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Abstract: In this paper, we propose a novel automated double auction mechanism called convergent
linear function submission-based double-auction (CLFS-DA) for a prosumers’ decentralized smart
grid. The target decentralized smart grid is a regional electricity network that consists of many
prosumers that have a battery and a renewable energy-based generator, such as photovoltaic
cells. In the proposed double-auction mechanism, each intelligent software agent representing each
prosumer submits linear demand and supply functions to an automated regional electricity market
where they are registered. It is proven that the CLFS-DA mechanism is guaranteed to obtain one
of the global optimal price profiles in addition to it achieving an exact balance between demand
and supply, even through the learning period. The proof of convergence is provided on the basis
of the theory of LFS-DA, which gives a clear bridge between a function submission-based double
auction and a dual decomposition (DD)-based real-time pricing procedure. The performance of the
proposed mechanism is demonstrated numerically through a simulation experiment.

Keywords: distributed algorithm; double auction; dual decomposition (DD); Lagrangian relaxation;
multi-agent system

1. Introduction

1.1. Prosumers’ Decentralized Smart Grid

Electricity network concepts employing emergent smart grid technologies are gathering
attention [1–6]. Reducing our dependency on thermal power generation based on fossil fuel and
introducing renewables-based distributed energy resources (DERs), such as photovoltaic (PV) cells,
wind turbines and batteries, into our residential areas will change our total electric power systems
in the future [7]. Various operation, optimization and management methods for distributed energy
systems have been studied in the context of smart grids [8–12]. Originally, the domain of smart
grids was an interdisciplinary research field involving power electronics, information science, control
theory and economics [3,13,14]. In electricity networks, balancing demand and supply is crucial. To
balance demand and supply in residential electricity networks based on renewables-based DERs, the
information technologies and economics methods that encourage suppliers and consumers to behave
so as to stabilize the network and to maximize its social welfare are promising. In this context,
market-based decentralized control methods are attracting attention in the research field of smart
grids [1–5,15–18].
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In this paper, we focus on the market-based approach to demand-side management (DSM) for
prosumers’ electricity networks. The term prosumer is defined as an entity that is a producer and a
consumer simultaneously [19–23]. We investigate a regional prosumers’ decentralized smart grid,
called an inter-intelligent renewable energy network (i-Rene) [21,24]. The overview of i-Rene is shown
in Figure 1. Each house in i-Rene has a renewable energy-based generator and battery. A smart meter
containing a software agent can trade electricity automatically through a regional electricity market.
The smart meter also manages battery and shiftable devices [25–27] using smart grid technologies.
The electricity network itself is connected to other outside electricity networks through a gateway.
The prosumers have the option to buy electricity from an outside grid shown in Figure 1. The size of
i-Rene is assumed to be between about ten houses and several thousand. Developing a DSM method
that can balance demand and supply in a prosumers’ electricity network is thus one of the central
topics in this research field.
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Figure 1. Overview of the inter-intelligent renewable energy network (i-Rene) (left) and the power
flow and variable definitions in the i-Rene mathematical model (right) [21].

1.2. Market-Based Demand-Side Management (DSM)

Numerous studies of market-based DSM have been conducted for conventional electricity
networks, i.e., generators and consumers exist separately in an electricity grid. Game theory and
control theory have also given the theoretical foundation to market-based DSM [4,13,16,28–34].
Moreover, a comprehensive survey of studies of DSM was provided by Alizadeh et al. [3].

Saad et al. [13] conducted a survey of game theory-based approaches to electricity networks.
Various mechanisms and their game-theoretic properties, such as the Nash equilibrium and incentive
compatibility, have been provided [16,28,29],

From the viewpoint of control theory, dual decomposition (DD) has been used as a key
theoretical component that connects social welfare maximization problems to real-time pricing (RTP).
Palomar provided a comprehensive tutorial of DD [35]. DD relaxes a network constraint in a primal
problem, such as a social welfare maximization problem, based on the method of the Lagrange
multiplier. In this approach, Lagrange multipliers are found to be “price profiles”. Based on the
DD framework, many RTP mechanisms have been studied [4,30–34]. Most of the RTP mechanisms
are guaranteed to bring the system to one of the optimal solutions, i.e., each of them usually has proof
of convergence (see the Appendix).

However, most of the control theory-based RTP mechanisms have undesirable assumptions.
First, they assume that a network has a central price controller, e.g., a utility company, who
dedicatedly tries to maximize social welfare. It is not assumed to behave selfishly. The assumption
of an irrational, i.e., unselfish, player can become the vulnerability of a real social and economic
system. Ideally, it should be avoided. Second, the mechanisms relax the network constraint, i.e.,
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the balance of demand and supply. Therefore, the balance of demand and supply is not satisfied
until the iterative optimization process between consumers and the utility converges after an infinite
number of iterative communications between them, although the balance of demand and supply is
essentially important in electricity networks.

On the other hand, double auction-based mechanisms usually satisfy the constraint about the
balance of demand and supply, because the electricity price is determined to balance demand and
supply and not to maximize social welfare. PowerMatcher by Kok et al. [1,36] is one of the most
important works and field tests that exploit double auction for distributing electricity. PowerMatcher
is a smart grid technology that consists of a distributed multi-agent software system that conducts
market-based integration of relatively small-sized DER units. They used a function submission-based
double auction (FS-DA) for the simplicity of the implementation. In an FS-DA, each agent submits
demand and supply functions to a market. The auctioneer that receives the functions outputs a
clearing price by determining the intersection of aggregate demand and supply functions. This
procedure does not require iterative communication between the agents and the auctioneer.

