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Abstract: Dynamic behaviors in practical driveline systems for wind turbines or vehicles 

are inherently affected by multiple nonlinearities such as piecewise-type torsional springs. 

However, various excitation conditions with different levels of magnitudes also show 

strong relationships to the dynamic behaviors when system responses are examined in both 

frequency and time domains. This study investigated the nonlinear responses of torsional 

systems under various excitations by using the harmonic balance method and numerical 

analysis. In order to understand the effect of piecewise-type nonlinearities on vibrational 

energy with different excitations, the nonlinear responses were investigated with various 

comparisons. First, two different jumping phenomena with frequency up- and down-sweeping 

conditions were determined under severe excitation levels. Second, practical system 

analysis using the phase plane and Poincaré map was conducted in various ways. When the 

system responses were composed of quasi-periodic components, Poincaré map analysis 

clearly revealed the nonlinear dynamic characteristics and thus it is suggested to 

investigate complicated nonlinear dynamic responses in practical driveline systems. 

Keywords: harmonic balance method; multi-staged clutch damper; hysteresis; Poincaré map; 

quasi-periodic; piecewise-type nonlinearity; firing frequency 
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1. Introduction 

Practical driveline components in various mechanical systems such as wind turbines and vehicles 

inherently contain various nonlinearities, such as multi-staged clutch dampers, gear backlashes, and 

drag torques [1–3]. Unloaded gears of typical gearboxes, excited by the dynamic torque from the 

engine fluctuation with even small mean loads, induce vibro-impacts due to gear backlash and  

multi-staged clutch damper. This phenomenon is associated with the NVH performance (vibration and 

noise) of the target system and is highly nonlinear behavior, and difficult to analyze. In order to 

investigate nonlinear dynamic responses in a simple mechanical system, many studies have been 

conducted using the harmonic balance method (HBM) [4–12]. For example, Peng et al. [4] suggested 

nonlinear output frequency response functions using the Duffing oscillator to simulate strong nonlinear 

equations. Al-shyyab and Kahraman [5] investigated sub-harmonics and chaotic motions in a  

multi-mesh gear train using a nonlinear time-varying dynamic model. Chen et al. [6] used the incremental 

harmonic balance (IHB) method to investigate the limit cycle oscillation of a two-dimensional airfoil 

with parameter variability in an incompressible flow. Genesio and Tesi [7] presented two practical 

methods to predict the existence and the location of chaotic motions. Masiani et al. [8] examined the 

system responses under a hysteretic restoring force by employing two degree-of-freedom (DOF) chain 

systems given sinusoidal input. Raghothama and Narayanan [9] used the incremental harmonic balance 

method to obtain the periodic motions of a 3DOF nonlinear model of a geared rotor system subjected to 

parametric excitation under sinusoidal excitation. Raghothama and Narayanan [10] investigated the 

bifurcation of an articulated loading platform given harmonic excitation. Shen et al. [11] studied the 

dynamic behaviors of a spur gear pair by employing the incremental harmonic balance method.  

Wong et al. [12] presented the nonlinearities in the restoring force by employing the incremental 

harmonic balance method. 

Prior research has mostly focused on the component levels or local areas as a part of integrated 

systems. Thus, this study investigated the nonlinear effects under various excitation conditions at the 

combined physical system level. The macro-system such as driveline in the wind turbine is much 

related to durability problems under the dynamic conditions. In order to expect the failure of the 

dynamic conditions, the transmission errors including various types of gear nonlinearities should be 

considered. Regarding this issue, theoretical background and simulation models can be directly connected 

to each other. In order to examine the nonlinear dynamic behaviors, a three DOF system model 

reduced from the original system shown in Figure 1 will be used [1–3]. Piecewise-type nonlinearities 

such as multi-staged clutch dampers will be employed to simulate the nonlinear dynamic behaviors in 

terms of relative motions in a simple driveline system model. The large body of literature for 

piecewise-type nonlinearities and other problems can be reviewed [13–23]. 

