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Abstract: The aim of nuclear safeguards is to ensure that special nuclear material is used for 

peaceful purposes. Historically, nuclear material accounting (NMA) has provided the 

quantitative basis for monitoring for nuclear material loss or diversion, and process 

monitoring (PM) data is collected by the operator to monitor the process. PM data typically 

support NMA in various ways, often by providing a basis to estimate some of the in-process 

nuclear material inventory. We develop options for combining PM residuals and NMA 

residuals (residual = measurement − prediction), using a hybrid of period-driven and  

data-driven hypothesis testing. The modified statistical tests can be used on time series of 

NMA residuals (the NMA residual is the familiar material balance), or on a combination of 

PM and NMA residuals. The PM residuals can be generated on a fixed time schedule or as 

events occur. 

Keywords: data driven; hybrid method; nuclear material accounting; period driven;  

process monitoring; residuals; statistical methods; time series 
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1. Introduction and Background 

Nuclear material accounting (NMA) is a component of nuclear safeguards, which are designed to 

detect illicit diversion of special nuclear material (SNM) from the peaceful fuel cycle to a potential 

weapons application. NMA consists of periodically comparing measured SNM inputs to measured SNM 

outputs, and adjusting for measured changes in inventory. Process monitoring (PM) data is a relatively 

recent component of safeguards that is collected more frequently than NMA data. PM data is often only 

an indirect measurement of the SNM, or is a direct measurement of bulk mass that includes SNM and 

non-SNM. PM data is typically used as a qualitative measure to supplement NMA, or to support indirect 

estimation of difficult-to-measure inventory for NMA [1–12]. 

Nuclear safeguards are applied at all stages of the nuclear fuel cycle, from uranium conversion to 

SNM waste disposition. To focus this article, we only discuss reprocessing facilities. Traditional NMA 

at large reprocessing facilities closes the material balance (MB) approximately every 10 to 30 days 

around an entire material balance area, which typically consists of multiple process stages. Figure 1 is a 

picture of SNM flows at a generic electrochemical reprocessing facility [13–19], which is anticipated  

to have large SNM throughput but much less processing equipment than a similar-throughput  

aqueous reprocessing facility [7–9]. Both PM and NMA measurements are available at aqueous and 

electrochemical reprocessing facilities. An electrochemical facility operates mostly in “batch mode”, 

such as batches of product baskets taken from the electrorefiner (Figure 1). An aqueous facility has tanks 

and processes in both batch and continuous operation (the chemical separations vessels operate in 

continuous mode, so some tanks ship and receive continuously from the separations vessels). 

Our proposed options to quantify the benefit of using both PM and NMA data define the system alarm 

probability as the conditional probability of an alarm given the true model parameters (such as the true 

SNM loss in each vessel over a specified time), denoted P(alarm|diversion scenario). We assume there 

are time series of p residuals r1, r2, …., rp, which include MBs from NMA, plus residuals generated from 

PM data. In both PM and NMA, a residual is computed as residual = measurement − prediction.  

The prediction can come from an engineering model or from purely empirical means on historical 

training data that is assumed to not contain SNM diversion. The probability P(alarm|diversion scenario) 

is a function of the true states of nature (which depend on whether SNM has been misdirected),  

the measurement system, the PM residual streams in use, and the alarm rule(s). 

It has long been believed that PM can improve domestic and international safeguards; although the 

cost to the safeguards budget is relatively low because PM data is already being collected by the operator, 

PM benefits are difficult to quantify. This paper uses PM residuals as a simple extension of NMA to 

quantify PM benefits. One key assumption is that the safeguards approach includes model-based 

predictions that can be compared to corresponding measurements, resulting in time series of residuals. 

The requirement for high-quality predictions leads to technical challenges in safeguarding either aqueous 

or electrochemical reprocessing facilities. For example, there is ongoing work aimed at high-quality 

modeling of the electrorefiner in an electrochemical facility [17]. Strictly speaking, our approach leads 

to high SNM loss detection probability (DP) only for the specified diversion routes; however, there is 

also high loss detection probability for any type of abrupt loss. See Appendix 2 for more detail. Also, in 

the context of international safeguards, there is not yet an approach to authenticate operator PM data; 

authentication will depend on facility type and is under investigation. 
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The following sections include a description of NMA and of PM, pattern recognition, model-based 

prediction, discussion of simulated data, extensions to include additional PM residuals, example of 

combining PM and NMA data, and a summary. The simulated numerical example that combines NMA 

and PM data includes daily PM data from 13 vessels, including one input, eight inventory vessels, and 

four output vessels. PM data from each vessel consists of a time series of residuals. The overall MB can 

be computed at any desired frequency of 1 day or longer. Reference [1] reviews related work in the 

nuclear safeguards and statistics communities. 

 

Figure 1. Generic electrochemical reprocessing facility with key activities shown. 

2. NMA and PM 

While NMA estimates SNM mass balances and uncertainties, PM sometimes tracks SNM attributes 

qualitatively or in the case of solution monitoring, might track bulk mass and volume. PM data can also 

include very frequent high-dimensional spectral data from gamma detectors [20–22], or low-dimensional 

flow and/or in-tank volume data from flow meters or in-tank dip tubes. In some cases, PM data can be 

relatively high quality, such as in-line mass or volume flow measurements, and some current research is 

aimed at high-quality in-line SNM accountability measurements for electrochemical facilities [14–19] 

and aqueous facilities [7,8,20,21]. The next two subsections briefly describe NMA and PM.  

See Appendix 1 for more detail on NMA and PM. 

2.1. NMA 

In NMA, the MB is defined as MB = Ibegin + Tin − Tout − Iend, where Tin is transfers in; Tout is transfers 

out; Ibegin is beginning inventory; and Iend is ending inventory. The measurement error standard deviation 

of the MB is denoted σMB. The key quantities in NMA are the MB and its measurement error standard 
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deviation σMB. If the MB at a given time (“balance period”) exceeds k σMB with k in the 2-to-3 range, 

then the NMA system “alarms”. Considerable effort is aimed at assessing measurement uncertainties to 

estimate σMB [23,24]. Choosing k in the 2-to-3 range for a low false alarm probability is based on an 

appeal to a central limit theorem effect arising from combining many measurements to justify assuming 

the measured MB is approximately Gaussian distributed around the true MB [10,12,23]. 

2.2. PM 

PM is a broad term that in nuclear safeguards includes monitoring by radiation detectors, cameras, 

and monitoring solutions in vessels using pressure-sensing dip tube or other technology (which is this 

article’s focus). 

PM often enables a type of frequent NMA, which is usually referred to as near real time accounting 

(NRTA). NRTA is typically described as: frequent balance closures based mostly on measurements of 

the shipments and receipts, with varying capability to measure or estimate in-process inventory.  

In practice, “frequent” is typically daily or weekly (however, PM-based balance closures are common 

on a per-batch basis which could be daily or multiple times per day). Facilities that close balances very 

frequently, such as daily or after each batch transfer, rely on various shortcuts or partial measurements. 

For example, it is rare to equip each processing unit with in-line holdup or in-process inventory monitors. 