Recently, Taniguchi et al. [21] described the theoretical relation between a linear FS-DA (LFS-DA)
and a DD. The LFS-DA is an FS-DA in which only linear demand and supply functions are used. They
proved that price updates in the LFS-DA become mostly equal to that of the RTP based on a DD with
a sub-gradient method (RTP-DDSG), basically, except for a constant factor. This constructed a clear
bridge between the double auction-based approach and the DD-based approach. The LFS-DA was
shown to increase the social welfare of an electricity network in a similar way as the RTP-DDSG.
However, the LFS-DA, generally, cannot bring the system to one of the optimal solutions, i.e., the
LFS-DA does not have proof of convergence. If all of the prosumers behave arbitrarily, the price
profile might become even worse than the initial state. In many cases, the LFS-DA outperforms
conventional RTP-DDSG in i-Rene. However, for stable operation of a prosumers’ decentralized
smart grid, a double auction mechanism that has a convergence proof is definitely desirable.

1.3. Convergent Double Auction Mechanism

Based on this background, in this paper, we propose a new double auction mechanism for i-Rene
called the convergent LFS-DA (CLFS-DA), which is an extension of the LFS-DA market mechanism.
In contrast to the LFS-DA, which does not have convergence proof, the CLFS-DA guarantees that the
price profile of electricity converges to an optimal price profile and maximizes social welfare without
any central controller, e.g., a utility or an administrative organization. The maximization of social
welfare was surely performed entirely in a bottom-up manner.

The essential characteristics of three comparative methods are listed in Table 1. “Fully
decentralized” means that the mechanism does not require a central player that is expected to behave
unselfishly, i.e., dedicatedly and tries to maximize social welfare. “Balance of demand and supply”
means that balance of demand and supply is satisfied throughout its learning phase, i.e., iterative
communication between a central market and agents. “Convergence” means that the method has
the proof of convergence and is expected to maximize social welfare. Among the three comparative
methods, only the CLFS-DA has all of the characteristics.

Table 1. Characteristics of the related mechanisms. RTP-DDSG: real-time pricing dual decomposition
with a sub-gradient method; LFS-DA: linear function submission based double-auction; CLFS-DA:
convergent linear function submission-based double-auction.

Characteristics RTP-DDSG LFS-DA CLFS-DA

Fully decentralized - X X
Balance of demand and supply - X X

Convergence X - X
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The difference between the LFS-DA and the CLFS-DA introduced in Section 3 might look
simple and small in its formulation at a glance. However, the difference between the LFS-DA
and the CLFS-DA is qualitative and crucial. The extension is not trivial from the viewpoint of
the double auction mechanism. It gives a significant and qualitative difference to the performance
of the mechanism, i.e., the convergence property is satisfied. Convergence proof is crucial when
we decide to adopt a market-based DSM method for designing a prosumers’ decentralized smart
grid. A mechanism without convergence proof might use electricity inefficiently and decrease
social welfare in the network. We also show that the CLFS-DA outperforms the LFS-DA from a
quantitative viewpoint.

Our main and novel contribution is as follows:
We propose a CLFS-DA mechanism for a regional prosumers’ decentralized smart grid. The

mechanism has convergence proof in addition to all of the advantageous properties of the LFS-DA,
i.e., an exact balance between demand and supply and completely decentralized operation.

This means that the CLFS-DA is superior to the LFS-DA in all aspects, although it
has been shown that the LFS-DA outperforms the RTP-DDSG in i-Rene [21]. Several related
works treat the FS-DA [17,37,38]. One of the most closely-related works was conducted by
Papavasiliou et al. [38], who proposed a Newton algorithm-based double auction mechanism.
The mechanism by Papavasiliou et al. is interpreted as a Newton algorithm with a decomposable
structure. However, they did not treat prosumers’ electricity networks where each prosumer uses
renewable energy resources and batteries and is allowed to become a consumer and a supplier.

The remainder of this paper is organized as follows. Section 2 provides the problem definitions
and model description of i-Rene, the target regional electricity network. The primal problem is
defined as a maximization problem of social welfare, i.e., a Benthamite social welfare function, and
a conventional RTP-DDSG mechanism is introduced. In Section 3, the CLFS-DA mechanism is
proposed, and its convergence proof is provided. In addition, the characteristics of the mechanism
are described. Section 4 presents the details of a simulation experiment and its results. Section 5
concludes this paper.

2. Model and Conventional Real-Time Pricing (RTP)

2.1. Basic Assumptions of i-Rene

A target decentralized smart grid, i-Rene, is defined as follows (Figure 1). Electricity suppliers
and consumers are not distinguished. Each agent has a generator and a storage device. Each
agent also has a smart meter that runs a software system that controls the electricity of the house
automatically. It manages its battery, transmits electricity to other agents, and communicates with
other information systems. Hereafter, the prosumers living in the house and the software system are
simply referred to as an agent.

In the regional decentralized smart grid, buildings are connected via a regional electricity
market. Through the market, each prosumer can buy and sell electricity at a variable price. The local
electricity price fluctuates depending on demand and supply. An optional alternative is provided
by the outside grid. At any moment, agents can buy electricity at the fixed price from the outside
grid. Furthermore, surplus electricity can be sold to the outside grid. However, the price is fixed and
low. It is assumed that the outside grid is a conventional unilateral grid, which is common especially
in Japan.

Suppose that i-Rene has N agents. A set of the agents is defined asN := {1, 2, ..., N}. Each agent
is able to charge, discharge, consume, generate, sell and buy electricity through its smart meter at
every time slot. The number of time slots is common among all of the agents. The set of time slots is
represented by T := {1, 2, ..., T}. The i-th agent consumes lt+

i , generates lt−
i , charges bt+

i , discharges
bt−

i , sells to mt+
i , buys from the regional market mt−

i , sells to gt+
i and buys from the outside grid gt−

i
during each time slot t. Based on the definitions, the i-th agent’s state vector for the time slot t is
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defined as xt
i := (lt+

i , lt−
i , bt+

i , bt−
i , mt+

i , mt−
i , gt+

i , gt−
i ). Each variable has its upper limit and/or lower

limit on the basis of the limited capability of each device or systems (see the Nomenclature). The
superscripts ·− and ·+ represent the direction of power flows from a smart meter, which is located at
the center of energy flows in a house. Basically, ·− and ·+ represent inflow and outflow, respectively.
It is assumed that the law of the conservation of energy is satisfied for each time slot t about the power
flows through the smart meter as follows:

ht(xt
i ) := lt+

i − lt−
i + bt+

i − bt−
i + mt+

i −mt−
i + gt+

i − gt−
i = 0 (1)

