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Abstract: In a microgrid, the distributed generators (DG) can power the user loads directly. 

As a result, power quality (PQ) events are more likely to affect the users. This paper proposes 

a Multiresolution Generalized S-transform (MGST) approach to improve the ability of 

analyzing and monitoring the power quality in a microgrid. Firstly, the time-frequency 

distribution characteristics of different types of disturbances are analyzed. Based on the 

characteristics, the frequency domain is segmented into three frequency areas. After that,  

the width factor of the window function in the S-transform is set in different frequency areas. 

MGST has different time-frequency resolution in each frequency area to satisfy the 

recognition requirements of different disturbances in each frequency area. Then,  

a rule-based decision tree classifier is designed. In addition, particle swarm optimization 

(PSO) is applied to extract the applicable features. Finally, the proposed method is compared 

with some others. The simulation experiments show that the new approach has better 

accuracy and noise immunity. 

Keywords: power quality disturbances; S-transform; multiresolution; particle swarm 

optimization; decision tree 
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1. Introduction 

Recently, the fast growing microgrid technology provides a good solution to solve the problem of large 

scale distributed generator coupling. However, compared with the traditional grid, power quality in 

microgrids has become the subject of interest for utilities as well as energy producers or prosumers [1].  

In a traditional grid, power quality can be improved by centralized treatments in substations and it has 

little influence on the end users, but in microgrids, especially islanded ones, the distributed generators 

directly power the user loads. Furthermore, the capability of microgrids is relatively small and there exist 

high proportions of nonlinear and unbalanced loads, so microgrids are more likely to be troubled by PQ 

(power quality) events, such as harmonics, transient disturbances and so on [2]. These disturbances can 

lead to serious impacts on power equipment and users’ important production processes, which may 

cause economic damage [3], so monitoring and detailed analysis for power quality are necessary to 

manage power quality and monitor the status of the devices in microgrids. 

Power quality disturbance classification is a basis of analysis and control of power quality, which 

plays an important role in transient analysis and monitoring of power electronic devices. What’s more, 

through the analysis of PQ disturbances, a large amount of information can be mined to contribute to 

locating faults, detecting the operation state of systems and troubleshooting [4–6]. Along with electric 

power technology advances, the monitoring and the analysis of the power quality status will be developed 

gradually from generation and transmission system to distribution system. As a result, the accuracy and 

instantaneity of disturbance recognition is much more important now. Additionally, the research now 

focuses on complex power quality disturbances recognition instead of simplex disturbances [7]. 

The power quality disturbance classification procedure is always composed of two parts. The first 

part is signal processing and the second part is pattern recognition [4,5]. In an actual operating process, 

more than one type of disturbance may take place at the same time. That is what we call a complex 

disturbance. This results in a higher need for signal processing. Common approaches include short-time 

Fourier transform (STFT) [8], wavelet transform (WT) [8], S-transform (ST) [9], Generalized S-transform 

(GST) [10] and Hilbert-Huang Transform (HHT) [11]. WT is a well-developed signal processing method. 

However, its effect in practical application relies on the choice of base functions and decomposition 

scale. ST and GST, which are conditioned by the Heisenberg uncertainty principle, have nevertheless 

been widely used in power quality disturbance classification. When disposing complex disturbances, 

time resolution and frequency resolution can’t be satisfied at the same time. HHT has recently become a 

popular method because of its full self-adaptability. There exist many problems to solve in HHT, 

although some progresses have been reached in power quality disturbance classification. For example, 

end effects, mode mixing problem and bad real-time feature caused by large amount of computation. 

Pattern recognition techniques include Support Vector Machine (SVM) [12], Artificial Neural Network 

(ANN) [12], k-Nearest Neighbor (KNN) [13] and decision tree (DT) [14], etc. This article chooses DT to 

design the classifier. Compared with the other approaches, DT can be carried out more easily. 

Meanwhile, it also has high efficiency that can satisfy the demands of situations when real-time 

performance is highly needed, although it’s worth mentioning that DT’s classification effect depends on 

the feature selected. In the considered situation the classification ability of the feature is great.  