Therefore, either engineering estimates, or historical by-difference estimates are used for negotiated 

portions of the in-process inventory measurements [25]. In the NRTA scheme at the THORP  

(“thermal oxide reprocessing plant”) in England [26], full material balance closures are not as often as 

weekly because of the infrequency of Pu concentration measurements. Full balance closures are less 

often than weekly, but pseudo-balance closures using empirical relations to estimate the Pu concentration 

are quite frequent (roughly daily). Although in-line dip tubes measure vessel volume every few seconds, 

there might not be a capability to measure the Pu concentration in-line. In-line dip tubes estimate solution 

density, so empirical relations together with the density estimate can infer (but not directly measure) the 

Pu concentration [27]. An NRTA system that measures all material is preferred, but even the best system 

will typically rely on partial measurements and/or engineering estimates for at least part of the in-process 

material [1,7,25]. 

PM can potentially have high SNM loss detection probability for abrupt diversion. Reference [27] 

showed that SNM loss during tank “wait modes” would be much easier to detect than SNM loss during 

“transfer modes” (see Section 3). This is largely due to canceling systematic errors when two level 

measurements in the same tank are compared. If we need high confidence in PM only during transfer 

modes, this is a potential savings. However, because there is no in-line Pu concentration measurement, 

there are spoof scenarios. The adversary could divert without an alarm during a wait mode by replacing 

the removed volume with the correct density solution. If this occurred over a one day period (the daily 

Pu throughput is approximately 50 kg), then downstream Pu concentrations could be back at expected 

values by the next monthly balance closure when Pu concentrations are measured in all key tanks.  

Short-cut assay methods such as a volume and a calculated SNM concentration do not directly measure 

the SNM of interest but are often used for some of the measurements in frequent NMA (such as every 

10 days). PM directly supports NMA if PM is used to estimate holdup [1,28,29]. Currently, there is no 

attempt to quantitatively use PM to meet detection probability goals. 
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3. Flow Rate Monitoring and Event Marking 

Raw solution monitoring (SM) data are unlikely to be useful as input features for pattern recognition. 

Instead, raw SM data can be parsed into key events such as shipments and receipts, as done by some SM 

evaluation systems [4,6,27]. This allows one to regard each tank as unit process area and generate 

residuals that are analogous to the MB from NMA. Alternatively, flow rates to and from tanks can be 

used to generate very frequent (every few minutes or hours or days) residuals from each tank, without 

event marking [30]. The flow rate monitoring option is known [30] to have challenges, including the 

following: flow rates can be difficult to measure; in-vessel measurements are unstable if the vessel 

contents are rapidly changing; synchronization errors arising from flow rate changes that occur at 

unknown times between the recorded data times; serial correlation in MBs due to successive residuals 

sharing the same estimation error effects, and larger data dimension than using residuals from marked 

events. For example, Figure 2 plots simulated bulk volume balance in one tank from the safeguards 

system performance model (SPM) [30] before the effects of measurement errors are introduced.  

There is a large transient volume balance near 1700 min that masks the −1 to 2 percent relative volume 

balance that persists for the entire simulation. 

 
(a) 

 
(b) 

Figure 2. Illustration of synchronization error in an aqueous tank modeled in the System 

Performance Model (SPM). In (a), the synchronization error is present but a large volume 

residual occurred at the beginning of material flow near minute 1700 so synchronization 

errors are almost not visible. In (b), a relatively short section of time is plotted, and 

synchronization error is approximately a −1 to 2 percent effect (in arbitrary units, au, because 

this is percent relative change). 
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These −1 to 2 percent relative volume balances are due to flow changes occurring at slightly different 

times than the times that the simulation records data, which we call a synchronization error. 

Synchronization errors also occur in real facility data, so there has not been an attempt to remove them 

from simulated data. Figure 3 illustrates PM residuals from two options. Option 1 assumes flow rates 

are measured and that PM residuals can be generated on a fixed schedule, such as every 6 min, every 

hour, or every day [30]. Option 2 uses event marking and so parses each vessel into wait and transfer 

modes [1,4,6,27]. Note that option 2 results in only 5 residuals while option 1 results in many more 

residuals over the same time period. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) The measured volume in a tank during a receive, wait, ship cycle; (b) PM 

residuals for bulk volume using option 1 PM; (c) PM residuals for bulk volume using  

option 2 PM. In PM option 1, residuals are generated on a fixed time schedule. In PM option 2, 

residuals are generated at the end of each “wait” and “transfer” mode, and transfer-mode 

residuals compare the bulk volume change in the shipper tank to the corresponding change 

in the receiver tank. 

4. Model-Based Predictions 

In NMA, the MB concept is based on a simple model of mass conservation which implies that the 

true MB should be zero. In PM, both first-principles and empirical models can be used to predict SNM 

mass in a given location. Also, models for how one might misdirect Pu can suggest what observables 

would be generated. For example, [3] describes a simple model of the dissolver vessel in the head-end 

of an aqueous reprocessing plant. Excess Pu can be directed to the waste hulls by incomplete dissolution 
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using off-normal nitric acid concentration and/or off-normal dissolver batch cycle times. In the example 

in [3], PM data includes cycle times, temperatures, and acid concentrations, that are all inputs to the 

example’s model of dissolver operation, and so the PM data enabled a model-based prediction of the Pu 

in the hulls. This model-based prediction can provide the basis for having a PM residual associated with 

each batch of hulls, defined as residual = measurement − model prediction. Currently, a neutron-based 

hull monitor is used, but the hull monitor measurement is not compared to a model prediction. This 

article assumes that such a PM scheme is feasible, and provides a way to monitor for diversion to the 

hull waste stream. 

PM (extended, if needed, beyond in-tank level, density, and temperature to include flow measurements 

and/or in-line Pu concentration measurements) can help provide a predicted or book value for waste 

streams. For example, recall that [3] describes a model for the head end of an aqueous reprocessing plant 

that results in a model-based prediction (or “book value”) of the Pu mass in the hulls waste stream.  

Xerri et al. [31] distinguish holdup from “hidden inventory” and use by-difference PM data to estimate 

holdup. Assuming that diversion of excess Pu to the hulls is the only credible diversion route in the  

head end, it is valuable to have such a “model-based” prediction of the Pu in each hull batch that  

relies on easily measured quantities such as dissolver cycle time, temperature, and feed nitric acid 

concentration or bulk density. 

Similarly, pulsed column models [25] can provide a book value for effluent streams (an example is 

given in [1]). For electrochemical facilities, a few models of the electrorefiner are being developed that 

would generate time series of PM residuals [15–19]. The intent is to detect off-normal conditions that 

could indicate misdirection of Pu. Monitoring such profiles can lead to residuals as we have described 

for simpler models involving mass and/or volume balancing of SM data for each key process tank. 

Model-based predictions as just described can provide a new way for PM plus NMA to detect 

diversion on the basis of monitoring the corresponding residuals. A key fact is that diversion to streams 

that should have relatively small amounts of Pu can be easily detected provided frequent PM data is 

available, and the model-based predictions are reasonably high quality (i.e., have low total error 

variance; see Section 8). 