The amount of electricity demanded has to be balanced against the supply in the decentralized
smart grid for each time slot t:

f t
i (xi) := γmt+

i −mt−
i , ∑

i∈N
f t
i (xi) = 0 (2)

where the electricity transmission efficiency is represented by γ ∈ [0, 1].
The storage profile st

i represents the state of charge (SOC) of the i-th agent’s storage device at
time t. The dynamics of the storage device is given as follows:

st
i := st−1

i + ηibt+
i − bt−

i = sinit
i + ∑

k∈{1,2,...,t}
(ηibk+

i − bk−
i ) (3)

where the initial SOC of the i-th agent’s storage device is represented by sinit
i , and the storage

efficiency is represented by ηi ∈ [0, 1]. If ηi = 1, the i-th agent can fully charge electricity without
any loss. As a whole, the i-th agent’s feasible set Xi, except for the network constraint Equation (2), is
described as follows:

Xi := {xi ∈ R8T |Constraints described in the Nomenclature

ht(xt
i ) = 0 ∀t ∈ T } (4)

where xi := (xt
i )t∈T .

Agents can sell electricity to the outside grid at the price of pG+
t , and buy electricity from

it at the price of pG−
t per unit, respectively. If reverse power flow is completely prohibited, pG+

t
should be zero. To avoid obvious and meaningless solution, i.e., immediate resale behavior, we athe
following assumption:

0 ≤ pG+
t ≤ pG−

t (5)

2.2. Primal Problem

The cost for electricity generation lt−
i for the i-th agent is defined as Ct

i : R → R, where Ct
i

is a convex function of class C2. The utility for consuming electric energy lt+
i for the i-th agent is

represented by Dt
i : R → R, where Dt

i is a concave function of class C2. The individual welfare
Wi : R8T ×RT → R of the i-th agent is defined as follows:

Wi(xi, p) := ∑
t∈T

Wt
i (xt

i , pt) (6)

Wt
i (xt

i , pt) := φt
i(xt

i ) + ptγmt+
i − ptmt−

i (7)

φt
i(xt

i ) := Dt
i (l

t+
i )− Ct

i (l
t−
i ) + pG+

t gt+
i − pG−

t gt−
i (8)

where xi := (xt
i )t∈T , p := (pt)t∈T = (p1, ..., pT), pt is a buyer’s price in the market at time t ∈ T

and φt
i(xt) is a utility function of the i-th agent at time t that includes payments to the outside grid.

The seller’s price and the buyer’s price are usually different, because there is electricity energy loss
during transmission. To balance the amount of money paid by buyers and sellers, the seller’s price
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can be determined to be γpt. The social welfare of the prosumers’ decentralized smart grid is defined
by following W(x, p):

W(x, p) := ∑
i∈N

Wi(xi, p) (9)

= ∑
t∈T

(
∑

i∈N
φt

i(xi) + pt ∑
i∈N

(γmt+
i −mt−

i )︸ ︷︷ ︸
=0 from Equation (2)

)
(10)

= ∑
t∈T

(
∑

i∈N
φt

i(xi)
)

(11)

where x := (xi)i∈N = (x1, ..., xN). This means that the social welfare of i-Rene is not affected by
the price profile of the market. Maximizing W(x, p) is the same problem as maximizing φ(x) :=
∑i∈N φi(xi) where φi(xi) := ∑t∈T φ

t
i(xt

i ).
The following problem is defined as the primal problem, which aims to maximize the social

welfare of the regional network.

Problem 1 (Primal problem).

maximize
x∈R8NT

φ(x) = ∑
i∈N

φi(xi) (12)

subject to xi ∈ Xi ∀i ∈ N (13)

∑
i∈N

f t
i (xi) = 0 ∀t ∈ T (14)

However, any entity cannot obtain information about {Ct
i , Dt

i}i∈N ,t∈T , because they are usually
private information. In addition, any entity cannot control the behavior of the agents directly, because
they are independent rational players. If the central control system could perform such things, to
solve the primal problem shown above requires an exponentially large computational cost when N
becomes large. That is, centrally solving the primal problem is realistically impossible. Based on this
background, a decentralized optimization method is required. A decentralized optimization method
using price information is derived via a dual problem.

2.3. Dual Decomposition (DD)

2.3.1. Dual Problem

Network optimization problems like the target primal problem can be decomposed via a dual
problem. Such a procedure is called dual decomposition (DD) [35]. DD transforms a primal problem
into many independent sub-problems that can be solved by each agent’s rational behavior and a
master problem that is solved by optimizing price profiles. The solutions of the primal problem and
the dual problem become the same if the conditions satisfy Slater’s theorem [39]. The primal problem
satisfies this theorem. The DD provides the theoretical basis for RTP. The target primal problem in
Equation (12) can be transformed into a dual problem as follows.

Problem 2 (Dual problem).

minimize
p∈RT

g(p) (15)

g(p) := ∑
i∈N

sup
xi∈Xi

Lip(xi) (16)

Lip(xi) := φi(xi) + ∑
t∈T

pt f t
i (xi) (17)
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The Lagrange multiplier p := (pt)t∈T means the “price” of goods that are constrained by an
equation f t

i which is relaxed by pt [35]. In this problem, pt becomes the price of electricity in the
market at time t.

2.3.2. Sub-Problems

The objective function Equation (16) of the dual problem is divided into N objective functions if
the Lagrange multipliers p are introduced. Each agent can solve the maximization problem of each
objective function independently.