As a result, DT can be applied. This paper extracts six features from the original signal and  

S-matrix. In order to strengthen the classification ability of the features, particle swarm optimization 
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(PSO) is presented to optimize the parameter. PSO is a swarm intelligence method which originates 

from birds flock’s behavior when looking for food [15,16]. The problem discussed in this paper is a  

one-dimensional continuous optimization problem. Since the traditional methods, analysis methods and 

methods of exhaustion are not suitable here because the calculation process is complicated, PSO can 

effectively decrease the computation time, and achieve a solution with a high fitness value. 

2. Multiresolution Generalized S-Transform 

2.1. Generalized S-Transform 

Stockwell proposed the S-transform in 1996 [17]. As an extension to short-time Fourier transform 

and continuous wavelet transform, it can be expressed as follows: 

The input signal is ( )h t , which after the S-transform will become ( , )S f : 

2( , ) ( ) ( , ) i ftS f h t w t f e dt


 
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where ( , )w t f  is the Gaussian window function, and 
1

( )f
f

   is the width of window. 

The inverse S-transform can be obtained by utilizing the inverse Fourier transform, which is 

expressed as: 

   2( ) , i fth t S f d e df
 
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As shown above, considering a discrete signal, T  is the sampling interval, N  is the total number of 

sample points. As ,f n NT kT  , the discrete form of S-transform can be expressed as: 
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With Equation (1), we can see that the S-transform is different from STFT, as the height and the width of 

gauss window vary with changing frequency, thus it overcomes the defect that the window height and 

width of the short-time Fourier transform are constant. The S-transform result is a two-dimension 

matrix, which is defined as the S-matrix. The S modulus matrix can be obtained by modulus arithmetic, 

whose columns reflect amplitude frequency characteristics of the signal in some certain time, and rows 

describe time-domain distribution of the signal in the particular frequency. 

Different frequency components of the non-stationary signal with distortion will produce different 

time-frequency distribution characteristics, whereby the high frequency area of a signal changes 

dramatically, and the low frequency area has a relatively stable change [18]. It is necessary to adjust the 

window width of the Gaussian window according to the signal analysis requirement, that is, a wider time 

window in the high frequency area while are more narrow time window can be used in the low frequency 

area. The width of the S-transform window will be invariant after confirmation of the window function, 

thus its application is limited and some scholars have thus put forward a generalized S-transform [10], 
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with the width factor of window function  , that is, making 
1

( )f
f

 


. With the adjustment of the 

value  , the variation rate of width of window varies and the Gaussian window function is expressed 

as: 

2 2 2( , )
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t f
f

w t f e



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 (5) 

Then generalized S-transform is obtained as: 
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According to the Equation (8), the discrete form of the generalized S-transform is expressed as:
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where:  

 
2 2 2 22 /, m nG m n e    (8) 

G(m,n) is obtained from the Gaussian window function by FFT.   is a constant. When =1 we have a 

standard form of the S-transform, in other words, the S-transform is a special case of the generalized  

S-transform. In the generalized S-transform, the time (or frequency) resolution of the time-frequency 

spectrum can be improved by changing the value of  , whereby small values of   correspond to high 

frequency resolution and large values of   corresponds to high time resolution. Considering the 

contrariety between the time resolution and the frequency resolution, in the application of the 

generalized S-transform, we should choose an appropriate   value according to the actual situation. 

The existing methods to recognize PQ disturbance by using the generalized S-transform generally 

adjust whether the harmonic components exist. When analyzing the signal with harmonic components,  

a smaller   is chosen to obtain a higher frequency resolution. Otherwise, when analyzing the signal 

without harmonic components, a larger   is chosen to obtain a higher time resolution, but, when we 

utilize GST to analyze complex disturbances with harmonic components as well as fundamental 

frequency disturbances (such as harmonics with voltage sag, harmonics with voltage swell, etc.),  

the GST adopts a smaller   value. For sag or swell in the complex disturbance signals, GST performs 

poorly, which affects the classification accuracy. 