5. Data Fusion 

In NMA, diversion DP is the safeguard’s system main figure of merit for a specified diversion amount 

and time frame. Because σMB determines the DP [12], via the assumed Gaussian distribution of the MB, 

efforts are continually made to reduce σMB. In combining PM data with NMA data, we propose to retain 

diversion DP as the figure of merit, but extend the diversion scenario description from SNM amount and 

time frame to include how the SNM is diverted. A key task is then to estimate the probability distribution 

of the combined PM and NMA residuals in the no-diversion case and in the diversion case. The residual 

probability distribution in the no-diversion case can be estimated by analysis of real facility data, and  

in the diversion case can be estimated by modeling and simulating the effects of facility misuse on real 

data [1,22]. See Appendix 2 for more detail on data fusion. 
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6. Hybrid of Period-Driven and Data-Driven Pattern Recognition 

Suppose NMA and PM residuals are evaluated frequently (such as every day or every 10 days),  

but a statistical decision is made every year, to alarm or not. Yearly decisions are practical in safeguards 

because facilities often schedule a partial shutdown and clean out of the facility, which provides  

a convenient time to have most SNM in relatively easy-to-measure forms. This is a hybrid of both  

period-driven and data-driven statistical evaluation. See Appendix 2 for more detail on period-driven 

and data-driven pattern recognition. Appendix 2 illustrates that current detection probabilities based on 

period-driven statistical testing are decreased if the adversary diverts across multiple time periods; 

therefore, some combination of period-driven and data-driven pattern recognition using statistical testing 

is desired. 

7. Pattern Recognition 

In a typical pattern recognition problem, the data consist of n cases of (y, X) pairs where the integer  

y ϵ (1, 2,..., J) is the class and X is a p-dimensional predictor vector. The goal is to use X to predict the 

class y, and this task is sometimes called classification, discriminant analysis (DA), or supervised 

learning. Regarding notation, vectors and scalars can be distinguished by context and definition.  

For example, y is a scalar and X is a p-dimensional vector. See Appendix 2 for more detail on pattern 

recognition for combining NMA and PM data. 

8. Example 

We consider an material balance accounting (MBA) with 13 vessels, including one input, eight 

inventory vessels, and four output vessels. Figure 4 is simulated input, output, and inventory bulk mass 

data from a generic electrochemical reprocessing plant provided by Sandia National Laboratories from 

the SPM [14]. Because there is far less experience with electrochemical reprocessing than with aqueous 

reprocessing, we are not in position to have a defensible estimate of measurement error variances.  

So, purely for illustration purposes, we assume 1% relative random error standard deviation on all 

measurements, and 0.5% relative systematic error standard deviation on all measurements (these are 

somewhat larger than typical values in aqueous reprocessing [24]). 

A time series of 100 simulated MBs (with measurement errors of 1% relative random error standard 

deviation and 0.5% relative systematic error standard deviation) in arbitrary units (au) is also shown in 

Figure 4d for each time step.  

Figure 5 plots 200 MBs that are computed each day rather than each time step (so the values are 

somewhat different) in (a), the estimated probability density of the MB value in (b), the autocorrelation 

function (ACF) of the MB sequence in (c), and a lagged plot of the present MB versus the previous MB 

in (d). The strong lag-one ACF in (c) indicates that the inventory measurement error is non-negligible. The 

variance of the MB sequence quickly increases to its stationary value, as evident from the scatter 

increasing in (a) from an initial small value to a larger stationary value as inventory vessels reach 

capacity later in the simulation.  

Figure 6 plots the 14 daily residuals (one input, eight inventory, four outputs, and one MB).  

For comparision, Figures 7 and 8 are for a 7-tank MBA at an aqueous facility described in [1]. 
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(a) (b) 

  

(c) (d) 

Figure 4. (a) Daily total input; (b) total inventory in eight vessels; (c) total output from four 

streams; and (d) daily (“batch”) MB in generic electrochemical data simulated from the SPM. 

  

(a) (b) 

Figure 5. Cont. 
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(c) (d) 

Figure 5. Daily material balances (“batches”) in (a); the estimated probability density of the 

MB value in (b); the autocorrelation function of the MB sequence in (c); and a lagged plot 

of the present MB versus the previous MB in (d). 

 

Figure 6. Daily residuals from the one input, from each of the eight inventory vessels,  

from each of the four output vessels, and the daily MB. We also consider less frequent BPs, 

every 10 days. 
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Figure 7. Example data from a 7-tank aqueous facility MBA. Some tanks are batch input, 

batch output (denoted B/B). Tanks that are just upstream or downstream from a separations 

vessel have a continous (C) mode. (a) Input accountability tank; (b) Buffer tank;  

(c) Feed tank; (d) Receipt tank; (e) Waste tank; (f) Buffer tank; (g) Output accountability tank;  

(h) Change in holdup. 
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Figure 8. Residuals from PM and NMA for the 7-tank MBA in an aqueous facility. The PM 

residuals occur at the end of each wait event and after each transfer event. The NMA 

residuals are the usual MBs every 10 days. 

We return now to the electrochemical example as in Figure 6, and apply the 2-part hybrid test 

described in Section 6 and Appendix 2 in which we: (A) Stop each Page’s cusum (cumulative sum, [1]) 

at the end of each balance period (BP) and then use a test statistic that is based on the maximum values 

during the BP of the 14 Page’s cusums for period-driven testing; and (B) Carry along the incremental 

cusum into a multivarite (Crosier) version of Page’s cusum across BPs ([1,3]). Output from an 

electrorefiner model in [17] could lead to a PM time series as assumed for the input, eight inventory 

vessels, and the four output vessels in the example electrochemical facility. 

The hybrid statistical testing strategy is a two-part hybrid. The first part of the hybrid is a Page’s cusm 

at the end of each BP, using a test statistic based on values of the 14 Page’s cusums. The second part of 

the hybrid is the incremental Crosier’s cusum across BPs. For the first part of the hybrid, we 

experimented with two test statistics. One option for a test statistic is simply the maximum of the  

14 maximum values of the individual Page’s cusums; this option is intended for SNM loss in one or a 

few residual streams.. Another option for a test statistic that is intended for wide-spread loss across 

several residual streams is the average of the 14 maximum values of the individual Page’s cusums. 
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Figure 9 is Page’s cusum test applied to each of the residual streams in Figure 6. Page’s cusum test 

applied to a residual time series tR  is given by 1max(0, )t t tS S R k   , where k is a control parameter. 

Page’s cusum test has close to the highest possible DP for many loss scenarios. Different tests will have 

the best DP for different loss scenarios, which partly explains why so many sequential tests have been 

proposed for NMA [23,26]. 

 

Figure 9. Page’s cusum test applied to each of the 14 (13 PM, one NMA) residual streams. 

To avoid cluttering the figure, only some residual streams are shown, as indicated. 

Note 1: The cusum test 
1

( ) ( )
t

i

C t MB i


  which sums all MBs since the last period ignores  

individual transfers from tank 1 to tank 2 and has the highest DP among all possible tests for the  

equal-loss-per-balance-period case [1,23]. This means that evaluating each tank-to-tank transfer has 

lower DP than comparing the sum of tank 1 transfers to the sum of tank 2 transfers. Analogously, there 

is no free lunch regarding the use of SM and NMA data. That is, including SM data is an extension of 

NMA to include more sub-MBAs (each tank is a sub-MB area) and more frequent balance closures. 