Problem 3 (Sub-problems).

maximize
xi∈R8T

Lip(xi) (18)

subject to xi ∈ Xi

Each agent is expected to solve each sub-problem autonomously if we can regard each agent
as a rational agent. One of the optimal solutions x∗i (p) to the problem Equation (18) is described
as follows:

x∗i (p) = argmax
xi∈Xi

Lip(xi) (19)

where x∗ti = (l∗t+i , l∗t−i , b∗t+i , b∗t−i , m∗t+i , m∗t−i , g∗t+i , g∗t−i ) and x∗i = (x∗ti )t∈T .

2.3.3. Master Problem

We assume there is a central entity that determines the price profile in the market. Based
on the agents’ optimal strategies (x∗i (p))i∈N , we assume that the central entity tries to solve the
following problem.

Problem 4 (Master problem).

minimize
p∈RT

g(p) (20)

g(p) = ∑
i∈N

Lip(x∗i (p)) (21)

This problem is called the master problem. Solving this problem corresponds to searching for an
adequate price profile that could balance demand and supply.

If we determine the solution of a master problem and sub-problems simultaneously, the solution
becomes that of the dual problem. Iterative optimization techniques can achieve such an optimization
in practice.

2.3.4. Real-Time Pricing based on a Dual Decomposition with a Sub-Gradient Method (RTP-DDSG)

Based on the DD framework, a conventional RTP mechanism, i.e., RTP-DDSG, can be derived.
In the RTP-DDSG, each agent tries to maximize its welfare rationally by solving its sub-problem, and
the central entity updates the price profile [4]. The central controller updates the price profile p(k)t
using the sub-gradient descent [4,35].

p(k+1)
t = p(k)t − θ

t
kξt(p(k)) (22)

ξt(p(k)) := ∑
i∈N

f t
i
(
x∗i (p(k))

)
(23)

= ∑
i∈N

(
γm∗t+i (p(k))−m∗t−i (p(k))

)
(24)
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where θt
k > 0 is the learning rate. By updating of xi and p iteratively, the numerical solution of

the dual problem in Equations (15)–(17) can be obtained. This numerical solution yields a solution
of the original primal problem in Equations (12)–(14). Therefore, the RTP-DDSG is expected to
maximize social welfare of the network under some conditions. Convergence proof of the RTP-DDSG
is provided in the Appendix.

3. Convergent Linear Function Submission-Based Double-Auction (CLFS-DA)

3.1. Overview

Algorithm 1 shows the overall market mechanism of the CLFS-DA, which is our proposal in this
paper, in the form of pseudocode. The CLFS-DA is an extension of the LFS-DA proposed in [21]. In the
LFS-DA, its iterative process is not guaranteed to converge to the optimal value and solution because
the LFS-DA is a fully-decentralized mechanism, and the demand and supply function submitted to
a regional market is arbitrarily controlled by each agent independently. In the LFS-DA, any rules for
βt

i are not settled [21]. The parameter βt
i is fixed only for its analytical purpose in [21]. Based on the

backgrounds, we extend the LFS-DA and obtain the CLFS-DA, which contains a rule for determining
βt

i for each agent. Surprisingly, the very simple modification of the mechanism enables us to provide
the proof of convergence. Most of the algorithm of the CLFS-DA, except for a rule controlling βt

i , is
the same as that of the LFS-DA.

3.2. Transactions with the Convergent Linear Function Submission-Based Double-Auction (CLFS-DA)

In the CLFS-DA, each agent i has a supply function mt+
i = µt+

i (pt) and a demand function
mt−

i = µt−
i (pt) for each time slot t. We assume that the two functions are determined on the basis of

the two parameters αt
i and βt

i :

mt+
i = µt+

i (pt) := bβt
i pt − αt

ic (25)

mt−
i = µt−

i (pt) := b−βt
i pt + α

t
ic (26)

where bxc := max(x, 0). The functions, i.e., Equations (25) and (26), are essentially generated from a
single linear function.

Algorithm 1 Iterative update in the CLFS-DA.

k← 1
Initialize the price profile p(k) = (p(k)t )t∈T and the state vectors (x(k)i )i∈N .
Each agent submits υi = (υt

i )t∈T to the market.
repeat

// Each agent solves its sub-problem in Equation (31) and obtains its solution.
Update x∗i = (x∗ti )t∈T = x∗i (p(k)).
// Each agent’s primary coefficient term of the bidding function is determined on the basis of the initial
slope υi.

Update β(k)ti = kυt
i for each t.

Update α(k)ti ← β
(k)t
i p(k)t + (m∗t−i −m∗t+i ), for each t.

// Each agent submits (α(k)ti )t∈T to the market.

Update p(k+1) ← market_clearing
(
(α

(k)t
i ,β(k)ti )i∈N ,t∈T

)
.

Update (m(k+1)t+
i , m(k+1)t−

i )← (µt+
i (p(k+1)),µt−

i (p(k+1))).
// Reconfiguration by each agent

Update x(k+1)
i ← reconfXi (x∗i |m

t+
i = m(k+1)t+

i , mt−
i = m(k+1)t−

i ), for each i
k← k + 1

until a predefined stopping criterion is satisfied.

return Transact (x(k)i )i∈N with p(k) as a price profile.
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In the CLFS-DA, the i-th agent submits the initial slope of the bidding function (υt
i )t∈T to the

regional market when a day-ahead market starts. Once the iterative procedure of the day-ahead
market starts, βt

i is determined based on the initial slope parameter, i.e., βt
i = kυt

i throughout the
iterative process of the day-ahead market in the CLFS-DA. This is the main difference between the
LFS-DA and the CLFS-DA. Therefore, βt

i itself does not converge to a certain value, but diverges to
infinity by definition. From the viewpoint of an ordinary double auction mechanism, the demand and
supply functions submitted to a market are assumed to have information about the agent’s marginal
utility function. Therefore, many people, who are familiar with basic microeconomics to some extent,
expect that βt

i should converge to a certain value through an iterative process. In contrast, the
proposed mechanism, the CLFS-DA, requires βt

i to diverge to infinity. In this way, CLFS-DA is a
non-trivial mechanism from the viewpoint of microeconomics and double auction.