2.2. Multiresolution Generalized S-Transform 

General power quality disturbance signals include voltage sag, voltage swell, voltage interruption, 

flicker, impulse, notch, harmonics and oscillatory transients, etc. According to the time-frequency 

distribution characteristics of different disturbance signals by S-transform, voltage sag, voltage swell, 

voltage interruption and flicker are concentrated in the low frequency area, which can be analyzed by the 
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change of the fundamental frequency amplitude, utilizing higher time resolution. The energy of 

harmonic signals are distributed in the harmonic frequency area (generally considering odd harmonics 

under the 13th), which should adopt higher frequency resolution to overcome sidelobe effects.  

The disturbance energy of the transient oscillation is distributed in the frequency area higher than the 

harmonic frequency. An adaptively adjusted   is needed to avoid different kinds of influence including 

the high frequency energy of other types of disturbance signal and noise. The impulse and notch 

disturbances occur near the fundamental frequency as well as in the harmonic frequency area, which can 

be separated from other types by the features of the original signal. 

In order to improve the complex disturbance classification ability of the generalized S-transform,  

the paper proposes MGST. The GST modulus matrix is divided into three areas of low, middle and high 

frequency. According to the need of disturbance classification in different frequency areas, different   

values are used. The low frequency area ranges from 1 to 100 Hz, which is used to analyze disturbances 

including sag, swell, interruption, flicker, impulse and notch. The middle frequency area ranges from 101 

to 700 Hz, and is used to classify the harmonic components of the disturbance. The part above 700 Hz is 

the high frequency area, which is used to classify transient components. In order to meet the requirement 

of the complex disturbance analysis, we need to set different   values in different frequency areas.  

2.2.1. The Setting of the Width Factor   in the Low Frequency Area 

Because signals are processed with different width factors in different frequency areas, there is no 

need to consider the conflict between time and frequency resolution in different frequency areas.  

Thus the width of a low frequency window can be narrower than GST. Generally, the amplitude factor of 

fundamental frequency is used to describe the change of the fundamental [19]. Figure 1 compares the 

situations of different width factors acting on the amplitude factor of fundamental frequency between 

sag (black star) and notch (red dot). As shown in Figure 1, when the width factor is increased 

appropriately, the number of the cross samples declines significantly. Through statistical experiments, 

the width factor in low frequency area is set as LF 5  ( LF  represents   of low frequency). 

  

(a) (b) 

Figure 1. The width factor’s impact on the feature in the low frequency area: (a) λ = 1; (b) = 5 . 

2.2.2. The Setting of the Width Factor   in the Middle Frequency Area 

The window width in middle frequency area can be wider than GST so that the classification ability 

of the harmonic component can be improved to overcome the sidelobe effect. Using the same harmonic 
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disturbance signal, Figure 2 shows the maximum spectrum amplitude curves with different width 

factors. As shown in Figure 2, the 5th harmonic, which can’t be recognized by traditional ST, can be 

recognized when the width factor is reduced suitably. Through the statistical experiments, the width 

factor is selected as MF 1/ 3   ( MF  represents   of middle frequency). 

 

Figure 2. The width factor’s impact on the feature in the middle frequency area. 

2.2.3. The Setting of the Width Factor   in the High Frequency Area 

The setting of the width factor in the high frequency area aims to reflect the transient component 

feature. Interruption and sag distribute in the whole frequency range, whose energy changes 

dramatically near the edge of distortion, so they may be mistakenly identified as the signal containing a 

transient disturbance. At the same time, a signal with noise may be identified as the signal containing a 

transient component. However, the requirements in these two cases are different obviously. On the one 

hand, we should maintain the high frequency energy of the transient to distinguish between sag, 

interruption and the transient disturbances. In this case, MGST need a higher time resolution. On the 

other hand, higher frequency resolution is needed to suppress any noise. Therefore, for the width factor 

in the high frequency area, MGST gives an adaptive setting. Based on the analysis of the fundamental 

frequency through the Fourier spectrum ( FA ), we can judge whether the signal contains a fundamental 

frequency disturbance (sag or interruption). In this paper, when 0.997pu 1.003puFA   

( pu  represents per unit), we decide that there is no fundamental frequency disturbance and make 

HF 1/ 3   ( HF  represents   of high frequency); otherwise, there exists a fundamental frequency 

disturbance and HF 2  . In this way, by adaptively adjusting the width factor in the high frequency 

area we can meet different requirements of the window width in different situations. 