Therefore, there are scenarios for which using NMA data alone leads to the highest DP. Such scenarios 

will involve widespread diversion over multiple tanks and time periods (unless such scenarios produce 

observables that could be monitored, which we are not considering here). The motives for evaluating 

SM data include resolving NMA alarm, detecting diversion to waste streams that should have relatively 



Energies 2015, 8 514 

 

 

small amounts of Pu, and improving abrupt loss detection over more scenarios, meaning that there can 

be at least moderate DP for a wide range of diversion scenarios, which is not true for NMA data alone. 

Note 2: In our context with a wide range of possible diversion scenarios, there cannot be a most powerful 

statistical test (a most powerful test is a test that has the highest DP for a specified scenario). Therefore, 

we cannot claim that using the average of the values of the individual maximum-over-the-BP Page’s 

cusum has higher DP than the alternative test that we evaluated that alarms if the maximum of the 

individual maximum Page’s cusum exceeds its threshold. We anticipate that ease of implementation and 

ease of estimating alarm thresholds for desired false alarm probabilities (FAPs) (such as 0.05 per year) 

will be important factors in choosing which hybrid option is preferred. 

Figure 10 plots an example of the estimated probability density of Crosier’s statistic applied to 

incremental cusums in the 2-part hybrid described above at BP 9. 

 

Figure 10. Example of the estimated probability density of Crosier’s statistic applied to 

incremental CUSUMs in the 2-part hybrid at BP 9. The data is simulated from the SPM of 

an electrochemical facility. 

In general, we propose to estimate the DP of the safeguards system by estimating the system DP from 

PM combined with NMA using the following two steps (see Appendix 2): 

a) Describe diversion scenarios to inform how PM data should be evaluated to provide a means 

of event detection using expert elicitation if possible, and 

b) Evaluate P(alarm|diversion scenario), the conditional probability of an alarm for a given 

scenario. The alarm rule operates on p residuals r1, r2, …., rp which include MB values from 
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NMA, plus residuals from monitoring “wait” and “transfer” modes in tank SM data.  

The probability P(alarm|diversion scenario) is a function of the true states of nature,  

the measurement system, and the alarm rule(s). 

More specifically, we continue with the 13-vessel example to illustrate the two-part hybrid statistical 

test. It is straightforward to develop simulation-based estimates (see Figure 10) of alarm thresholds to 

maintain an overall 0.05 FAP per year following current convention with NMA data alone. However, 

because there are two tests in the hybrid test, there are two alarm thresholds, and one can allocate more 

of the 0.05 false alarm probability to one part of the hybrid or the other, using trial-and-error in 

simulation. For selecting alarm thresholds and comparing to standard time series such as sequences of 

independent and identically distributed (iid) normal random variables, it is convenient to transform each 

residual time series using the SITMUF-type transform (see Appendix A1); SITMUF stands for 

standardized independently transformed material unaccounted for. Upon doing so, we find that the alarm 

thresholds for the hybrid test consisting of the average value of the maximum of the Page’s cusums and 

Crosier’s cusum applied to incremental cusums are close to those for corresponding iid normal residuals. 

We do not expect exact agreement with independent normal residuals because the MB is strongly 

correlated with the other 13 residual streams. 

Having estimated the two alarm thresholds to achieve a 0.05 false alarm probability per operating 

year, we can easily inject various loss scenario effects in additional simulations to estimate system 

detection probabilities of the two-part hybrid statistical test. We have done simulations for both the 

average distance option applied to the maximum of the 14 individual Page’s cusums and also for using 

the maximum of the maximum of the 14 individual Page’s cusums. For example, Figure 11a is the 

estimated detection probability versus the average (over the 14 residual streams) one-day-abrupt loss 

from the input (the loss is expressed as an average of the total true amounts in each residual stream at a 

given time step) using the maximum of the maximum of the 14 Page’s cusums option and also using the 

average of the maximums. Figure 11b is the same as Figure 11a, but is for a wide-spread loss over all 

13 residual streams. In Figure 11a,b, the loss occurred during one time step. 

In Figure 11a, the maximum of the 14 maximum Page’s cusums has higher detection probability than 

the average of the 14 maximum Page’s cusums; this is expected because the loss occurred from only the 

single input residual stream. In Figure 11b, the opposite is true; again this is expected because the loss 

is spread over all 13 residual streams, so the average of the maximum of the 14 Page’s cusums has a 

relatively strong signal. The value of σMB is approximately 0.70 units each day, most of which arises 

from the large in-process inventory. The value of σ for the input residual is approximately 0.04. It makes 

sense to monitor residuals from any stream for which there is a predicted value and corresponding 

measured value; this example assumes there is a predicted value for all 13 residual streams, plus the MB 

stream (whose predicted value is, of course, zero). 

  



Energies 2015, 8 516 

 

 

 
(a) 

 
(b) 

Figure 11. Example estimated detection probabilities versus the average percent loss in a 

(a) local loss from the input and in a (b) non-local (widespread) loss from all 13 residual 

streams. The average is over all 13 residual streams during the one-time-step duration of the loss. 

9. Conclusions and Summary 

We described options to quantify the benefit of PM data by using P(alarm|diversion scenario) as  

the figure of merit, while using both PM and NMA residuals in the alarm rule. A key assumption is that 

the safeguards approach includes model-based predictions that can be compared to corresponding 

measurements, resulting in time series of residuals. The requirement for high-quality predictions leads 

to technical challenges in safeguarding either aqueous or electrochemical reprocessing facilities.  

For example, there is ongoing work aimed at high-quality modeling of the electrorefiner in an 

electrochemical facility [17]. Strictly speaking, our approach leads to high SNM loss detection 

probability only for the specified diversion routes; however, there is also high loss detection probability 

for any type of abrupt loss. See Appendix 2 for more detail. Also, in the context of international 

safeguards, there is not yet an approach to authenticate operator PM data; authentication will depend on 

facility type and is under investigation. 

This paper introduced a hybrid alarm rule consisting of using the average distance computed from the 

maximum of the individual Page’s cusums and also using Crosier’s cusum applied to incremental 

cusums across balance periods. As a modification of (A), we also evaluated the performance of using 

the maximum of the maximum-over-the-BP values of each individual Page’s cusum (example results 
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are given in Figure 11). A few other alarm rules have been evaluated in [1], all of which involve some 

type of pattern recognition applied to multivariate time series of PM and NMA residuals that arrive at 

equal or unequal frequencies in aqueous or electrochemical reprocessing facilities. 

We believe it is acceptable to tune the pattern recognition to a list of important diversion scenarios to 

achieve high DP for those scenarios, provided P(alarm|diversion scenario) is non-zero for all scenarios 

so that the system is at least somewhat robust to any diversion scenario. Estimating P(alarm|diversion 

scenario) requires modeling and simulating the effects of each diversion scenario, so model uncertainty 

should be considered in future work. Model uncertainty has been considered in related safeguards 

contexts [32]. Section 8 provided an example; however, model uncertainty has not yet been included. 
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Appendix 1. Nuclear Material Accounting and Process Monitoring 

A1.1. NMA 

NMA has known limitations, particularly when large amounts of SNM are processed per unit time. 