Each agent does not need to submit βt
i to the auctioneer in each iteration. In each iteration, each

agent submits αt
i to the auctioneer of the decentralized smart grid in order to provide the demand

and supply functions of each agent for each time slot t ∈ T . The parameter αt
i is a flexible variable,

and each agent updates it at each iteration to optimize his/her individual welfare function.
After the auctioneer receives the demand and supply functions of all participants of the regional

electricity market in the k-th iteration, price profile p is determined by finding the point where
the aggregate supply and demand functions intersect to clear the market by balancing supply and
demand completely. The constraint for balancing supply and demand in Equation (2) becomes:

∑
i∈N

f t
i (xi, pt) = γ ∑

i∈N
bβt

i pt − αt
ic − ∑

i∈N
b−βt

i pt + α
t
ic (27)

= γ ∑
i∈I+t (pt)

(βt
i pt − αt

i)− ∑
i∈I−t (pt)

(−βt
i pt + α

t
i) = 0 (28)

where we denote the set of consumers at time t by I−t (pt) := {i ∈ N | α
t
i
βt

i
> pt} and the set

of suppliers at time t by I+t (pt) := {i ∈ N | α
t
i
βt

i
≤ pt}. In this case, based on the constraint in

Equation (27), a clearing price satisfies the following equation:

pt =
(
γαt

I+t (pt)
+ αt

I−t (pt)

)
/
(
γβt

I+t (pt)
+ βt

I−t (pt)

)
(29)

where αt
I+t (pt)

:= ∑i∈I+t (pt)
αt

i , αt
I−t (pt)

:= ∑i∈I−t (pt)
αt

i , βt
I+t (pt)

:= ∑i∈I+t (pt)
βt

i , and

βt
I−t (pt)

:= ∑i∈I−t (pt)
βt

i . The price pt satisfying Equation (29) balances supply and demand exactly and

fulfills the constraint in Equation (27). It is known that the clearing price pt that satisfies Equation (29)
uniquely exists. It can be calculated exactly [21].

In the CLFS-DA, when (αt
i)i∈N ,t∈T from all of the agents are received by the auctioneer at the

k-th iteration, the price p(k+1)
t is determined by solving Equation (29). Each agent is requested either

to transmit m(k+1)t+
i = µt+

i (p(k+1)
t ) or to receive m(k+1)t−

i = µt−
i (p(k+1)

t ) on the basis of the price

p(k+1)
t . Each agent has to reconfigure its xt

i for the given (m(k+1)t+
i , m(k+1)t−

i ) so as to satisfy the

constraint xi ∈ Xi except for the inequality constraints about mt+
i and mt−

i after (m(k+1)t+
i , m(k+1)t−

i ) is
determined. We assume that the system allows the agents to use the margin of network capacity when
(m(k+1)t+

i , m(k+1)t−
i ), occasionally, violate their inequality constraints. After the iterative mechanism

satisfies a predefined stopping criterion, the participants transact real electricity and money. Under
the mechanism, each agent is expected to behave selfishly, i.e., rationally.
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3.3. Iterative Process of the Convergent Linear Function Submission-Based Double-Auction (CLFS-DA)

Through the communication made iteratively between an auctioneer and participants, the price
profile p and state vectors {x(k)i }i∈N gradually change. During the iteration phase in a day-ahead

market, βt
i and pt are given by the auctioneer. Note that in the k-th iteration, β(k)ti = kυt

i and υt
i cannot

be changed once the i-th agent submits it to the auctioneer in the initial step of the mechanism. Based
on the externally-determined parameters, αt

i is determined uniquely from (mt+
i , mt−

i ) as follows:

αt
i = βt

i pt + (mt−
i −mt+

i ) (30)

Based on Equations (25) and (26), (mt+
i , mt−

i ) is also determined uniquely from αt
i under the

condition that βt
i and pt are fixed. Therefore, optimizing (αt

i)t∈T and optimizing (mi+
t , mi−

t )t∈T are

essentially the same problem. Consequently, α(k)ti (p(k)t ) can be optimized by using the following
procedure in the k-th iteration:

x∗i (p(k)) = argmax
xi∈Xi

(
φi(xi) + ∑

t∈T
p(k)t (γmt+

i −mt−
i )

)
(31)

α
(k)t
i (p(k)t ) = β

(k)t
i p(k)t + (m∗t−i (p(k)t )−m∗t+i (p(k)t )) (32)

Equation (31) corresponds to one of the optimal solutions of the sub-problem.
In the k-th iteration, each agent assumes that the price profile is p(k) := (p(k)t )t∈T . Each

agent rationally maximizes its welfare, i.e., solves its sub-problem, obtains x∗i and determines

α
(k)
i = (α

(k)t
i )t∈T . After all of the participating agents submit α(k)i to the auctioneer, the clearing price

p(k+1) settled by market_clearing is determined based on Equation (29). The amount of electricity
the i-th agent transacts through the regional market (mt+

i , mt−
i ) is determined based on p(k+1):

(m(k+1)t+
i , m(k+1)t−

i )← (µt+
i (p(k+1)),µt−

i (p(k+1))) (33)

As a result, the state vector of the i-th agent reactively becomes:

x̃∗ti = (l∗t+i , l∗t−i , b∗t+i , b∗t−i , m(k+1)t+
i , m(k+1)t−

i , g∗t+i , g∗t−i ) (34)

However, this state vector is usually out of a feasible set, i.e., x̃∗ti /∈ Xi. To solve the problem,

a reconfiguration of xt
i is performed. The reconfXi (·|m

t+
i = m(k+1)t+

i , mt−
i = m(k+1)t−

i ) denotes a
rational reconfiguration behavior of each agent that solves the sub-problem under the condition that,
i.e., (mt+

i , mt−
i ) = (m(k+1)t+

i , m(k+1)t−
i ), again.