Figure 3 is the time-frequency contour in the high frequency area, when the same transient signal 

without disturbance in fundamental frequency is analyzed with different width factors. As is shown, 

when the window width increases appropriately, the anti-noise performance is improved significantly. 
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(a) (b) 

Figure 3. The width factor’s impact on the feature in the high frequency area: (a) =1 ; (b) =1/ 3 . 

The Figure 4 shows the flow chart for MGST. 

 

Figure 4. The flow chart for MGST. 

3. PQ Disturbance Classifier Based on Decision Tree 

DT recognizes different PQ disturbances by turning a complex classification problem into some 

binary classification problems. It can be carried out easily and has a high classification efficiency [14].  

As the disturbance samples concerned in this paper at each decision node can be differentiated by merely 

one feature, DT is undoubtedly the best choice. 
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As a matter of fact, the noise level in power system is not fixed. In [20,21], waveforms are 

generated through power system simulation which is significant. However, taking various circumstances 

into consideration, this paper analyzes the PQ disturbance signals simulated by MATLAB 7.0 software 

with SNR (signal to noise ratio) evenly distributed from 30 to 50 dB. The model references [13,22,23]. 

The models are given in Table 1. In real power systems, the frequency may change with the fluctuating 

active power. However, the frequency variation is generally restricted no more than 0.2 Hz (when the 

capacity is small, the value is 0.5 Hz). The S-transform in this paper divides the frequency domain by  

1 Hz so the method is reasonable. What’s more, the power quality disturbances researched in this paper 

usually refer to voltage disturbances occurring in a short time, so there is a negligible effect on the 

experiment especially after the S-transform method and the assumption is acceptable. The sampling rate 

is 3.2 kHz. This paper analyzes 13 kinds of disturbances. The types of disturbances and the 

corresponding class labels considered are denoted in Table 2. For each kind of disturbance 2000 samples 

are generated. Half of them are used to train the DT, the others are used to test the DT’s accuracy. 

Table 1. Equations and parameter variations for PQ signals. 

Disturbance Class Modeling Equations Equations’ Parameters 

Pure Signal    cosh t A t      
1 0

1 pu , 50Hz, =2 ;
0 0

t
A f f u t

t


     


 

Sag         2 11 cosh t A k u t u t t       
2 10.1 0.9; 0.5 9k T t t T      

Swell         2 11 cosh t A k u t u t t       
2 10.1 0.8; 0.5 9k T t t T      

Interruption         2 11 cosh t A k u t u t t       
2 10.9 1; 0.5 9k T t t T      

Flicker      1 cos cosh t A t t       0.1 0.2; 0.1 0.4   

Transient         1 1cos exp / cos nh t A t k t t t t               
0.1 0.8; 150 1/ 1000;

2 ;700Hz 1600Hzn n n

k

f f

    

    
 

Harmonics          3 5 7cos cos 3 cos 5 cos 7h t A t t t t         3 5 70.02 1, 0.02 1, 0.02 1       

Notch          2 1

0

cos sgn sin 0.02 0.02
k

i

h t A t t u t i u t i


                 
2 11 8; 0.1 0.4; 0.05 0.2k T t t T        

Impulse          2 1

0

cos sgn sin 0.02 0.02
k

i

h t A t t u t i u t i


                 
2 11 8; 0.1 0.4; 0.05 0.2k T t t T        

Table 2. Types of PQ disturbances. 