Therefore, PM is increasingly important at large facilities [1–14,21]. Consider a facility having an input 

accountability tank (IAT), product accountability tank (PAT), and process operations between the IAT 

and PAT. If the true PAT output SNM is, for example, 8 kg less than the true IAT input SNM, then the 

desired safeguards conclusion is “alarm”. And, if SNM output is 8 kg less than SNM input, then various 

observables must be produced that could be measured. Therefore, PM attempts to verify that material 

flows and constituents are as declared by looking for the absence of such observables, such as changing 

material flow rates and constituents to misdirect the SNM to an undeclared exit stream. It is important 

to understand what types of facility misuse are possible and credible, and also to understand to what 

extent the various misuse scenarios can be detected. 

To address known shortcomings of NMA, additional measures are taken. One additional measure is 

PM [1–11], which has recognized but currently unquantified benefits. PM includes analyzing the facility 

operator’s process control measurements to detect abnormal plant operation. Process control measurements 

are those used by the operator to control the chemical and/or physical processes. Example process control 

measurements in an aqueous reprocessing plant include (1) mass and density measurements in tanks;  

(2) inline flow meters; (3) concentration measurements of nonnuclear material reagents; and (4) process 

temperatures. Example process control measurements in an electrochemical reprocessing plant include 

(1) mass and density measurements in vessels; (2) voltages and current in the electrorefiner vessel;  

and (3) process temperatures. There are many roles for PM, and PM data have a variety of forms [1–9]. 

PM often involves more frequent but lower quality measurements than NMA [1–11]. While NMA 
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estimates SNM mass balances and uncertainties, PM sometimes tracks SNM attributes qualitatively or 

in the case of solution monitoring, might track bulk mass and volume. PM data can also include very 

frequent high-dimensional spectral data from gamma detectors [20–22], or low-dimensional flow and/or 

in-tank volume data from flow meters or in-tank dip tubes. In some cases, PM data can be relatively high 

quality, such as in-line mass or volume flow measurements, and some current research is aimed at  

high-quality in-line SNM accountability measurements for electrochemical facilities [14–19] and 

aqueous facilities [7,8,20,21]. 

This article focuses on PM in which SNM inventories (bulk mass and/or Pu mass) in all vessels are 

measured frequently, such as every few minutes, or hour or day, and transfers are measured as they occur.  

If PM is simply more frequent balance closure (in the case that PM measures Pu mass for example) [23] 

showed that protracted loss detection is still very difficult; and, in fact, less frequent balance closure has 

higher loss detection probability for protracted loss. However, a model-based prediction for each SNM 

flow stream leads to time series of residuals that can be monitored for loss from any given stream. 

Therefore, there can be high loss detection probability for specified diversions from specified streams. 

But, an approach to combine PM and NMA is needed, so this article proposes a hybrid of period-driven 

and data-driven hypothesis testing. 

Unique statistical challenges in combining NMA and PM residual time series include: PM and NMA 

data are often collected at different frequencies; PM residual times often have a probability distribution 

that cannot be adequately modeled by a Gaussian distribution, not all PM and NMA data streams are 

independent, and the monitoring scheme must have reasonably high detection probability for both abrupt 

and protracted diversion. This article considers the situation in which the PM residuals are generated on 

the same fixed time schedule as are NMA residuals, so all residuals will arrive at the same frequency, 

and the situation in which tank events are marked as they occur, so the PM residuals do not all arrive at 

the same frequency [1–6]. 

In NMA, a sequence of MBs can be evaluated over a fixed period (“period-driven”), or not  

(“data-driven”), and in either case, the covariance matrix of a sequence of MBs, ∑MB, is estimated.  

In data-driven evaluation, some type of sequential testing is used, usually including the basic two tests: 

MUF (material unaccounted for, which is the same as the MB, which is good to monitor to detect a  

one-time abrupt loss) and CUMUF (cumulative MUF, which is good for detecting longer-term loss). 

Another good choice is Page’s cusm (i.e., cumulative sum), which is defined at period t as Pt = maximum 

(Pt−1 + SITMUFt − k, 0), where SITMUF is the standardized, independently transformed MUF  

(should have zero mean, unit variance, and be uncorrelated with all previous SITMUF values), k is a 

control parameter usually defined to be 0.5 [12]. 

One issue in sequential testing is that the test should have good alarm probability for either abrupt or 

various types of protracted diversion. The best sequential test depends on the type of loss so no test can 

be uniformly more powerful for all loss types. The CUMUF test is good if diversion begins on the first 

balance period and continues at the same rate for all subsequent periods. Page’s cusum test is optimal if 

the diversion begins in an arbitrary period, persists at the same level for an arbitrary period, and then 

returns to zero. Slight complications arise due to the transformation required (that uses ∑MB) to convert 

a MUF sequence into a SITMUF sequence, but Page’s cusum test applied to the SITMUF sequence is 

among the most versatile tests, and is arguably the most versatile [1,10,12]. 
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Advantages of frequent NMA include: (a) improved abrupt loss alarm probability; (b) timeliness;  

(c) improved alarm/anomaly resolution; and (d) refinement of measurement error models [1,3,24]. 

Regarding measurement error models, metrology for nuclear safeguards includes the notion of random 

and systematic errors as in the international target values for uncertainty [24]. For example, a measured 

quantity M is assumed to vary around the corresponding true quantity T, with M = T + R + S, where R is 

random error and S is systematic error, and the standard deviation of R (σR) and the standard deviation 

of S (σS) are estimated using well-characterized standards. Straight-forward variance propagation is then 

used to estimate ∑MB [12]. 

Regarding SNM in-process inventory that is difficult to measure (called holdup), if there were no 

measurement error in the transfers and inventory, then the MB would equal the change in holdup plus 

the true loss [25]. The presence of measurement error complicates MB evaluation, and the presence of 

non-negligible holdup together with measurement error further complicates MB evaluation. Nevertheless, 

provided σMB is well estimated (not a scientific challenge, but often an engineering challenge constrained 

by limited time and budget), it is understood that the magnitude of σMB can be used to easily estimate 

the loss detection capability if one assumes that the MB is approximately normally distributed. We end 

this sub-section with three summary remarks regarding NMA: 

Remark 1: NMA involves periodically measuring facility inputs, outputs, and inventory to compute an 

MB. Sequences of MBs are analyzed using a sequential test such as Page’s cusum test. Assume that an 

aqueous facility has a measurement error standard deviation of σMB = 0.3% of throughput (a reasonably 

small percentage assuming international target values of measurement performance [24]). Then, assuming 

the measured MB has approximately a Gaussian distribution around the true MB, and international 

safeguards detection goals (95% detection probability and 5% false alarm probability) the diversion 

would have to equal 3.3 × 24 kg = 92 kg for an 8000 kg Pu per year facility. This 92 kg is much larger 

than one significant quantity (SQ), which is 8 kg for Plutonium [1,6,8,9]. Therefore, safeguards goals 

are not likely to be met in large throughput facilties through NMA alone. 

Remark 2: Regarding holdup, if there were no measurement error in the transfers and inventory, then the 

expected value of the MB would equal the change in holdup plus the true loss L. The presence of 

measurement error complicates MB evaluation, and the presence of non-negligible holdup together  

with measurement error further complicates MB evaluation. Nevertheless, provided σMB is well 

estimated, which is often an engineering challenge constrained by limited time and budget, and which 

often invokes modeling and simulation to estimate holdup and model measurement processes, it is 

understood [1,12,23,26] what σMB and/or ∑MB implies about loss detection capability. 

