents the main results of 

wind speed and power predictions followed with error analysis and introduces the persistence model to 

evaluate the forecasting performance in this study. Section 5 presents the conclusions of the paper and 

points out the future work. 

2. Lorenz System and Wind Power Forecasting 

It is proven that the wind power generation forecasting errors largely depend on the wind  

speed [2,8,16,18]. Theoretically, wind speed series containing sensitivity and wind forecasting results 

could be improved by introducing chaos theory [19,20]. The atmospheric system is a deterministic 

dynamic system, whose evolution can be described by a set of differential equations. In the meantime, 

it is also a complex nonlinear system that is filled with uncertainty and chaotic phenomena. According 

to the butterfly effect viewpoint proposed by E.N. Lorenz [21,22], tiny disturbances may result in a 

huge variation in the atmospheric system. Then, these random atmospheric disturbances further affect 

the wind power generation forecasting precision. A Lorenz system could exhibit aperiodic features in 

the simplest way [21,23]. Thus, we select a Lorenz system to establish our wind disturbance model. 

The Lorenz equation is given by [23–25]:  

 σx x y

y xz rx y

z xy bz

  


   
  

 (1)  

where x is convection intensity, y is the horizontal temperature difference between the ascending and 

descending flow, and z is the deviation from vertical temperature difference to equilibrium state.  

The terms σ, r, and b are all positive parameters. σ is the Prandtl number, which is 10.0 in a liquid and 

1.0 in the air [26]. 
2 14(1 )b a   , and the critical value of r is calculated by:  

1σ(σ 3)(σ 1)r b b       (2) 

Following Lorenz and Saltzman [23,27], let σ = 10 and a2 = 1/2, then b = 8/3, r is variable. 

Different values of r are used to distinguish the motion state of Lorenz system. Substituting the values 

of σ and b into Formula (2), r = 470/19 ≈ 24.74. The Lorenz system behaves like a chaotic state when  

r is larger than 24.74. The chaos describes the random atmospheric perturbations. In this study,  

the numerical solutions of the Lorenz system are used as disturbance data. In this research we take r = 45. 

Now let us show the Lorenz disturbance operation. Let parameters σ, b and r be 10, 8/3, 45, 

respectively. (0,1,0) and (0.01,1,0) are taken as the initial conditions to solve Equation (1). Figure 1 

shows the solutions of the Lorenz equation under the above conditions. We can clearly see that tiny 

deviations in the initial states could be greatly enlarged as time goes on. The tiny deviation of the 

initial conditions in Figure 1 amounts to a random disturbance in the atmospheric system. Wind 

forecasting will become a hard task when considering the sensitivity of wind variation. 

This kind of sensitivity is completely non-conducive to accurate wind prediction. We have to take 

measures to reduce the negative influence of the disturbance. The key point is to quantify the impact as 
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a concrete variable. As mentioned before, Lorenz system is a simplified model for atmospheric 

convection motion. We can extract a certain kind of disturbance from the solutions of Lorenz equation. 

The detailed extraction will be presented in the following section. 
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Figure 1. The subplots (a), (b) and (c) separately depict the solutions x, y and z in Lorenz 

system. Parameters σ = 10, b = 8/3, r = 45. The red and blue curves denote the solutions 

developing with initial conditions (0,1,0) and (0.01,1,0), respectively. 

3. Wind Power Prediction Based on a Nonlinear Lorenz Disturbance 

3.1. Data Description  

The primary modeling data includes wind speed, wind direction, and power generation. These 

comprehensive statistics are available from the Sotavento experimental wind farm in Galicia (Spain). 

All the wind data used in this research were recorded every 10 min in February 2014. The number of 

samples is 4032. There are four null values at the moment of sharp fluctuations in the wind speed 

series. The null values are looked at as the random disturbance, which can be deleted without affecting 

the characteristics of the original wind distribution. Then the sample number is 4028. The displayed 

wind sample data include wind speed and wind power generation. Figure 2a,b separately depict the 

distributions of wind speed and wind power production. As we can see from Figure 2a, wind speed 

fluctuates wildly in February, with a range of 33.96 m/s. Influenced by the wind speed, the wind power 

presents instability. We can respectively identify the training dataset and test dataset as A and B for 

convenience. The dataset A contains 3940 points and B contains 88 points. All the experiments have 

the same forecasting period and different training subsets. 
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Figure 2. (a) Wind speed distribution in February 2014 of the Sotavento wind farm;  

(b) Wind power distribution in February 2014 of the Sotavento wind farm. 

