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Abstract: The uncertainty and regularity of wind power generation are caused by wind resources’
intermittent and randomness. Such volatility brings severe challenges to the wind power grid.
The requirements for ultrashort-term and short-term wind power forecasting with high prediction
accuracy of the model used, have great significance for reducing the phenomenon of abandoned
wind power , optimizing the conventional power generation plan, adjusting the maintenance
schedule and developing real-time monitoring systems. Therefore, accurate forecasting of wind
power generation is important in electric load forecasting. The echo state network (ESN) is a new
recurrent neural network composed of input, hidden layer and output layers. It can approximate
well the nonlinear system and achieves great results in nonlinear chaotic time series forecasting.
Besides, the ESN is simpler and less computationally demanding than the traditional neural network
training, which provides more accurate training results. Aiming at addressing the disadvantages
of standard ESN, this paper has made some improvements. Combined with the complementary
advantages of particle swarm optimization and tabu search, the generalization of ESN is improved.
To verify the validity and applicability of this method, case studies of multitime scale forecasting of
wind power output are carried out to reconstruct the chaotic time series of the actual wind power
generation data in a certain region to predict wind power generation. Meanwhile, the influence
of seasonal factors on wind power is taken into consideration. Compared with the classical ESN
and the conventional Back Propagation (BP) neural network, the results verify the superiority of the
proposed method.

Keywords: wind power output; multi time scale; seasonal factor; particle swarm optimization; tabu
search; chaotic echo state network (ESN)

1. Introduction

The energy crisis is becoming more and more obvious with the continuous increase in energy
consumption, overexploitation of traditional energy and exhaustion of fossil fuels. In order to ease the
crisis, countries around the world are increasing the utilization of new energy sources and realizing
the sustainable development of energy. As an important category of renewable energy, wind has
the characteristics of huge reserves, renewability, wide distribution and non-polluting nature [1]. In
recent years, as an important aspect of renewable energy utilization and the most mature new energy
use technology, the penetration of wind energy in the power grid is increasing rapidly [2].
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China has abundant wind energy resources. Besides, the government has also attached great
importance to the development of wind power industry. China’s wind power has entered a stage of
rapid development since 2003. China’s wind power installed capacity doubled for four consecutive
years from 2006 to 2009. The new installed capacity of wind power in China exceeds 16 GW and
the total installed capacity reached 41.83 GW in 2010, which surpassed the United States for the first
time, ranking first in the World [3]. In 2012, China’s total wind power installed capacity is still in the
first place, and wind energy growth momentum in the United States is also relatively strong, with a
new grid installed capacity is 13.1 GW; in Europe, Germany’s wind power development is the best,
followed by Spain and the United Kingdom. By the end of 2012, the national rankings of the top ten
countries according to their total installed capacity of wind power was as shown in Figure 1.
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Figure 1. National ranking of the top ten countries by total installed wind power capacity.

Against the background of global economic development, the global wind power industry is
growing rapidly. However, the intermittent nature and randomness of wind power determines
the strong volatility of wind power. With the increasing number of wind farms and the installed
capacity, the wind power volatility represents a huge challenge to economic security and increases
the difficulty of the operation and management of power network dispatching companies once
incorporated into the power grid. Accurate prediction of the wind power in advance can relieve
the pressure of peaking power systems, which can effectively improve the ability to include wind
power in the grid [4].

Many experts and scholars both at home and abroad have performed lots of theoretical studies
and practical simulations. From the time scale point of view, wind power forecasting can be divided
into long-term forecasting, short-term and ultrashort-term forecasting. Long-term forecasts take
“week”, “month”, “year” as the units, and are mainly used for the wind farm design feasibility studies
and the maintenance and commissioning of wind turbines. Different from the European wind power
distributed access, most of China’s wind power is connected through a centralized grid connection,
so any power fluctuation has a greater impact on the power grid scheduling. The ultrashort-term
prediction has been widely used in the optimization of spare capacity [5,6] and the economic load
dispatch and control [7]. Short-term forecasting can reduce the abandoned wind and adjust the
maintenance plans [3]. Short-term and ultrashort-term forecasting which take “hour”, “minute” as
the units are particularly important.

Depending on the research method, the short-term wind power forecasting method can be
roughly divided into physical, statistical and learning methods [3], seen in Figure 2.
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Figure 2. Short-term wind power prediction methods.

Physical methods are based on numerical weather forecast models (Numerical Weather
Prediction—NWP). The wind turbine, wind speed, direction and other information about the hub
height of the wind turbine are obtained, combined with physical information, and the power curve of
the wind turbine is used to simulate the actual output power [8]. This method has no historical data
support and is suitable for forecasting a new wind farm, but it has high accuracy requirements and
data collection is difficult with high calculation demands and implementation costs.

Statistical methods establish a forecast model by finding the relationships between historical
data and wind speed or power without considering the physical process of wind speed change. This
relationship can be expressed in function form, such as Markov chains [4], regression analysis [9,10],
exponential smoothing method [11], Kalman filtering method [12], ARMA model [13] and so on.
Among them, the ARMA (p, q) model, used as the common statistical model, has high accuracy of
analysis and prediction for stationary time series, however, due to the impact of the uncertain natural
climate, wind energy has obvious trends, diversity and periodicity, which show non-stationary time
series. Statistical models thus have great limitations. Compared with physical models, statistical
models are relatively simple and have strong applicability, but they need a large amount of data
support, which is not suitable for the prediction of new wind farms.