This study considers the asymmetrical piecewise-type nonlinearities based on the combined level of 

a driveline system [1–3,24]. The main objectives of this study are: (1) investigate the trends of 

nonlinear dynamic responses under various engine excitation conditions, which will lead to understanding 

of the relationship of nonlinear dynamic behaviors with different excitation levels by advancing prior 

studies [1–3,16,24]. (2) Poincaré map models for practical systems are suggested. Nonlinear responses 

with different excitation conditions were clearly observed with multiple comparisons. (3) quasi-periodic 

responses in the unstable response regimes in a practical system will be examined using HBM and 
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numerical simulation (NS). Particularly, the nonlinear dynamic characteristics in the phase planes and 

Poincaré maps will be clearly determined by comparing the stable ranges with the unstable ones in the 

frequency domain. No efforts have been devoted to the simulation of nonlinear vibrational energy 

effects with practical parameter values obtained from experiments. In addition, no prior studies have 

systematically investigated the dynamic responses of the driveline system with respect to various types 

and levels of excitation conditions, and compared the results using HBM and numerical simulation. 

The simplest model is developed, with only necessary elements for describing the vibrational behavior 

remaining, while practical systems are very complicated, and it is utilized for expressing nonlinear 

characteristics and for performing parametric studies. 

2. Problem Formulation 

Figure 1 describes a practical system and its schematic diagram with 3DOF. The system is based on 

the front-engine and front-wheel type driveline system, which consists of an engine, clutch hub, 

engaged (or unloaded) gear, differential, drive shaft, and front wheel. These sub-systems can be 

modeled simply with a lumped nonlinear model, as shown in Figure 1b. The method of reducing the 

original system into a reduced-DOF system has been investigated in prior studies [1–3]. The symbols 

and their property values are as follows: If (=1.38 × 10−1 kg·m2) is the inertia of the flywheel,  

which is lumped from the crank shaft and physical flywheel; Iie (=1.58 × 10−2 kg·m2) is the inertia of 

the transmission, which is lumped from the input, output shafts, speed gears, and differential;  

Ive (=8.08 × 10−2 kg·m2) is the inertia of the wheels and tires; kv (=3.95 × 102 N·m/rad) is the stiffness 

of the drive shaft; ci is the damping of the input shaft; cv is the damping of the wheel; TDi is the drag 

torque of the transmission; and TDv is the drag torque of the wheels. The employed drag torques vary 

with the different engine operating conditions, which will be explained later. In addition, ci and cv are 

assumed from the modal damping ratio of 1% [1–3,24]. 

Based on the schematic diagram shown in Figure 1b, the basic equations of motion are derived  

as follows: 

         ,     
n EMθ t Cθ t Kθ θ θt f T t  (1a) 

, ,f ie vediag I I I   M  (1b) 
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Here, the motion vector   T

f i v     θ t  and f , i , and v  are the displacements of the 

flywheel, transmission, and wheel, respectively.  ,n 1Pr 1Prf    is defined as a nonlinear function 

affected by multi-staged clutch dampers, which will be explained later. To investigate the nonlinear 
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dynamic behaviors under various excitation conditions, the 3DOF torsional system in Figure 1 is 

assumed to be reduced under conditions with 3rd gear engaged and 5th gear unloaded [1–3]. The system 

responses will be examined under steady-state conditions using one-term harmonic torque profiles. 

 
(a) 

 
(b) 

Figure 1. A practical driveline with a front-engine and front-wheel layout and a three  

degree-of-freedom (3DOF) nonlinear torsional system model with multi-staged clutch 

dampers: (a) physical driveline; and (b) schematic diagram with piecewise-type nonlinearities. 

3. Nonlinear Analysis with Harmonic Balance Method and Piecewise-Type Nonlinearities 

3.1. Harmonic Balance Method with Multi-Staged Clutch Dampers 

In a prior study [24], the time responses for the ith sub-system  i t  were expanded based upon the 

Galerkin scheme as follows [24,25–29]: 

  i ict H   (2a) 
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Here, t  . From the relationships   d d
t
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    and   2t    , the derivative of 

Equation (2d) is expressed as follows: 
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From Equations (1)–(3) with a multi-degree-of-freedom (MDOF) system model, the Galerkin 

scheme of the governing equations is expressed by the residual formulation as follows [14,24,25–29]: 
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The subscript t is used for the overall matrix of the MDOF system constructed by the matrix at the ith 

sub-system, and nI is an identity matrix. The nonlinear function  , nf θ θ  and the input torque  ET t  at 

the ith sub-system can be expressed with the following equations in the same formulation as Equation (2): 
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From Equation (5), the overall  , nf θ θ  and  ET t  are as follows: 