Remark 3: Facilities that cannot meet the detection probability (DP) goals have negotiated-levels of 

“additional measures”. For example, the Rokkasho reprocessing facility (RRP) in Japan will include PM 

as a separate, additional safeguards measure. 

A1.2. Process Monitoring (PM) 

PM often enables a type of frequent NMA, which is usually referred to as near real time accounting 

(NRTA). NRTA is typically described as: frequent balance closures based mostly on measurements of 

the shipments and receipts, with varying capability to measure or estimate in-process inventory.  
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In practice, “frequent” is typically daily or weekly (however, PM-based balance closures are common 

on a per-batch basis which could be daily or multiple times per day). Facilities that close balances very 

frequently, such as daily or after each batch transfer, rely on various shortcuts or partial measurements. 

For example, it is rare to equip each processing unit with in-line holdup or in-process inventory monitors. 

Therefore, either engineering estimates, or historical by-difference estimates are used for negotiated 

portions of the in-process inventory measurements [25]. In the NRTA scheme at the THORP (“thermal 

oxide reprocessing plant”) in England [26], full material balance closures are not as often as weekly 

because of the infrequency of Pu concentration measurements. Full balance closures are less often than 

weekly, but pseudo-balance closures using empirical relations to estimate the Pu concentration are quite 

frequent (roughly daily). Although in-line dip tubes measure vessel volume every few seconds, there 

might not be a capability to measure the Pu concentration in-line. In-line dip tubes estimate solution 

density, so empirical relations together with the density estimate can infer (but not directly measure) the 

Pu concentration [27]. An NRTA system that measures all material is preferred, but even the best system 

will typically rely on partial measurements and/or engineering estimates for at least part of the in-process 

material [1,7,25]. 

Solution monitoring (SM) is a type of PM. Consider level (L), density (D), and temperature (T) 

measurements of solution in a reprocessing facility. Unless there is an in-line Pu concentration 

measurement, then empirical relations linking Pu concentration to D and T for a given nitric acid 

concentration are required to estimate the Pu concentration. Together with a volume estimate using the 

calibrated V = f (L) + error relation, an estimate of Pu mass is available. This is a pseudo-measurement 

because unless Pu is actually measured, we cannot be sure that Pu has not been diverted in some manner 

without reducing solution volumes. The use of such pseudo-measurements or pseudo-balance closures 

means that most examples of NRTA and PM are not, strictly speaking, full NMA. And, even if full NMA 

were done frequently, such as daily, then [23] showed that protracted diversion is still not detected with 

high probability. In fact, less frequent NMA has a higher detection probability than frequent NMA for 

protracted diversion that occurs over a long time period. However, PM can have a high detection 

probability for specified diversions for which it is tuned, while having only a slightly lower detection 

probability than infrequent NMA for wide spread diversion over time and/or space. 

The type of PM just described is essentially a poor-man’s NRTA and can lead to high DPs for abrupt 

diversion. Reference [27] showed that SNM loss during tank “wait modes” would be much easier to detect 

than SNM loss during “transfer modes” (see Section 3). This is largely due to canceling systematic errors 

when two level measurements in the same tank are compared. If we need high confidence in PM only 

during transfer modes, this is a potential savings. However, because there is no in-line Pu concentration 

measurement, the caveats mentioned above are in effect. The adversary could divert without an alarm 

during a wait mode by replacing the removed volume with the correct density solution. If this occurred 

over a one day period (the daily Pu throughput is approximately 50 kg), then downstream Pu concentrations 

could be back at expected values by the next monthly balance closure when Pu concentrations are 

measured in all key tanks. We end this sub-section with three summary remarks regarding PM:  

Remark 4: Short-cut assay methods such as a volume and a calculated SNM concentration do not directly 

measure the SNM of interest but are often used for some of the measurements in frequent NMA  

(such as every 10 days). PM directly supports NMA if PM is used to estimate holdup [1,28,29]. 
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Remark 5: PM directly supports NMA if PM is used to estimate holdup [1,28,29]. 

Remark 6: Currently, there is no attempt to quantitatively use PM to meet DP goals. 

Appendix 2. Data Fusion: Period-Driven and Data-Driven Pattern Recognition 

A2.1. Data Fusion 

In NMA, diversion detection probability (DP) is the safeguard’s system main figure of merit for a 

specified diversion amount and time frame. Because σMB determines the DP [12], via the assumed 

Gaussian distribution of the MB, efforts are continually made to reduce σMB. In combining PM data with 

NMA data, we propose to retain diversion DP as the figure of merit, but extend the diversion scenario 

description from SNM amount and time frame to include how the SNM is diverted. A key task is then 

to estimate the probability distribution of the combined PM and NMA residuals in the no-diversion case 

and in the diversion case. The residual probability distribution in the no-diversion case can be estimated 

by analysis of real facility data, and in the diversion case can be estimated by modeling and simulating 

the effects of facility misuse on real data [1,22]. 

Once the probability distributions are estimated in the no-diversion and diversion cases for the 

combined NMA and PM residuals [1,2,5,6], data fusion to combine NMA and PM residuals can be done 

at the feature, score, or decision levels to reach an overall decision [1]. The feature level is the raw data, 

which is rarely effective. The score level is some transform of the raw data, such as a computed residual. 

The decision level is a binary-valued “pass” or “fail” at the level of the individual residual stream. 

Converting each residual stream to a binary-valued pass or fail is simple, but loses information. Here, 

we perform data fusion at the score level, where the score is the NMA or PM residual. 

We propose to estimate the DP of the safeguards system by estimating the system DP from PM 

combined with NMA using the following two steps: 

a) Describe diversion scenarios to inform how data should be evaluated to provide a means of 

event detection using expert elicitation if possible, and 

b) Evaluate P(alarm|diversion scenario), the conditional probability of an alarm for a given 

scenario. The alarm rule operates on p residuals r1, r2, …., rp which include MB values from 

NMA, plus residuals from monitoring “wait” and “transfer” modes in tank SM data.  

The probability P(alarm|diversion scenario) is a function of the true states of nature,  

the measurement system, and the alarm rule(s). Depending on the desired alarm rule, some 

subset of r1, r2, …., rp could perhaps be dichotomized into “exceeds threshold” (1-valued) or 

“does not exceed threshold” (0-valued). 

Each diversion path has signatures (observables), so including relevant PM measurements with NMA 

data can enable pattern recognition approaches. See Section 4 for an example involving diversion to the 

waste hull in the head-end. For a given scenario, P (alarm at any time 1, 2, …, t|diversion scenario) can 

be estimated using simulated effects superimposed on real or simulated background data for any SM 

approach. Lyman [33] points out that not all diversion scenarios can be anticipated, and we agree. 

However, P(alarm at any time 1, 2, …, t|diversion scenario) can be estimated for the scenarios thought 

to be most credible, and although P(alarm at any time 1, 2, …, t|diversion scenario) cannot be estimated 
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for unspecified scenarios, statistical tests can be used that have some signal to detect any shift in a 

probability distribution, so we claim at least that P(alarm at any time 1, 2, …, t|diversion scenario) is 

higher than the false alarm rate for any credible but unspecified scenario. 