3.2. Modeling Process for Wind Power Prediction  

As already seen from Figure 1, any tiny deviation that occurred in a nonlinear atmospheric system 

shall make a huge difference in the subsequent atmospheric evolution. The inevitable atmospheric 

disturbance is a typical nonlinear process, which will exert significant influence on wind power 

prediction. An indirect wind power prediction method that forecasts wind speed at the first step is 

applied in this paper. Based on the predicted wind speed and the corresponding sample data, a new 

disturbance model is proposed to further optimize the initial wind forecasting result. Then the 

optimized wind speeds are used to directly predict wind power generation through various prediction 

models. Wind power prediction can be divided into the following four steps to realize:  

The first step is to numerically solve Lorenz equation so as to obtain a nonlinear atmospheric 

disturbance sequence. Following the analysis aforementioned, the initial condition takes the value of 

(0,1,0) and the parameters are set as σ = 10, b = 8/3, r = 45. 
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The second step is to define a kind of Lorenz comprehensive disturbance, which fully considers the 

influence of all the Lorenz variables. As we know, motion analysis in phase space has the advantage of 

intuitive geometry. So the phase space R3 expanded by the state variables of the Lorenz system is 

adopted in this study. An arbitrary point P(x,y,z) in phase space represents a corresponding motion 

state in Lorenz system. In R3 space, Euclidean distance is the most commonly used measurement of the 

distance between two points Pi(xi,yi,zi) and Pj(xj,yj,zj). Given by: 

       
2 2 2

, + +i j i j i j i j i jd p p p p x x y y z z      , , 1,2,i j    (3)  

In this paper, we set the length of vectors in phase space as the comprehensive disturbance L, which 

represents the deviation from equilibrium state P0(0,0,0) to an arbitrary motion state in the perturbed 

system. Based on the perturbation series produced in step one and Formula (3), L can be calculated. 

Figure 3 depicts the distribution of L: 

2 2 2+y +zi i i iL p x   (4)  
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Figure 3. The distribution of the Lorenz comprehensive disturbance L.  

The third step is to establish wind speed perturbation models. In order to verify the effectiveness 

and universality of the disturbance method, based on WNN, BP and SVM models, the corresponding 

perturbation models denoted as LSWNN, LSBP and LSSVM are proposed. Here we take the LSBP 

network as an example to explain the modeling process, with which the other two networks are 

completely similar.  

At first, wind speed, sine and cosine of wind direction, air temperature and pressure are chosen as 

the input of the LSBP network. The output is the wind speed at the next moment. Wind speed data in 

A are used to train the BP network. Scroll to predict the subsequent 86-points through the trained 

network above and finally obtain the initial wind speed predicted sequence Vf. 
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Then we establish the disturbance model based on the BP network, namely the LSBP network. 

Lorenz disturbance L is used to disturb and modify the predicted sequence Vf. The perturbation 

formula is given by: 

f f
V V k L     (5)  

where, V is the corrected wind speed, k is the disturbance coefficient and Lf is a certain part of the 

Lorenz disturbance L. Then k·Lf is the quantity that is used to refine the initial wind speed prediction 

result. It is closely connected with the distribution feature of Vf ± denotes enhancing or reducing the 

Lorenz disturbance. We will discuss how to select the sign in next section. 

According to the report by Lorenz named The Butterfly Effect [21], the real atmospheric motion 

state is composed of the observed values and a certain disturbance quantity. The perturbation  

Formula (5) was given based on the above atmospheric disturbance theory. In this paper, the sample 

data and the predicted values are all generalized observations. Then we need to find the disturbance 

related to the observations. According to Formula (5), the disturbance consists of two parts: the 

disturbance coefficient and intensity. The selection of the disturbance coefficient is limited to a certain 

symmetric interval, such as (−6, 6). Then we divide the interval into some equal parts. The values at 

the nodes are taken as the coefficients. Then we select the corresponding disturbance intensity from the 

Lorenz disturbance sequence L. Large amounts of the original wind data need to be repeatedly trained 

using the LSBP network to achieve the minimum root mean square error (RMSE) between Vf and the 

wind speed sample data. Then we can obtain an optimal group of disturbance coefficients and intensity 

through a two-dimensional search. The disturbance is assumed to be the right one that the actual wind 

speed series contain. It can also be applied in Formula (5) to predict the wind speed series, which have 

the same or similar distribution with the data used in this paper. 