 , n t tcf θ θ H f ,   E t tcT t H T  (6a,b)
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Using Equations (5) and (6), Equation (4) can be expressed as follows: 
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The Jacobian matrix tcJ  can be derived from Ψ  as follows: 
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From Equations (10) and (11), 
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Here, 
tH  is a pseudoinverse matrix [14,24]. In addition, consider Ψ  as a function of ω. The 

Jacobian matrix ωJ  is obtained by parameterizing the frequency ω on the basis of the arc-length 

continuation technique [14,24–29]. 
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    tc ωJ J J , 


 
  
 

tc
a

θ
θ  (14a,b)



Energies 2015, 8 10868 

 

 

The Newton–Raphson method is employed by manipulating the following relationship: 

       kk 1 k ,     
+

a a tcθ θ J Ψ θ ,   1 TTJ J J J
     

 (15a,b)

Here, the nonlinear function affected by multi-staged clutch dampers is defined as follows [1–3,24]: 

       , , ,,n 1Pr 1Pr S 1Pr H 1Pr 1Pr Pr 1Pr 1Pr 1 P f i1rf T T T                    (16a,b)

           
N

S 1Pr C1 1Pr C i C i 1 sp i 1 sn i 1
i 2

1
T k k k D D

2
    


     (17a)

        1Pr C 1Prsp i p i p iD tanh 1          
 (17b)

        1Pr C 1Prsn i n i n iD tanh 1          
 (17c)

         
   ,

N
N i i 1

H 1Pr 1Pr H 1Pr Hp i 1 Hn i 1
i 2

H H H
T tanh D D

2 4 4
    

 


 
        

 
   (18a)

       C 1Pr H 1PrHp i p iD tanh 1 tanh        
  (18b)

       C 1Pr H 1PrHn i n iD tanh 1 tanh        
  (18c)

     Pr 1Pr Pr1 C 1Pr Pr2 C 1Pr
1 1

T T tanh 1 T tanh 1
2 2

                (19)

The nonlinear function  ,n 1Pr 1Prf    is composed of three clutch torques  S 1PrT  ,  ,H 1Pr 1PrT   , 

and  Pr 1PrT  , which are induced by the piecewise-linear stiffness with asymmetric transition angles, the 

hysteresis, and the preload, respectively. To overcome the convergence problems, smoothening factors C  

for the stiffness and H  for the hysteresis are used with the values of 100 and 0.1, respectively [2].  

In addition, TPr1 and TPr2 are the positive and negative torques induced by the preload, respectively, 
and Pr  is the angle where the preload is applied. In order to describe the smoothening change of 1Pr , 

hyperbolic tangent functions are used in Equations (17)–(19). KC(i) and H(i) indicate the clutch stiffness 

and the hysteresis at the ith clutch stage, Dsp(i) and Dsn(i) are the relative angular displacement on the 

positive and negative sides at the ith stage, DHp(i) and DHn(i) are the switching function at positive and 
negative angular displacements at the ith stage, and  p i  and −  n i  are the ith transition angle on the 

positive and negative sides, respectively [1–3,24]. 

Table 1 describes the values employed for the multi-staged clutch dampers [1–3,24], and Figure 2 

illustrates the dynamic characteristics of clutch torques along with the relative displacement between 

the flywheel and clutch transmission in terms of a nonlinear function  ,n 1Pr 1Prf   . The input torques 

are calculated by the Fourier components measured from the engine dynamometer test under the wide 
open throttle (WOT) condition. Thus, the input torque  ET t  with maximum harmonic terms Nmax is 

calculated using Tm and the alternating part of the engine torque Tpi as follows: 
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   
maxN

E m pi p pi
i 1

T t T T cos i t 


    (20)

The torque profiles employed under various excitation conditions are listed in Table 2. The drag 

torques are estimated by assuming that the summation of drag torques TDi and TDv are equal to the 

mean torque value Tm. The calculation of drag torques along with the various operating conditions was 

presented in prior studies [1,2]. In the present study, the properties for the drag torques listed in  

Table 3 are used for each excitation condition. 

Table 1. Properties of the practical multi-staged clutch dampers. 