Specific residuals r1, r2, …., rp are used from NMA and PM in the two examples in Section 8.  

In fusing NMA and PM data, NMA uses Page’s cusum test to detect trends over time [1,12,23,26]. One 

could also use Page’s cusum test to define residuals that can detect trends over multiple wait and/or 

transfer modes for a given tank or pair of tanks. 

A2.2. Hybrid of Period-Driven and Data-Driven Pattern Recognition 

A2.2.1. Period Driven Hypothesis Testing 

Suppose NMA and PM residuals are evaluated frequently (such as every day or every 10 days),  

but a statistical decision is made every year, to alarm or not. Yearly decisions are practical in safeguards 

because facilities often schedule a partial shutdown and clean out of the facility, which provides a 

convenient time to have most SNM in relatively easy-to-measure forms. 

One goal for international safeguards using period-driven testing with a one-year decision period is 

to detect a loss of a significant quantity (SQ) with probability 0.95 with a 0.05 false alarm probability 

(FAP) per year, testing for loss only, not for gain, so one-sided statistical hypothesis testing is used. 

Assuming the MB is approximately Gaussian distributed, one can achieve a 0.95 DP to detect a diversion 

of 3.3 σMB using period-driven NMA with yearly balance closure (non-sequential testing), where the 

alarm threshold of 1.65 σMB corresponds to a 0.05 FAP. However, suppose the adversary diverts ½ of 

the desired material over months 7 to 18, straddling two balance periods (year one and year two). For 

the system to fail, the system must fail to detect the diversion of 1.65 σMB in year one, and fail to detect 

the diversion of 1.65 σMB in year two, which occurs with probability 0.5 × 0.5 = 0.25, so the DP is 

reduced from 0.95 to 1 − 0.25 = 0.75 [1]. Addressing the adequacy of the Gaussian approximation in the 

context of MB evaluation is beyond our scope here; however, in many cases, the MB is computed from 

sums and differences of many measurements, so the central limit theorems strongly suggest that the 

Gaussian approximation is reasonable. 

A2.2.2. Data-Driven Hypothesis Testing 

To mitigate a decrease in DP (for example, from 0.95 to 0.75 in Section A2.2.1) arising from the 

adversary diverting across two balance periods, one can instead use a sequential (data-driven) test that 

has no fixed period at which decisions are made. Instead, the test continues until a decision to alarm or 

not is made, and then starts over. We can design a sequential test to have a long average run length 

(ARL) between false alarms, such as 20 years, which corresponds to the 0.05 per-year FAP assumed in 

the previous paragraph. 

One effective sequential test is Page’s cusum test defined at period t as Pt = maximum (0, Pt−1 + yt − k), 

where yt is the SITMUF sequence and k is a user-chosen control parameter that is optimal for detecting 

a shift from mean 0 to mean 2k at an arbitrary period. Page’s cusum test applied to an independent and 

identically distributed sequence of N(0,1) random variables (such as the SITMUF sequence) has a DP 

of approximately 0.79 for this total loss of 3.3 σMB spread evenly over months 7 to 18 (across balance 
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periods 1 and 2 in period-driven testing) if the ARL is approximately 20 years and k = 0.5. And, if the 

loss is on any one balance period, the DP using Page’s cusum test is approximately 0.99 (on the basis of 

104 simulations in R, ensuring approximately a 20-year ARL between false alarms), but is 0.95 for the 

period-driven yearly balance. If there is a total loss of 1.65 σMB on a single balance period during year 

one, then the period-driven yearly balance DP is only 0.50, while the DP using Page’s cusum test is 

approximately 0.96, again with a 20-year ARL. There is no avoiding the fact that protracted diversion 

has lower DP than abrupt diversion, but Page’s cusum test manages to retain high DP for abrupt loss 

while having reasonable DP for protracted loss. 

A2.2.3. Hybrid of Period-Driven and Data-Driven Testing 

As shown in Section A2.2.1, period-driven testing does not have good DP if the adversary diverts 

modest amounts of SNM over multiple decision periods. Therefore, if period-driven testing is used, we 

advocate in addition, data-driven monitoring of a scalar or vector-valued residual from each period.  

A scalar residual could be monitored over multiple periods using Page’s cusum as described,  

for example, over multiple 30-day periods. 

To illustrate using NMA alone, consider using a hybrid test consisting of a data-driven Page’s cusum 

together with an annual period-driven cusum. For a total loss of 3.3 σMB spread evenly over months 7 to 

18 (across balance periods 1 and 2 in period-driven testing), we used 105 simulations to estimate a DP 

of the hybrid test of 0.88 (the DP depends on the alarm thresholds, so this is one example DP with alarm 

thresholds chosen arbitrarily, except that we must achieve an FAP of 0.05 per year). The hybrid-test’s 

DP of 0.88 is higher than the 0.79 DP for Page’s cusum alone (Section A2.2.2), and slightly lower than 

using a data-driven Page’s cusum alone (0.89). Note that for many choices of the two alarm thresholds 

(one chosen threshold for the data-driven Page’s cusum and one for the annual period-driven cusum),  

if the true loss occurred like clockwork, from months 1 to 12 or from months 13 to 24, for example,  

then the hybrid-test’s DP would be higher than that of a data-driven Page’s cusum. Also, as an aside, 

another option for a hybrid of period-driven and data-driven testing is to simply restart Page’s cusum 

test at the start of every new year and decide to alarm on not at the end of the previous year. This is a 

type of truncated Page’s cusum test that is also vulnerable to loss patterns that occur over multiple year 

periods. For completeness, we also note here that a monitoring option known as the scan statistic has the 

highest DP (0.95 in this case, verified by simulation) if one knows that a loss will occur over a 12-month 

period with an unknown start period (such as month 7). In this context, the scan statistic computes a 

moving sum of months 1 to 12, 2 to 13, 3 to 14, etc. The scan statistic is not used in safeguards to our 

knowledge, but is widely used in other applications, for example, to detect regions of residuals having 

the same sign. Of course in practice one would not know the loss duration, so a variable-length scan 

statistic would be used. However, in practice, one also would not know that the loss would occur 

continuously over multiple periods, so the scan statistic is not as compelling at Page’s cusum when one 

considers the myriad of possible loss patterns. So, one effective hybrid test is the combination of Page’s 

ongoing cusum and annual period-driven cusums just described. 

Next, we consider monitoring both NMA and PM residuals. The PM residuals can be generated by 

option 1 (generated every hour for example, by monitoring flow rates), or by option 2 (generated as 
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events occur using event marking). Both option 1 and option 2 residuals will in general be generated at 

different time steps for different areas of the facility. 

One monitoring option is to compute Page’s cusum and a periodic cusum for each residual stream. 