3.4. Convergence Proof of the Convergent Linear Function Submission-Based Double-Auction (CLFS-DA)

In contrast with the fact that the LFS-DA mechanism does not have convergence proof, the
CLFS-DA mechanism has convergence proof. The main theorem of this paper is as follows:

Theorem 1. By using the CLFS-DA mechanism, the price profile automatically converges to one of the optimal
price profiles and social welfare is maximized if the sets of sellers and buyers for each time slot are fixed after a
certain number of iterations k0.
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Proof. In the LFS-DA, the price profile p(k) is updated in a similar way as RTP based on DD [21].
This property is obviously inherited in the CLFS-DA. The price profile of the CLFS-DA is updated as
follows, when k > k0:

p(k+1)
t = p(k)t − θ̄

t
kξt(p(k)) (35)

ξt(p(k)) := ∑
i∈N

f t
i (x∗ti (p(k))) (36)

=
(

∑
i∈N

(
γm∗t+i (p(k))−m∗t−i (p(k))

))
t∈T

(37)

where θ̄t
k =

(
β
(k)t

It(p(k+1)
t )

)−1, and β(k)tIt(pt)
= γβ

(k)t
I+t (pt)

+ β
(k)t
I−t (pt)

. The proof is provided in [21].

Based on the relationship between the LFS-DA and RTP based on dual decomposition with the
sub-gradient method (RTP-DDSG) and Lemma 1, the following equation is satisfied:

g(k)best − g∗ ≤
R2 + G2 ∑k

j=1(θ̄
t
j)

2

2 ∑k
j=1 θ̄

t
j

(38)

In this equation, γ ∈ [0, 1] yields:

k

∑
j=1

(θ̄t
j)

2 =
k

∑
j=1

((
β
(j)t

It(p(j+1)
t )

)−1
)2
≤

k

∑
j=1

((
γ

N

∑
i=1
β
(j)t
i
)−1
)2

(39)

=
k

∑
j=1

((
γ

N

∑
i=1

jυt
i
)−1
)2

=
( k

∑
j=1

1
j2
)(
γ

N

∑
i=1

υt
i
)−2, and (40)

k

∑
j=1

(θ̄t
j) =

k

∑
j=1

((
β
(j)t

It(p(j+1)
t )

)−1
)
≥

k

∑
j=1

(( N

∑
i=1
β
(j)t
i
)−1
)

(41)

=
k

∑
j=1

(( N

∑
i=1

jυt
i
)−1
)

=
( k

∑
j=1

1
j
)(
γ

N

∑
i=1

υt
i
)−1 (42)

These show that ∑∞
k=1(θ̄

t
k)

2 < ∞ and ∑∞
k=1 θ̄

t
k = ∞. Therefore, the price profile converges to one

of the optimal values as k→ ∞.

Theorem 2. In the CLFS-DA mechanism, the determined optimal value does not depend on the initial selection
of (υt

i )t∈T ,i∈N .

Proof. Theorem 1 expresses that the iterative computation in the CLFS-DA mechanism converges
to one of the optimal solutions of the dual problem because of its convexity. The optimal value of
the dual problem is also an optimal value of the primal problem. The optimal value of the primal
problem does not depend on (υt

i )t∈T ,i∈N .

3.5. Simple Convergent Linear Function Submission-Based Double-Auction (CLFS-DA)

Theorem 2 also suggests that the solution of the primal problem determined by the CLFS-DA
rarely depends on the agents’ selection of (υt

i )t∈T ,i∈N , practically. Based on Theorem 2, we can
naturally introduce a simplified version of the CLFS-DA called the simple CFLS-DA (sCFLS-DA).
In the sCLFS-DA, each agent does not need to submit (υt

i )t∈T , and a predetermined default value
ῡ > 0 is used, i.e., υt

i = ῡ ∀t ∈ T , ∀i ∈ N .

Theorem 3. By using the sCLFS-DA mechanism, the price profile automatically converges to one of the optimal
prices, and social welfare is maximized.
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Proof. The sCLFS-DA is a type of CLFS-DA. Therefore, it is obviously followed by Theorem 1.

In sum, in the CLFS-DA, if the auctioneer simply determines a clearing price profile so as to
balance supply and demand with an increasing βt

i , i.e.,βt
i = kυt

i in the k-th iteration, it implicitly
solves the dual problem iteratively by tuning the learning rate θt

k of the sub-gradient descent, so that
the emergent searching algorithm converges to one of the optimal values in a bottom-up manner.

4. Experiment

This section demonstrates our numerical simulation of the CLFS-DA. Additionally, we compare
CLFS-DA’s results with those obtained by using the LFS-DA and the RTP-DDSG through a
simulation experiment.

4.1. Experimental Conditions

The number of prosumers is N = 20, and the number of time slots is T = 24 in this

experiment. The utility functions are Dt
i (l) := ωt

i l −
κt

i
2 l2, if 0 ≤ l ≤ ωt

i
κt

i
, and otherwise

Dt
i (l) := (ωt

i )
2

2κt
i

, where ωt
i and κt

i > 0 are the given constants [4,40]. We set κt
i = 10 and

ωt
i = 30 for all t ∈ T , i ∈ N . We assumed all generators are PV cell systems; therefore,

no variable costs were considered. The generation costs becomes Ct
i (l

t−
i ) := 0 (∀lt−

i ∈
[0, lt−,max

i ]). We used the PV cell generation profiles that were measured at 20 houses in Higashi
Ohmi city during autumn of 2010 as the maximum value of the energy production profile
lt−,max
i . Figure 2 shows lt−,max

i for all prosumers. We set sinit
i = 0, smax

i = 5, bt+,max
i = 1,

bt−,max
i = 1, ηi = 0.7, γ = 0.8, mt+,max

i = 5, mt−,max
i = 5, pG−

t = 20 and pG+
t = 0 for all i ∈ N , t ∈ T .
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Figure 2. Electric energy generation profiles used in the experiment. The profiles are set to lt−,max
i .

They were obtained from 20 prosumers’ photovoltaic (PV) cells in Higashi Ohmi city, Japan [21].