Property Stage Value 

Torsional stiffness, kC (linearized in a piecewise manner) 
(N·m/rad) 

1 10.1 

2 61.8 

3 595.8 

4 1838.0 

Hysteresis, Hi (N·m) 

1 0.98 

2 1.96 

3 19.6 

4 26.5 

Transition angle at positive side (δi > 0), pi  (rad) 

1 0.05 

2 0.16 

3 0.30 

4 0.39 

Transition angle at negative side (δi < 0), ni  (rad) 

1 −0.04 

2 −0.05 

3 −0.09 

4 −0.15 

Table 2. List of the input torque profiles under various excitation conditions. 

Torque Component Case I Case II Case III 

Magnitude (N·m) 
TM 160.8 192.3 195.9 
Tp1 357.6 589.6 1378.6 

Phase (rad) p1
 −1.86 −1.71 −1.64 

Table 3. List of the drag torque profiles under various excitation conditions. 

Torque Component Case I Case II Case III 

TDi (N·m) 14.9 46.5 50.1 
TDv (N·m) 145.8 145.8 145.8 
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Figure 2. Clutch torque profile of multi-staged clutch dampers with the nonlinear  
function  ,n 1Pr 1Prf   . 

3.2. Examination of System Responses of Severe Excitation Condition 

Figures 3–5 show the simulation results obtained using the HBM compared with those of the linear 

analysis. In order to investigate the nonlinear dynamic characteristics in the practical system of Figure 1, 

the input conditions described in Table 2 are employed with Case III. 

As shown in Figure 3, the root-mean-square (RMS) values of the relative displacement in the 
frequency domain deviate from the resonance regime of the linear analysis.  1 t  is the relative 

displacement between the flywheel and transmission, and  2 t  is that between the transmission and 

the wheel. In addition, the RMS values  1 rms  and  2 rms  are calculated using Equation (21a) and 

Equation (21b), respectively. 

        2 2 2
1 0 1 1 1 m 11 rms

1
t t t

m
         (21a)

        2 2 2
2 0 2 1 2 m 12 rms

1
t t t

m
         (21b)

The unstable regimes are found around the normalized frequency values of 0.7, 0.9, and 1.3.  

The stability analysis is determined by Hill’s method [14,24,30]. When the dynamic responses are 

examined at these unstable zones, jumping phenomena are clearly observed, especially in Figure 3b. Thus, 

the practical driveline system shows two different areas of jumping phenomena while the system is excited 

under frequency up- or down-sweeping conditions, which will be explained in more detail later. 
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(a) (b) 

Figure 3. Comparison of root-mean-square (RMS) values of relative displacement between 
nonlinear and linear analysis: (a) RMS values of  1 t  and (b) RMS values of  2 t . 

Key: ━━, linear analysis; , harmonic balance method (HBM) (stable solution);  

, HBM (unstable solution). 

The nonlinear dynamic characteristics can also be examined by comparing the linear analysis in the 

Poincaré maps, as shown in Figures 4 and 5. The Poincaré map is determined based on the HBM by 
assuming that the levels of  ,1 it  and  ,2 it   are perfectly the same as those of  ,1 it nT   

and  ,2 it nT  , respectively. The subscript i indicates the series of discretized time data from 0 to 

m-1, as described in Equation (2b). n and T are the number of cycles and the period, respectively, 

under varying excitation frequency ω. 

 
(a) 

 
(b) 

Figure 4. Comparison of Poincaré maps between nonlinear and linear models: (a) Poincaré 
map of  ,1 it nT   vs.  ,1 it nT   in the frequency domain; and (b) Poincaré map of 

 ,2 it nT   vs.  ,2 it nT   in the frequency domain. Key: ━━, linear analysis;  

, HBM (stable solution); , HBM (unstable solution). 
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Figures 4 and 5 are determined with the value i = 1 under the frequency sweeping conditions. 

When the nonlinear and linear analyses are compared as shown in Figure 4, the nonlinear 

responses show abrupt changes of the relative motions including unstable zones. However, it is 

difficult to observe any jumping phenomena or unstable regimes in the linear analysis. The scale of 

the system responses in the nonlinear analysis is smaller than that in the linear analysis. This is 
also clearly observed in Figure 5 with only the relationships of  ,1 it nT   or  ,2 it nT   vs. 