Finally, we have to emphasize once again that this is an example to establish the other two 

perturbation models LSWNN and LSSVM. The detailed applications of the Lorenz disturbance in the 

above three perturbation models are shown in Table 1. Thus, the integration of wind speed forecasting 

and correction is realized through this process. In spite of the use of the same forecasting period, the 

three models have different initial predictions. Thus we have to use different amount of disturbance 

and perturbation directions (enhanced or reduced) to deal with those Vf s, which are closely related 

with the properties of prediction models. Besides, the PM is introduced as a benchmark to measure the 

forecasting levels.  

The fourth step is to forecast the corresponding wind power series based on the improved wind 

speed prediction result Vs. Then V and Vf obtained by the LSBP model are separately used as the input 

of the BP wind power prediction model. The same procedure is applied to the WNN and SVM wind 

power prediction models. As a result, three groups of wind power predictions are obtained. PM is also 

used to evaluate the precision of wind power predictions.  
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Table 1. The distribution of the Lorenz disturbance added in the perturbation models 

LSWNN, LSBP and LSSVM. 

Perturbation models Lorenz disturbance Data or charts 

LSWNN 

Disturbance coefficient 0.0253 

Disturbance intensity 
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LSBP 

Disturbance coefficient −0.0384 

Disturbance intensity 
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LSSVM 

Disturbance coefficient −0.0131 

Disturbance intensity 

 

4. Wind Speed and Power Prediction Results and Error Analysis  

In this paper, we analyze and evaluate the performance of various wind speed and power prediction 

models with the help of forecasting graphs and error statistics. We choose mean absolute error (MAE), 

mean squared error (MSE), and mean absolute percentage error (MAPE) as error indicators in this 

research. Error statistics of wind speed and power prediction in February 2014 are presented in  

Tables 2 and 3. Formulas of these error criteria are given by: 

   
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1 M

t

MAE y t f t
M 

   (6)  

    
2

1

1 M

t
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wherein,  y t  and  f t  separately denote the observations and forecasts of wind speed or wind 

power at time t. M is sample size. 

Table 2. MAE, MSE, and MAPE statistics of wind speed forecasting in the Sotavento 

wind farm in February 2014. 

Wind speed prediction models 

(symbols) 

Error 

MAE (m/s) MSE (m2/s2) MAPE (%) 

WNN (Vf1) 1.0298 1.2635 9.4189 

LSWNN (V1) 0.2123 0.0697 1.8209 

BP (Vf2) 1.8030 3.3591 14.9113 

LSBP (V2) 0.2902 0.1141 2.5353 

SVM (Vf3) 0.6709 0.6751 5.5984 

LSSVM (V3) 0.3778 0.2223 3.1729 

PM 0.8694 1.2757 7.0925 

Table 3. MAE, MSE, and MAPE statistics of wind power forecasting in the Sotavento 

wind farm in February 2014. 

Error 

Wind power prediction models 

PM 
WNN BP SVM 

Vf1 V1 Vf2 V2 Vf3 V3 

MAE (MW) 0.1593 0.2476 0.0980 0.3147 0.0825 0.1475 0.0872 

MSE (MW2) 0.0431 0.0819 0.0150 0.1320 0.0106 0.0309 0.0122 

MAPE (%) 10.8252 18.3653 6.7683 24.3340 5.1664 9.7209 5.9801 

Table 2 shows that forecasting precisions of the three traditional models are greatly improved by the 

disturbance models. However, the LSWNN model has the best performance compared with any error 

indicator. The average error of the WNN model is reduced by 86% compared to the LSWNN model. 

The SVM model has better robustness than the BP and WNN networks. The LSSVM improvement is 

smaller than that of the other two models. The average error reduction of the SVM model is 50%.  

The initial wind speed forecasting errors of the BP model are worse than those of the other two models. 

However, the corrected results are much better than the LSSVM model. The average error reduction is 

about 88%, which is the largest improvement. Although the forecasting error of PM is better than the 

conventional WNN and BP models, it is much worse than the three disturbance models. 