Type of PQ Disturbance Class Labels 

Sag D1 

Swell D2 

Interruption D3 

Flicker D4 

Transient D5 

Harmonic D6 

Notch D7 

Impulse D8 

Harmonic with Sag D9 

Harmonic with Swell D10 

Harmonic with Flicker D11 

Harmonic with Transient D12 

Sag with Transient D13 
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3.1. The Analysis of Disturbance Signal via MGST 

The time-frequency contour plots of different disturbance signals via MGST are shown in Figure 5.  

The first part of each disturbance shows the plots of the disturbance signal. The second part is the 

time-frequency contour that presents frequency values versus time values for the S-matrix. The third 

part, called fundamental frequency amplitude plot, presents amplitude of fundamental frequency versus 

time values. The fourth part, called frequency-mean amplitude plot, presents mean amplitudes versus 

normalized frequency values, and the values in these plots are obtained by calculating the mean value of 

each row of the S-matrix. The fifth part, called frequency-maximum amplitude plot, presents maximum 

amplitudes versus normalized frequency values, and the values in these plots are obtained by searching 

the maximum value of the rows of the S-matrix at every frequency. The sixth part, called 

frequency-standard deviation plot, shows standard deviations (Std) versus normalized frequency values,  

and the values in these plots are obtained by searching the rows of the S-matrix at every frequency.  

As far as simplex disturbances concerned, features of voltage sag, swell, interruption, flicker, notch and 

impulse are mainly in the low frequency area. The distortion characteristics of the fundamental 

frequency are different from the others. Harmonics are mainly in the middle frequency area. Transients 

are mainly in the high frequency area. Complex disturbances have different features in all three 

frequency areas. Considering the characteristics of MGST, features are extracted from different 

frequency areas to recognize disturbances, and in this way more targeted features can be acquired. 

 

(a) 

Figure 5. Cont. 
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(c) 

Figure 5. Cont. 
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(d) 

 

(e) 

Figure 5. Cont. 
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(g) 

Figure 5. Cont. 
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(h) 

 

(i) 

Figure 5. Cont. 
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(k) 

Figure 5. Cont. 
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(l) 

 

(m) 

Figure 5. The MGST analysis of 13 disturbances: (a) sag; (b) swell; (c) interruption; (d) flicker; 

(e) transient; (f) harmonic; (g) notch; (h) spike; (i) harmonic with sag; (j) harmonic with swell; 

(k) harmonic with flicker; (l) harmonic with transient; (m) sag with transient. 
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3.2. The Structure of DT 

The structure of DT classifier is shown in Figure 6.  

 

Figure 6. The structure of DT. 

As shown in Figure 6, the features at each decision node are as follows: 

Feature 1: The extent of energy falling in 1/4 cycle, we call it D. 

 

0

min R m
D

R

    (9) 

Thereinto,  R m  is root mean square (RMS) of original signal in 1/4 cycle, and 0R  is RMS of 

standard signal in 1/4 cycle: 

   
16

2

16 15

1
=

16

k m

k m

R m h k


 

  (10) 

Feature 2: The extent of energy rising in 1/4 cycle, we call it R: 

 

0

max R m
R

R

  
  (11) 

Features 1 and 2 are both selected from original signal, by which we can distinguish whether a sample 

signal’s energy increases or decreases. 

Feature 3: Standard deviation of amplitude of fundamental frequency, we call it Fstdσ : 

   

1/2
2

Fstd 0 0

1 1
σ

j j

S n j S n j
N N

   
   

   
 ， ，  (12) 

where 0n  represents fundamental frequency that in this paper equals 50 Hz. Feature 3 is used to judge 

whether there exists a disturbance component in fundamental frequency in a sample. 

Feature 4: Normalizing factor of amplitude of fundamental frequency, we call it 
fA ; 
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Max Min 1

2
f

A A
A

 
  (13) 

Thereinto, MaxA  is the max amplitude value of fundamental frequency, and MinA  is the min 

amplitude value of fundamental frequency. Feature 4 is used to judge whether the amplitude of 

fundamental frequency of sample signal is increasing, decreasing or stable. 