 ,1 it nT   or  ,2 it nT  . The comparison shown in Figure 5 reveals that the range of the 

nonlinear dynamic behaviors is reduced in all the frequency ranges. The directions of the stable 
and unstable conditions are also predicted for  1 t  and  2 t , which makes it possible to 

anticipate the range of the practical system responses. 

 
(a) 

 
(b) 

Figure 5. Comparison of Poincaré maps between nonlinear and linear models: (a) Poincaré 
map of  ,1 it nT   vs.  ,1 it nT   along with the excitation frequency; and  

(b) Poincaré map of  ,2 it nT   vs.  ,2 it nT   along with the excitation frequency. 

Key: ━━, linear analysis; , HBM (stable solution); , HBM (unstable solution). 

Regarding the nonlinear dynamic responses observed in the Poincaré map shown in Figures 5 and 6,  

the jumping phenomena at the unstable regimes can also clearly be found in the frequency domain, 

as shown in Figures 6 and 7. When Figure 6 is examined with respect to the relative displacement 

 1 t , the back bone curve bends into the left side first, and then it turns over to the right side. 

Thus, it has two jumping areas that are dependent on the frequency sweeping directions. The 

jumping locations marked by the dotted lines in Figure 6a are shown in more detail in Figure 6b, 

where the arrows marked by the solid lines indicate the frequency up-sweeping track. The dotted 

arrows illustrate the dynamic behaviors under down-sweeping frequency. Figure 7 shows the same 
dynamic behaviors for the relative displacement  2 t  as those of  1 t . The comparison of both 

the HBM and numerical simulation (NS) results are well correlated, as shown in Figures 6 and 7. 
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(a) (b) 

Figure 6. Comparison of HBM (Nmax = 12 and ρ = 1) with NS in the frequency domain:  
(a) comparison of max, mean, and min values of  1 t ; (b) illustration of jumping 

phenomena under the frequency up- and down-sweeping conditions. Key: ━━, HBM;  

, NS by frequency up-sweeping; , NS by frequency down-sweeping; →, flow of 

numerical solution under frequency up-sweeping; ·······›, flow of numerical solution under 

frequency down-sweeping. 

 
(a) (b) 

Figure 7. Comparison of HBM (Nmax = 12 and ρ = 1) with NS in the frequency domain:  
(a) comparison of max, mean, and min values of  2 t ; and (b) illustration of jumping 

phenomena under the frequency up- and down-sweeping conditions. Key: ━━, HBM;  

, NS by frequency up-sweeping; , NS by frequency down-sweeping. 
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4. Nonlinear Dynamic Responses along with Various Excitation Conditions 

4.1. Nonlinear Dynamic Characteristics with Various Excitation Conditions 

In a prior study, in general, nonlinear dynamic responses show diverse characteristics with various 

excitation conditions [16]. For example, it might have left or right simply bent shapes of the frequency 

responses with one jumping range, or it might include more than two jumping phenomena,  

as investigated in Section 3. Figures 8–10 compare the nonlinear dynamic behaviors with various input 

conditions. The torque profiles employed are listed in Tables 2 and 3. Table 2 describes three engine 

torque profiles under different engine operating conditions. For example, Case I is the measured 

engine torque data under the WOT condition at 1500 RPM. Since the Inline 4 (I4) cylinder type engine 

is employed, the firing frequency is 50 Hz. The engine torque data for Cases II and III are also 

measured at 3000 and 6000 RPM under the WOT condition. In order to measure the practical engine 

torque profile, an engine dynamometer test can be conducted [1–3]. In addition, various drag torques 

are employed instead of constant ones, since the drag torque for the input shaft TDi changes with the 

operating speed of the input shaft, as listed in Table 3. The drag torque was calculated as suggested by 

prior studies [1–3]. 

Figure 8 compares the maximum, mean, and minimum values of time histories along with 

frequency values under the various excitation conditions. Thus, as the engine excitation conditions 

become severe, the shape of the nonlinear frequency response becomes complicated. For example, 
the nonlinear responses for both  1 t  and  2 t  with Case I are bent to the left side, as indicated by 

the dotted line in Figure 8. This means that the backbone curve simply bends over to the left side, 

while the maxima of the resonances are increased. However, the backbone curves with Cases II and III 

follow similar paths to Case I first, and then they change direction to the right side, which increases the 

regimes of jumping phenomena twice, as described in Section 3. Thus, this simulation results reveal 

that the nonlinear dynamic responses have similar characteristics to the results in a prior study [16]. 