In this experiment, the following comparative methods were prepared: the RTP-DDSG with
fixed learning rate θt

k = 0.01, the RTP-DDSG with variable learning rate θt
k = 0.1× 1

k that satisfies the
convergence condition, without trading, where each agent cannot trade among decentralized smart
grid, the LFS-DA βt

i = 5.0, the CLFS-DA υi = 0.05 × i and the sCLFS-DA ῡ = 0.5 for all i ∈ N ,
t ∈ T . The parameters related to the learning rate are selected so that the comparison becomes fair
to some extent. In the RTP-DDSG, the supply and demand were usually not balanced because the
network constraint was relaxed throughout the learning phase. In such a case, the central entity
compensates the difference by selling the surplus electricity to or buying the deficit electricity from
the outside grid. The cost was incurred equally for all agents afterward. We obtained the optimal one
by solving the primal problem using a numerical solver.

4.2. Results

The overall performance of each mechanism is compared from the viewpoint of social welfare.
The value of the social welfare is shown in Figure 3 as a function of each iteration step. The
figure shows that the LFS-DA-based methods, i.e., the LFS-DA, CLFS-DA and sCLFS-DA, clearly
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outperform the RTP-DDSG. The LFS-DA-based methods immediately increase social welfare during
the early stage of the iterative optimization process in a day-ahead market. The RTP-DDSG also
gradually increases social welfare, but it contains undesirable oscillation. The RTP-DDSG decrees its
social welfare with the cost of the compensation for the violation of the balance between demand and
supply. The utility has to buy and sell electricity to bridge the gap between demand and supply, which
affects overall social welfare negatively. Among LFS-DA-based methods, the CLFS-DA increases
social welfare most smoothly and quickly. This finding means that the CLFS-DA is an effective
mechanism for solving the primal problem for i-Rene.
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Figure 3. Social welfare after iterations with each method.

The most significant difference between the LFS-DA, a previously proposed method, and the
CLFS-DA, the method proposed herein, is that the CLFS-DA has the property of convergence, as
pointed out in Section 1. The convergence performance was investigated in Figure 4. The convergence
errors of the primal problem are plotted for each comparative method. This shows that the CLFS-DA
and the sCLFS-DA make the convergence error approach zero gradually. A numerical demonstration
shows that the CLFS-DA and the sCLFS-DA have better performance in terms of the convergence
property than the LFS-DA, as our main theorem suggested.
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Figure 4. Convergence error after iterations with each method.

The lack of the property of convergence usually implies that the numerical solution converges
slowly and continues to oscillate over time. Figure 5 shows the price profiles obtained by the LFS-DA
and the CLFS-DA in each iteration between the first and 20th iterations. In Figure 5, although the
highest prices in the LFS-DA and CLFS-DA differ, this does not cause any problems. Because no prices
above PG−

t are used, the difference is essentially meaningless. This figure shows that the CLFS-DA
quickly changed its price profile and almost converged to an appropriate price profile in only a few
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iterations in contrast to the LFS-DA, which gradually changed its price and still oscillated in the
20th iteration. To evaluate the oscillation that remained after a sufficient number of iterations, we
calculated the average |p(k+1) − p(k)| for the last 50 iterations. That of the LFS-DA was 6.51× 10−2,
and that of the CLFS-DA was 6.92× 10−3. This finding clearly shows that the CLFS-DA has better
performance in terms of convergence, as well as for the fast search of an adequate price profile. The
above numerical results support our main theorem, i.e., Theorem 1.
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Figure 5. Price profiles obtained at each iteration when (left) the LFS-DA and (right) the CLFS-DA
are used, respectively.

Next, Theorems 2 and 3 are investigated numerically. Theorem 2 suggests that the solutions
obtained by the sCLFS-DA and the CLFS-DA become similar although (υt

i )t∈T ,i∈N are different, and
therefore, numerical solutions in the early stage of the iterative process must be different. Figure 6
shows the individual welfare for each agent after the first iteration and that after the 100-th iteration. It
shows that the differences among (υt

i )t∈T ,i∈N do not affect the final distribution of wealth. It suggests
that each agent can determine (υt

i )t∈T ,i∈N selfishly, but it does not affect the agent’s welfare if a
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sufficient number of iterations are performed. These numerical results support the effectiveness and
reliability of the CLFS-DA and suggest the validity of the theorems provided in the previous section.
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Figure 6. Individual welfare of each agent after the first iteration (top), and after the 100-th
iteration (bottom).

5. Conclusions

In this paper, we described the CLFS-DA mechanism for a prosumers’ decentralized smart
grid called i-Rene. i-Rene consists of many prosumers equipped with a battery and a renewable
energy-based generator, e.g., PVs. The CLFS-DA is an extension of the LFS-DA previously proposed
double-auction mechanism in which each prosumer submits essentially linear demand and supply
functions to an automated regional electricity market. As the main theorem in this paper, we proved
that the CLFS-DA makes the price profile automatically converge to one of the optimal price profiles
and maximizes the network’s social welfare in contrast to the LFS-DA, which does not have such a
convergence property. Unlike the LFS-DA, in the CLFS-DA mechanism, prosumers submit the initial
slope of the bidding function υt

i . Therefore, analyzing the effect of the selected υt
i on social welfare is

important. Theorem 2 proved that the selection of υt
i does not affect the final social welfare obtained

after convergence. Consequently, the sCLFS-DA was also proposed, and its convergence property
was proven, as well (Theorem 3). Finally, on the basis of these theoretical results, we conducted an
experiment, showing that the results were numerically supported.