Feature 5: The max value of average amplitude of every frequency in middle frequency area, we call 

it AMmax; 

 H

Mmax = max
j

S n j

A
N

 
 
 
  

 ,

 (14) 

Hn  represent frequencies in middle frequency area. Feature 5 is used to judge whether there exists 

harmonic component in a sample signal. 

Feature 6: Modified energy of high frequency area, we call it HFE : 

 
1600 3200

2

HF Th

701 1

,
n j

E S n j
 

    (15) 

Feature 6 is used to judge whether there exists transient component in high frequency area in  

a sample signal. 

ThS  present elements that are larger than a certain threshold “ sT ” in the high frequency area. sT  is 

utilized to reduce the impact of noise, and in this paper we call it “cut-off threshold”. By setting the 

cut-off threshold “ sT ”, the noise resistant ability of classifier is improved without increasing the system 

complexity, however, it is difficult to determine a reasonable value. In next part, the paper proposes a 

modified PSO method to solve this problem. 

4. Feature Optimization via PSO 

4.1. Background 

In order to improve the noise resistance ability of the feature, this paper proposes a modified high 

frequency area energy as Feature 6 to judge whether there exists a transient component in the high 

frequency area in a sample signal. The main principle is that a cut-off threshold is presented to easily 

filter the noise in the high frequency area. It is proved that this method effectively improves the accuracy 

of recognition. Meanwhile, it can be carried out easily without influencing the reliability. 

Nevertheless, there is certain difficulty to determine the cut-off threshold. On one hand, choosing  

too large a value may give rise to excessive energy reduction in some slight transient samples that results 

in failure. On the other hand, too small a value can’t achieve the expected targets of resisting noise. 

What’s more, large amount of samples are needed to enumerate kinds of disturbance signals with 

different parameters. When a certain “ sT ” is selected, every sample in sample set should be processed by 

MGST. As a result, the amount of computations is very huge. Optimization problem about the cut-off 

threshold in this paper is a one-dimensional continuous optimization problem whose objective function 

can be expressed as s( )y f T . Thereinto, y represents false recognition rate that is a function depending 
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on independent variable “ sT ”. The function can be realized through programming. So the problem can 

be expressed as follows: 

s

s

min ( )

. .

f T

s t T S





 (16) 

S  is the value range of cut-off threshold “ sT ”. s( )y f T  can be achieved through programming 

basing on MGST and feature calculation. On account of the complex computation process,  

an untraditional computational intelligence technology must be chosen to solve the problem. 

4.2. The Search of Optimized Threshold via Modified PSO 

Particle swarm optimization (PSO) was proposed in 1995 by Kennedy and Eberhart [15,16]. It is a 

bionic algorithm which imitates birds flock’s looking for food. PSO shows a strong charm in various 

kinds of problems because of easy realization, less parameters and simple concept. The problem 

concerned in this paper can be solved effectively by PSO without wasting too much time. 

4.2.1. Basic Fundamentals of PSO 

The basic fundamentals of PSO can be described as follows: 

A swarm constituted by m particles is flown through the D-dimensional search space of the problem. 

Each particle is regarded as a unit without volume whose velocity is adjusted dynamically based on its 

own experience and its companions’ experience. On that basis, its position (that is, the value of cut-off 

threshold “ sT ”) changes. Thereinto, the position of the i th particle is expressed as 1 2( , , , )xi i i iDx x x  

and the velocity of the i th particle is expressed as 1 2( , , , )vi i i iDv v v ,1 i m  . The best position of 

the i th particle so far is represented as 1 2( , , , )pi i i iDp p p , also known as bestp . The best particle 

among all bestp  is represented as 
1 2( , , , )pg g g gDp p p , also known as bestg . The fitness function is 

used to evaluate if a certain position is better and in this paper the fitness function is s( )y f T  in which 

y represents false recognition rate. 

In the k th iteration, the position and velocity in the d th dimension (1 d D  ) of the particles are 

updated according to the formulas as follows: 

1 1 1

1 1 2 2( ) ( )k k k k

id id id id gd idv wv c rand p x c rand p x        (17) 

max max

max max

=

k

k id

id k

id

v v v
v

v v v

 

  

 (18) 

1k k k

id id idx x v   (19) 

The parameter w  represents inertia weight, whose value is always set to 1 in the basic PSO.  