This leads to understanding of the dynamic characteristics of sub-systems affected by the excitation 

input levels and the local forces. 

The dynamic behaviors of the sub-system in terms of the relative motions can be examined by using 

Poincaré maps as well, which are shown in Figures 9 and 10. These Poincaré maps are simulated by 

the same method and event described in Section 3. The track of the simulation result for Case I 

illustrated by a dotted line in Figure 9 shows a simply bent shape. However, those for Cases II and III 

follow more complicated tracks, as clearly shown in Figure 9. The scale of dynamic responses with 

Cases II and III are also broader than the one for Case I as the excitation levels are increased. This is 

shown clearly in Figure 10 as well. Thus, using the Poincaré map gives useful information with respect 

to the dynamic characteristics of sub-systems in terms of relative motions. 
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(a) (b) 

Figure 8. Comparison of the HBM (Nmax = 12 and ρ = 1) results along with different 

excitation conditions in the frequency domain: (a) comparison of max, mean, and min 
values of  1 t ; and (b) comparison of max, mean, and min values of  2 t . Key: ·········,  

Case I; ─ · ─, Case II; ━━, Case III. 

 
(a) 

 
(b) 

Figure 9. Comparison of Poincaré maps along with different excitation conditions:  
(a) Poincaré map of  ,1 it nT   vs.  ,1 it nT   in the frequency domain; and  

(b) Poincaré map of  ,2 it nT   vs.  ,2 it nT   in the frequency domain.  

Key: ·········, Case I; -------, Case II; ━━, Case III. 
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(a) 

 
(b) 

Figure 10. Comparison of Poincaré maps under different excitation conditions: (a) Poincaré 
map of  ,1 it nT   vs.  ,1 it nT   in the frequency domain; amd (b) Poincaré map of 

 ,2 it nT   vs.  ,2 it nT   in the frequency domain. Key: ·········, Case I; -------,  

Case II; ━━, Case III. 

First, the tracks of dynamic behaviors can be found clearly including the range of dynamic motions 

simultaneously. Second, the ranges of dynamic motions can be analyzed effectively as shown in Figure 10. 

In addition, the practical response areas corresponding to the stable regimes can be predicted as shown 

in Figure 5, since these results are based on the HBM including Hill’s method [14,24,30]. 

4.2. Investigation of Quasi-Periodic Responses Using Poincaré Map 

Figures 11 and 12 compare the HBM and NS by focusing on the unstable regime, which includes 

the quasi-periodic responses. When the nonlinear responses of the HBM are compared with those by 

NS, it is hard to expect quasi-periodic responses using only the HBM, since the matrix of harmonic 

terms is constructed on an integer basis [24]. However, the stability analysis using the HBM still gives 

information indicating that it is unstable, with the dynamic behaviors composed of random or  

quasi-periodic components. Thus, these unstable components or time responses need to be examined 

simultaneously based on the NS, as shown in Figures 11 and 12. Figure 11 shows the comparison of 

the HBM with NS. In the unstable regime, both HBM and NS show differences, with the HBM not 

being able to anticipate all of the quasi-periodic components. The effect from the quasi-periodic 

components is clearly shown in the time histories in Figure 12. Figure 12a shows good correlations 

between HBM and NS. However, the time histories in the unstable regime in Figure 12b show 

differences between HBM and NS. In addition, quasi-periodic responses are found in the NS result. 
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(a) (b) 

Figure 11. Comparison of results from HBM (Nmax = 12 and ρ = 1) and NS at the unstable 
regime: (a) max, mean, and min values of  1 t  from HBM results; and (b) comparison of 

HBM and NS under the unstable regime. Key: ━━, HBM; , HBM with stable  

regime (or NS by frequency up-sweeping); , HBM with unstable regime (or NS by  

frequency down-sweeping). 

 
(a) 

 
(b) 

Figure 12. Time histories by HBM (Nmax = 12 and ρ = 1) and NS at different excitation 

conditions: (a) time histories at   = 1.25; and (b) time histories at   = 1.35.  