We take the wind speed sequences V and Vf as the input of wind power prediction models to verify 

the influence of atmospheric disturbance. All the comparison results are shown in Table 3. We can see 

that all of the improved wind speeds V achieve higher precision than Vf in wind power predictions. 

Compared with the result of Vf by WNN, BP and SVM, the average errors of V are reduced by 68%, 

82% and 47%, respectively. Tables 2 and 3 suggest that the performance of PM is much better than the 

conventional neural networks, except for SVM. However, the average errors of the three improved 

models in turn are reduced by 47%, 59% and 54% compared with PM. All of the above statistics  

prove the good properties and significance of applying Lorenz disturbances in wind speed and  

power forecasting.  



Energies 2015, 8 484 

 

 

0 10 20 30 40 50 60 70 80 90
6

8

10

12

14

16

18

t (10 min)
(a)

W
in

d
 s

p
e
e
d

 (
m

/s
)

 

 

V prediction with WNN

V prediction with LSWNN

V prediction with PM

V sample data

 

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

t (10 min)
(b)

W
in

d
 p

o
w

e
r 

(M
W

)

 

 

P prediction with WNN

P prediction with LSWNN

P prediction with PM

P sample data

 

Figure 4. (a) Wind speed forecasting graphs based on WNN, LSWNN, and PM; (b) Wind 

power forecasting graphs based on the output V and Vf of WNN, LSWNN, and PM. 

Aside from error criteria, the forecasting graphs are also effective measurements to evaluate the 

performance of prediction models and results. Figures 4–6 separately show the wind speed and power 

forecasting curves by various neural networks, PM, and improved wind disturbance models. The 

sample data of wind speed and power series are used as references. As we all know, the PM is very 

suitable for short-term wind forecasting. The forecasting curve of PM is used to determine + or – in the 

perturbation formula. As seen from Figure 4a, the forecasting curve by WNN model distributes lower 

than PM. Then we have to enhance the disturbance intensity to make the predicted result close to the 

actual one. On the contrary, in Figure 5a, the forecasting curve by the BP model distributes higher than 

PM so that the disturbance effect should be reduced. Figures 4–6a present a great improvement after 

introducing the Lorenz disturbance.  
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Figure 5. (a) Wind speed forecasting graphs based on BP, LSBP, and PM; (b) Wind power 

forecasting graphs based on the output V and Vf of BP, LSBP, and PM. 
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Figure 6. (a) Wind speed forecasting graphs based on SVM, LSSVM, and PM; (b) Wind 

power forecasting graphs based on the output V and Vf of SVM, LSSVM, and PM. 

Then we continue to verify the effect of Lorenz disturbance on wind power forecasting.  

We separately use the original series Vf and the disturbed series V to do the wind power predictions. 

Figures 4–6b depict the corresponding wind power predictions. According to the statistics in Table 3 

and the forecasting graphs in Figures 4–6b, the wind speed series which eliminate the nonlinear 

disturbance effect has a much better forecasting performance. This phenomenon applied to any 

forecasting models used in this study. The introduction of a nonlinear Lorenz disturbance actually 

exerts an important and positive impact on wind power prediction. 
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5. Conclusions 

The atmospheric system is actually a complex nonlinear dynamic system, in which small changes of 

atmospheric state may lead to a dramatic variation on the subsequent atmospheric evolution.  

In this paper, we explore the impact of atmospheric perturbation on wind power forecasting by 

adopting a Lorenz system. In order to validate the feasibility and universality of the disturbance 

method, three different prediction models are applied in this research. As a result, it is feasible to 

introduce a Lorenz disturbance in wind power prediction, which could greatly improve the forecasting 

accuracy. Application of the perturbation method plays an extremely important role in wind power 

forecasting, to which more attention should be paid. 

However, there are still some issues to be discussed. First, the value of the variable parameter r  is 

not determined. A chaotic Lorenz disturbance series can be obtained when r  is larger than 24.74.  

We have to establish a criterion to ensure the accurate selection of the values of r  according to different 

features of the sample wind data. Besides, in order to test the universality of the disturbance method, 

various prediction models and large amounts of sample data should be employed. It is promising to 

work out much more accurate wind forecasting results after introducing these refinements.  
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