The parameters 1c  and 2c  represent acceleration coefficient. In the basic PSO, it’s often the case that 

1c  and 2c  are all equal to 2. In the formula, 1rand  and 2rand  are two pseudo-random numbers 

between 0 and 1. The velocity of particles are limited to maxv . After several iterations, the value of  

“ sT ” is refreshed again and again with the moving of the particles. Along with the changing of “ sT ”,  

the false recognition rate is reduced at the same time. 
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4.2.2. The Improvement of PSO 

The above-mentioned PSO is a basic PSO. Many scholars have done a lot of work on different parts 

of PSO that include population size [24], inertia weight [25], neighborhood topology [26] acceleration 

coefficient [27,28] and so on. According to the real conditions in this paper, we make improvements of 

PSO as follows: 

Improvement of the inertia weight w  

Inertia weight is a very important parameter in PSO that directly affects the balance of global and 

local searching ability. A large inertia weight promotes global searching ability while a small inertia 

weight promotes local searching ability. 

According to the requirements of the problem concerned in this paper, the authors designed a fuzzy 

control system to adaptively adjust the inertia weight. The best fitness value at present, known as  ˆf y , 

and the inertia weight at present are selected as inputs. The percentage change of the inertia weight is 

selected as output. Because different problems have different ranges of fitness value, Equation (20) is 

presented to normalize  ˆf y : 

 
  min

norm

max min

ˆ
ˆ

f y f
f y

f f





 (20) 

In Equation (20), maxf  and minf  are decided by the specific problem. It is necessary to confirm or 

estimate their values. Three membership functions (left, middle and right) are presented as  

Equations (21)–(23) to provide the inputs corresponding to the three fuzzy sets: LOW, MEDIUM and 

HIGH where a  and b  are parameters determined by the practical problems. The curves of the 

membership functions are shown in Figure 7: 

left
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1 1
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2 2 2
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a b
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x b
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Figure 7. The curves of three membership functions. 

In this way, the inertia weight is adjusted adaptively on the basis of the current situation during each 

iteration. The adjusting strategy is shown in Table 3 below. 

Table 3. The adjusting strategy of inertia weight. 

Inputs & 

Output 

Inputs Fuzzy Sets Output Fuzzy Set 

Best Fitness Value at Present Inertia Weight at Present Percentage Change of the Inertia Weight 

RULE1 LOW LOW MEDIUM 

RULE2 LOW MEDIUM LOW 

RULE3 LOW HIGH LOW 

RULE4 MEDIUM LOW HIGH 

RULE5 MEDIUM MEDIUM MEDIUM 

RULE6 MEDIUM HIGH LOW 

RULE7 HIGH LOW HIGH 

RULE8 HIGH MEDIUM MEDIUM 

RULE9 HIGH HIGH LOW 

Take RULE1 as an example. It expresses that percentage change of the inertia weight should be 

attached to the MEDIUM fuzzy set (that is, there is no need to change it too much) if the best fitness 

value and inertia weight at present relatively belong to the LOW fuzzy set. In engineering, there is 

always too much noise in PQ disturbance signals. Through this method, the local best solution caused by 

noise is avoided by adjusting the inertia weight. The anti-noise effects and robust performance are 

enhanced and that is good for improving accuracy. 

Improvement of the acceleration coefficient 

The acceleration coefficients 1c  and 2c  reflect the communication between the particles. A large 1c  

leads to the particles relying on their own experience. As a result, the particles hover in the area near 

themselves. However, a large 2c  leads to all particles rapidly moving towards the best unit at present.  

In this case, the particles may converge on local best solution at the beginning of the algorithm.  