Key: , HBM; ━━, NS. 
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Figures 13 and 14 suggest another way to investigate the nonlinear dynamic behaviors for the 

unstable responses. These results are based on the NS. Figure 13 compares the phase planes for the 
stable and unstable regimes with the relationship of  1 t  vs.  1 t  (or  2 t  and  2 t ). As shown in 

Figure 13a,b, the tracks of the phase plane are within a limited boundary. Thus, the system responses 

are predictable as long as the excitation frequency levels are fixed. However, the tracks of the system 

responses in the phase plane become broader and hard to anticipate, as shown in Figure 13c,d.  

In general, the quasi-periodic responses contain many harmonic components and need more than two 

times the period in order to determine all the effective harmonic components. In addition, there are 

different components for each period, which makes the tracks of the phase plane for the unstable case 

denser and more unpredictable than those for the stable case. 

 
(a) (b) 

 
(c) (d) 

Figure 13. Comparison of phase planes at different excitation conditions: (a) phase plane 
with  1 t  vs.  1 t  at   = 1.25; (b) phase plane with  2 t  vs.  2 t  at   = 1.25;  

(c) phase plane with  1 t  vs.  1 t  at   = 1.35 ; and (d) phase plane with  2 t  vs.  2 t   

at   = 1.35. 

When the quasi-periodic is examined using a Poincaré map, the dynamic characteristics are 

observed clearly, as shown in Figure 14. In order to find the Poincaré map for the fixed excitation 
frequency level, the NS results are mapped by assuming that    1 i 1 it t nT    or    2 i 2 it t nT   . 

Here, the subscript value i = 1 is employed with a fixed normalized frequency level of 1.35.  

In Figure 14a,b, the Poincaré map from the NS result is limited to a very small range of area. 
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(a) (b) 

 
(c) (d) 

Figure 14. Comparison of Poincaré maps at different excitation conditions: (a) Poincaré 
map with  1 t  vs.  1 t  at   = 1.25; (b) Poincaré map with  2 t  vs.  2 t  at  

  = 1.25; (c) Poincaré map with  1 t  vs.  1 t  at   = 1.35; and (d) Poincaré map with 

 2 t  vs.  2 t  at   = 1.35. 

Ideally, it is limited to one point. Figure 14c,d shows different shapes of the Poincaré map, which 

has a wider range of tracks, even though it is drawn from each periodic time history. Thus, the 

differences of system responses with periodic and quasi-periodic components are revealed in very 

different ways in the Poincaré maps. Also, the quasi-periodic responses show random behaviors,  

as shown in Figure 14c,d. These results lead to similar trends of quasi-periodic responses to those in 

the other types of systems [5,18]. 

5. Conclusions 

The effect of various excitation conditions on practical systems was studied using piecewise-type 

nonlinearities. In order to investigate the nonlinear dynamic behaviors, multi-staged clutch dampers 

were modeled, and the relative motions were examined with different input conditions.  

The contributions of this study are summarized as follows. First, the trends of nonlinear dynamic 

responses with various engine excitation conditions have been investigated. Two different regimes of 

jumping phenomena with up- and down-sweeping conditions of the frequency were investigated under 

an extremely large scale of excitation values. Second, Poincaré map models have been suggested for 

the system. The differences between the linear and nonlinear models (or nonlinear responses along 

with different excitation conditions) were examined, including the dynamic characteristics under stable 

and unstable frequency ranges. Third, quasi-periodic responses of the practical system in the unstable 
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regime have been examined in both the frequency and time domains using HBM and NS.  

A comparison of dynamic behaviors in the stable and unstable frequency regimes using phase planes 

and Poincaré maps led to clear understanding of the nonlinear dynamic responses. 

This study has investigated the nonlinear dynamic responses of sub-systems from the effect of 

piecewise-type nonlinearities. However, the practical system shows many nonlinear dynamics affected 

by clearance-type nonlinearities such as gear backlash. Further study will be done as an extension of 

this work. For the validation of the study, this method needs to be correlated with realistic experiments 

(physical driveline and a torsional exciter) based on time-domain data including the development of 

adapted simulation method for the wind turbine, which is a subject for future study. Overall, based on 

the scope of this study, it will lead to understanding the geared system and giving the basic concepts to 

develop the simulation method of highly nonlinear system such as wind turbine. 
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