Because of complicated dependencies among some of the residual streams, we recommend simulation 

to choose alarm thresholds for this hybrid test. Another monitoring option is to monitor multivariate 

residuals by using a multivariate sequential test, such as Crosier’s cusum [3], which is a multivariate 

version of Page’s cusum defined as follows. First define a scalar 1 (1/2)

1 1{( ) ( )}T

t t t t tC R R

   S Σ S , 

where 1  if t t t tR C k   S S k  and 0t S  if ,tC k  and the vector k is defined as 

1( ) /t t tR k C k S , with the scalar k being a specified control parameter and tR  being the residual 

vector. Because k is in the same direction as 1( )t tR S , the use of 1t t tR  S S k  shrinks the 

cumulative sum vector tS toward 0. To explicitly view the shrinkage toward 0, note that 

1( )(1 / )t t t tR k C  S S . Upon calculation of tS , a scalar tY is calculated, defined as 1 (1/2)( ) ,T

t t tY S S 
 

and the test alarms if tY exceeds a threshold h. As does the univariate Page’s cusum, Crosier’s 

multivariate cusum requires a scalar control parameter k and a threshold h [1]. 

One approach to deal with the fact that the PM residuals are generated at different time steps is to 

convert all residual streams to the frequency of the most frequently recorded residual stream, simply by 

repeating the value of the most recent residual. Another approach is to aggregate the more-frequently 

recorded residual streams to the frequency of the slowest-frequency stream. Periodic data-driven cusums 

of each residual streams would be monitored in conjuction with Crosiers’ cusum. 

To summarize this section, to monitor the multiple time series of PM and NMA residuals, we propose 

a hybrid testing scheme that includes both period-driven and data-driven hypothesis testing. One of the 

simplest options is to compute Page’s cusum and a periodic cusum for each residual stream. Because of 

complicated dependencies among some of the residual streams, we use simulation to choose alarm 

thresholds for this hybrid test and to estimate the system DP. 

A2.3. Pattern Recognition 

In a typical pattern recognition problem, the data consist of n cases of (y, X) pairs where the integer  

y ϵ (1, 2,..., J) is the class and X is a p-dimensional predictor vector. The goal is to use X to predict the 

class y, and this task is sometimes called classification, discriminant analysis (DA), or supervised 

learning. Regarding notation, vectors and scalars can be distinguished by context and definition.  

For example, y is a scalar and X is a p-dimensional vector. 

There are many approaches to pattern recognition. Some attempt to estimate the probability density 

of the predictor vector, X, given its class (i.e., the class conditional probability, P(X|y)) by assuming 

some convenient distribution for X|y such as multivariate Gaussian which linear discriminant analysis 

(LDA) assumes [1]. Other methods of estimating densities assume only that the distribution is stationary 

over time. Such methods are typically called non-parametric or distribution-free methods [1,34].  

Space does not permit a review of all pattern recognition options. 

Alternative strategies attempt to estimate Bayes rule without estimating the class conditional 

probabilities, such as support vector machines (SVMs), which construct nonlinear decision boundaries 

for the classes in a manner similar to flexible discriminant analysis (FDA). Hastie et al. [35] describe 

SVMs, FDA, and also describe nearest neighbor classifiers and learning vector quantization. 
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The most common pattern recognition data model assumes that a categorical response y depends on 

a fixed-dimension predictor X. The pattern recognition task is to estimate f(X) = Prob(y = 1| X). The most 

well studied version of this task assumes: (1) all components of X are real-valued; (2) X has fixed 

dimension; and (3) training cases consisting of (y, X) pairs are independent. 

A2.3.1. Pattern Recognition for NMA and PM Data 

Currently, most safeguards conclusions are made at the end of a NMA balance period, but the 

increasing role of PM is driving a change to make data-driven conclusions. As an example, consider a 

4-tank balance area consisting of a buffer tank 1 which ships in batch mode to a feed tank 2 which 

continuously feeds a “black box” area where chemical processing occurs. The black box ships 

continuously to a receipt tank 3, which ships in batch mode to a buffer tank 4. For process control 

reasons, the plant operator periodically samples tanks 1 and 4 to measure the SNM concentration and 

uses mixing rules and measured flow rates to estimate the Pu concentration and mass in tanks 2 and 3. 

Online measurements of tank level (which is calibrated to volume), density, and temperature are 

available every few seconds, so tank volume V and mass M (mass = volume × density) are available 

every few seconds from each tank. These (V, M) measurements are PM measurements. NMA computes 

the MB as estimated Pu into tank 1 minus the estimated Pu out of tank 3. There are also neutron detectors 

in the black box area to monitor Pu inventory in an indirect semi-quantitative manner. 

The pattern recognition tasks for this example are: (1) to recognize any departure from normal process 

operations; and (2) to recognize specific misuse scenarios that are judged to be credible. Some of the 

technical challenges are: 

 For (1), anomaly detection as a special case of pattern recognition has been approached using 

density estimation [36]; 

 For (2), signatures and patterns of specific misuse scenarios are usually modeled and there is 

consider model uncertainty, so the probability density function (pdf) of each misuse scenario is 

uncertain (this source of uncertainty is currently ignored); 

 PM measurements overlap with NMA measurements (example: the same instrument that 

measures tank V for NMA is used for PM) so there are between-data-type correlations; 

 PM and NMA data are on differing time scales, and 

 PM data captures many innocent sources of process variation. 

The main task for pattern recognition is to combine residuals from NMA and PM to provide  

data-driven pattern recognition (operating as declared or some type of misuse), period-driven (at the end 

of each day or balance period, make a statistical decision to alarm or not) pattern recognition, and some 

type of hybrid of period- and data-driven pattern recognition as discussed in A. 

Remark 7: All predictors for pattern recognition will be based on model fitting and associated residuals. 

As in “phase 1” control charting [37] for production processes, the pdf of the time series of a vector of 

residuals can be estimated. However, estimation of the residual vector’s pdf requires a combination of 

modeling and data analysis as illustrated by example in [1]. The approach in [1] does not distinguish 

sensor faults from SNM loss, but assuming no more than one sensor malfunctions within small time 

windows, Howell et al. [38] and Hines et al. [39] illustrate options that are also based on monitoring 
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residuals, using regression and other statistical tools that were first applied to monitor sensor health for 

the U.S. Nuclear Regulatory Commission. As far as the authors are aware, only Howell et al. [38] have 

attempted to distinguish sensor faults from SNM loss. 

Recall that in NMA alone, the figure of merit is P(alarm|L, time period) where L is the SNM loss  

(due to diversion or innocent loss). And, the central limit theorem effect operating on the many 

measurements comprising an MB leads to the MB having approximately a Gaussian distribution,  

so P(alarm|L, time period) for a given alarm threshold is a function only of σMB. In period driven testing, 

the time period is fixed in advance, such as one year, and [23] showed that in the Gaussian case, a single 

CUMUF test at the end of each time period has the highest DP for the worst-case diversion. And, the 

worst-case diversion vector L is proportional to the row sums of ∑MB. In data-driven (sequential) testing, 

the time period must be specified for each diversion of interest in order to estimate P(alarm|L,  

time period), and more complicated alarm rules than the CUMUF rule must be used, such as Page’s cusum. 

PM residuals will not always be adequately modeled using a Gaussian distribution. For example, some 

event-marking-based PM data such as tank-to-tank transfer differences (see Section 3) have a multi-modal 

distribution. Such non-Gaussian behavior complicates the pattern recognition task. In addition, with time 

series of combined PM and NMA residuals, either hybrid or pure data-driven testing will be used in the 

context of evaluating P(alarm|L, time period), where how the diversion occurs must also be specified. 
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