To balance the contradiction, 1c  and 2c  are usually set to be the same value. Nevertheless, this can’t 

satisfy the actual needs sometimes. For the purpose of having a larger 1c  and smaller 2c  at the 

beginning of the algorithm, decreasing 1c  and increasing 2c , adjustment as follows is utilized: 
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1 1 1 1
_ max

f i i

I
c c c c

I
 （ - ）  (24) 

2 2 2 2
_ max

f i i

I
c c c c

I
 （ - ）  (25) 

Hence, at the beginning of the algorithm, the particles tend to search for a better sT  in the whole 

search space. At the end of the algorithm, the particles tend to move towards the best unit of the swarm. 

By this means, computation time is reduced, but no solutions would be left out. 

In the formula, 1ic  and 
1 fc  are the initial and final value of 1c . Analogously, 2ic  and 

2 fc  are 

similar to 1ic  and 
1 fc . I  is the current iteration time and _ maxI  is the maximum number of 

iteration. In [27], they change symmetrically, that is 1c  decreases linearly from 2.5 to 0.5 and 2c  

increases linearly from 0.5 to 2.5. This method behaves well concerning single hump functions but not 

ideally concerning multi-peak functions, and it may lead to premature convergence. To solve the 

problem, [28] proposes asymmetric changing. It’s found that when 1c  decreases linearly from 2.75 to 

1.25 and 2c  increases linearly from 0.5 to 2.25, most of the functions can be solved well, so this paper 

selects this method to adjust the acceleration coefficient. 

In this paper, the false recognition rate of different cut-off thresholds sT  is chosen as the fitness 

function. The simulation disturbances are generated by MATLAB and then white Gaussian noise is 

added to make the SNR distribute from 30 to 50 dB. When a certain cut-off threshold sT  is input,  

the values of the features are calculated by MGST, so the false recognition rate corresponding to the 

certain sT  is acquired. The fitness function is realized through programming on the basis of the 

abovementioned way and then the modified PSO is utilized to optimize the cut-off threshold sT .  

After multiple tests, 0.0192 is taken for the optimal sT . 

5. Simulation and Experiment 

The simulation signals of different SNR are generated to test the new method. There are 1000 signals 

in each group whose SNR are 30~50 dB, 30 dB, 40 dB and 50 dB. Decision trees based on ST [9] and 

GST [10] are also made for comparison with MGST. The result for 30~50 dB is shown in Table 4 and 

the results of 30 dB, 40 dB and 50 dB are shown in Figure 8. 

Table 4. Accuracy in percentage using different techniques in 30 to 50 dB. 

SNR = 30–50 dB 

Disturbances MGST GST ST 

D1 99.7 99.3 98.5 

D2 99.6 98.9 98.0 

D3 99.5 99.5 99.5 

D4 100 99.7 99.7 

D5 100 100 100 

D6 100 100 93.3 

D7 99.4 97.0 97.0 

D8 99.7 96.6 96.6 



Energies 2015, 8 570 

 

 

Table 4. Cont. 

SNR = 30–50 dB 

Disturbances MGST GST ST 

D9 100 98.8 99.8 

D10 100 98.7 99.6 

D11 100 45.5 96.5 

D12 94.7 93.9 98 

D13 86.4 84.9 73.4 

%Average accuracy 98.38 93.29 96.15 

As shown in Table 4 and Figure 8, MGST does better than ST and GST when recognizing all kinds of 

disturbances in different noise levels. What’s more, consistent with the theory, complex disturbances are 

recognized much better by MGST. 

  

(a) (b) 

 

(c) 

Figure 8. Comparison of classification accuracy. (a) 30 dB; (b) 40 dB; (c) 50 dB. 

6. Conclusions 

(1) The width factor of the window function in the S-transform is set respectively in different 

frequency areas, which improves MGST’s ability to recognize complex disturbances. 

(2) Features are extracted in different frequency areas so as to avoid the disturbances caused by 

components of different frequency areas. Moreover, the amount of calculation is reduced. 

(3) A cut-off threshold Ts is proposed and optimized by modified PSO, which further improves the 

anti-noise performance. 

(4) Simulation experiments show its effectiveness and practicability. 
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Future works will focus on further optimizing the width factor of the window function in different 

frequency areas and reducing the computational burden of MGST. 
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