The difference between CLFS-DA and LFS-DA might look simple and small at a glance, but
it gives the significant and non-trivial difference to the new double auction mechanism, CLFS-DA.
First, the iterative process of the CLFS-DA mechanism is guaranteed to converge to one of the
optimal solutions of the original primal problem in contrast to the LFS-DA. Second, the numerical
experiment showed that the CLFS-DA can find an appropriate price profile more promptly than the
LFS-DA. In addition, the CLFS-DA inherits all of the advantageous characteristics of the LFS-DA as
mentioned in Section 1. For example, the CLFS-DA mechanism also can achieve an exact balance
between demand and supply for each time slot even through the learning phase in the same way as
the LFS-DA. The performance of the proposed mechanism and its characteristics were demonstrated
numerically through a simulation experiment. In this sense, the CLFS-DA is superior to the LFS-DA.

When we apply an iterative auction mechanism, e.g., RTP-DDSG, LFS-DA or CLFS-DA, to
the real regional automated day-ahead market, the fast determination of the price profile and
convergence without oscillation are very important. In the actual implementation, some costs, e.g.,
time and computation, are incurred for each iteration [17]. Therefore, the iterative process must
be truncated on the basis of a predefined stopping criterion, as shown in Algorithm 1. Oscillation
usually makes it difficult to satisfy the predefined stopping criterion. The faster determination of the
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appropriate price allows for the earlier truncation of the iterative process, which in turn results in a
lower implicit system cost for the iteration process.

In the CLFS-DA, no prosumer can select βt
i directly in each step. He/she can determine only the

initial slope of the bidding function υt
i . If this restriction harms each agent’s welfare, the mechanism

might be unacceptable to prosumers in i-Rene. If the restriction harms the welfare of some prosumers,
they will be against the introduction of the CLFS-DA and i-Rene. However, Theorem 2 suggests that
the restriction does not affect the final welfare obtained by each agent. Theorem 2 is thus an important
property when we attempt to implement the CLFS-DA in actual society.

Although the proposed CLFS-DA is a sophisticated mechanism, several actions are necessary
to develop a reliable prosumers’ regional smart grid managed automatically and efficiently in
a decentralized manner. As many researchers have suggested, the FS-DA framework is very
powerful for distributed optimization for the day-ahead market. By contrast, the real-time market
is also important for managing a regional smart grid automatically in our actual environment
because renewable energies and energy consumption have uncertainty and they cannot be predicted
accurately on the previous day. Related works have proposed several market mechanisms
for real-time electricity markets. Yo et al. [18] proposed the RTP-DDSG-based real-time market
mechanism. Taniguchi and Yano [24] and Kok et al. [36] applied LFS-DA-like double auction
mechanisms to real-time markets heuristically, but they did not obtain theoretical results. Extending
the CLFS-DA framework to a real-time market and to a stochastic environment for managing
uncertainty in the regional prosumers’ decentralized smart grid is one of our future directions.
Testing our proposed mechanism in a real regional decentralized smart grid is also one of our future
directions.
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Nomenclature

� Variables controlled by each agent (output)
lt+
i ∈ [lt+,min

i , ∞) Electric energy consumption profile
lt−
i ∈ [0, lt−,max

i ) Electric energy generation profile
bt+

i ∈ [0, bt+,max
i ] Battery charge profile

bt−
i ∈ [0, bt−,max

i ] Battery discharge profile
mt+

i ∈ [0, mt+,max
i ] Profile of electric energy sold to the local electricity market

mt−
i ∈ [0, mt−,max

i ] Profile of electric energy bought from the local electricity market
gt+

i ∈ [0, ∞) Profile of electric energy sold to the outside grid
gt−

i ∈ [0, g−,max
i ] Profile of electric energy bought from the outside grid

xt
i Profile of state vector

st
i ∈ [0, smax

i ] Profile of the state of charge (SOC) of the battery
αt

i Constant term of parameters of the bidding function
υt

i > 0 Initial slope of the bidding function, i.e., β(1) = υt
i

� Variables determined by the market (output)
βt

i > 0 Primary coefficient term of parameters of the bidding function
pt Price profile
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� Fixed parameters and functions for each agent (input)
ηi ∈ [0, 1] Storage efficiency
Ct

i Cost function for generating electric energy
Dt

i Utility function for consuming electric energy
φt

i Individual utility function
Wt

i Individual welfare function
� Fixed parameters for the electricity network (input)
γ ∈ [0, 1] Electricity transmission efficiency
pG+

t Price of electricity sold to the outside grid
pG−

t Price of electricity bought from the outside grid

The superscript t ∈ T denotes the t-th time slot in a day. The subscript i ∈ N denotes the i-th
agent in an electricity network.

Appendix

A. Convergence Proof of the RTP-DDSG

Convergence proof of the RTP-DDSG is provided as follows.

Lemma 1. If the RTP mechanism’s learning rate is (θt
k)t∈T , the convergence error of the master

problem becomes:

g(k)best − g∗ ≤
R2 + G2 ∑k

j=1(θ
t
j)

2

2 ∑k
j=1 θ

t
j

(43)

where p∗ is one of the optimal price profiles, G is a constant satisfying ||ξt(p)|| ≤ G, R
is a constant satisfying ||p(1) − p∗|| ≤ R, g∗ is the optimal value of Equation (22), and
g(k)best = min{g(p(1)), . . . , g(p(k))}.

This lemma can be naturally derived from the widely-known convergence theorem about the
sub-gradient method. For example, [41] provides a clear explanation. R and G clearly exist in i-Rene.

Lemma 2. If the RTP mechanism’s learning rate satisfies ∑∞
k=1(θ

t
k)

2 < ∞ and ∑∞
k=1 θ

t
k = ∞, variables

updated by using the sub-gradient method converge, i.e., the price profile converges to one of the optimal price
profiles, and social welfare is maximized.

Proof. The right-hand side of Equation (43) converges to zero as k→ ∞.

For example, θt
k = 1/k is one of the most famous candidates satisfying Lemma 2. These lemmas

are not the contribution of this paper, but are the prerequisites for our main theorem. Though
this algorithm gives a feasible solution for the decentralized energy dispatch problem after iterative
communications between a central entity and distributed agents, it cannot achieve an exact balance
between supply and demand before converging to an optimal solution, i.e., before performing an
infinite number of iterations.
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