Learning methods extract the relationship between the input and output using artificial
intelligence methods. The models are usually nonlinear and cannot be expressed by an analytical
expression. Commonly used models are neural network [14,15], wavelet analysis [16], support vector
machine [17,18], etc.. Learning methods have strong adaptive ability, and the accuracy of the models
can be improved by error correction. Wind power generation often shows irregular and uncertain
behaviors. Thus, Bayesian theory is applied to wind power forecasting. Probability forecasting
methods can give the probability of all the wind power generation in the next moment, providing
more comprehensive forecast information, but they require a great quantity of data. The analysis and
calculation process is more complex, and some data depends on the prior probability [19].

Many studies have judged the chaotic characteristics before prediction [20-22].
Literatures [20,21] verified that wind power output and wind speed time series have chaotic
properties. According to the theory of nonlinear dynamics, chaotic time series in the short term are
predictable, indicating that the wind power prediction is conducted with the chaos method. The
traditional prediction methods for chaotic time series include the global method and local method.
The global predictive method takes all state points into account and makes them the fitted objects
to find out the rules to fit the prediction model. This method needs more historical data and a large
amount of computation. It is difficult to calculate the phase space with high embedding dimensions,
which limits its application. In contrast, the local method is more widely applied. Literature [21]
proposes an improved weighted zero order local area prediction method, using the correlation
degree of the phase point to find the near phase point, which improves the forecasting precision.
A multivariable local prediction method of wind speed is proposed in [22]. Based on the principle
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of phase relation, the multivariable time series data are screened to construct the multivariable
phase space. Neural networks have been widely used in the prediction of chaotic sequences in the
last few years [23-28]. Back Propagation (BP) neural network [23,24], radial basis function neural
network [25], Elman neural network [26], GMDH type neural network [27] and wavelet neural
network [28] have all been used to forecast chaotic sequences and have achieved different prediction
effects in different areas. With its good nonlinear forecasting ability, the recurrent neural network
has been the main tool for the prediction of chaotic time series, and has been widely recognized
by the academic community [29]. However, the mathematical analysis is difficult in practical use,
for it has the disadvantages of being time-consuming, with large computational demands and
low training efficiency. As a new recurrent neural network, echo state network (ESN) has greatly
improved stability, global optimality and training process complexity phase compared with the
traditional neural network [30], attracting wide attention of scholars at home and abroad. It has been
widely used in speech recognition, traffic control [26] and communication forecasting [31], but is
rarely used in power system forecasting. In addition, the classical ESN has limited expression ability
for nonlinear dynamic systems, and it is difficult to meet the requirement of precision of various
forecasting problems in real situations, so its generalization ability is not strong.

In view of this, this paper presents a short-term wind power intelligent forecasting model for
dealing with the characteristics of nonlinear power generation. Considering the uncertainties of wind
power generation, the time series chaotic sequence is judged. The delay time and the embedding
dimension are computed to reconstruct phase space; then, to overcome the shortcomings of the ESN
network itself, this paper designs and trains an ESN to forecast short-term wind power by combining
the two complementary optimization methods of particle swarm optimization and tabu search to
improve the generalization ability of the model. The intelligent forecasting model proposed in this
paper has the following innovations:

(1) Firstly, the phase space reconstruction of chaotic time series is used to reduce the impact of the
uncertainty of the original data;

(2) Secondly, the ESN is introduced for prediction. As a new dynamic recurrent neural network,
ESN has a unique simple training method and high precision training results. The introduction
of reserve pool has overcome the problems of slow convergence and local minimum, which can
bring about higher accuracy;

(3) Considering the characteristics of the tabu search and particle swarm algorithm, the diversity
principles of the tabu search algorithm are introduced into the mechanisms of “group share”
and “random search” of particle swarm to make the search process have memory. The
combination of the two algorithms provides complementary advantages to improve the
prediction accuracy;

(4) Considering the multitime scales of minutes, hours and days simultaneously, wind power
predictions are carried out. Meanwhile, the seasonal factors are integrated into the model to
analyze the characteristics of wind power, and the robustness and generalization ability of the
proposed method is verified.

In the empirical analysis, compared with the classical ESN, the traditional BP network and the
single method optimizing ESN, the proposed method achieves higher prediction accuracy. The main
contents of this paper are as follows: Section 1 reviews and summarizes the wind power forecasting
methods, and proposes the research methods and contents of this paper; Section 2 outlines the
basic theory of the chaotic ESN and describes the structure and principle of the ESN; Section 3
introduces the optimization method of particle swarm optimization and tabu search and explains
the principle and process of the combination optimization method in detail; Section 4 establishes
the prediction process of the chaotic ESN based on particle swarm optimization and tabu search
algorithms; Section 5 reports our experiments and relevant discussion; Concluding remarks are
presented in Section 6.

12391



Energies 2015, 8, 12388-12408

2. Chaotic Echo State Network (ESN)

2.1. Chaos Identification and Phase Space Reconstruction

Chaotic time series present a complex process which is non-linear, dynamic and open, and
it is difficult for traditional methods to improve the prediction accuracy. However, its inherent
nonlinear dynamics structure makes it meet short-term predictability. The inherent regularity of a
nonlinear mapping sequence can be found by reconstructing the phase space to improve the accuracy
of prediction.

According to Takens’ embedding theorem, for a time series, as long as m > 2d+ 1 (m is
the embedding dimension, d is the correlation dimension of power system), the attractor in the
m-dimensional reconstructed space can be recovered and the phase trajectory can be reconstructed
with a differential rail with original power systems. The reconstructed space is topologically
equivalent to the original power systems [26,31].

For wind power generation time series: x1, xp, X3, - - - X, if the embedding dimension m and the
delay time T can be selected properly, the reconstructed phase space can be obtained:

Y1 = (X1, Y14 X 1ye)
Yy = (x2, Xo41, - x2+(m71)T)T

)
YN = (XN, XN+, xN+(mfl)T)T
where, N = n — (m — 1)1 is the length of the vector sequence.

The key of chaotic time series forecasting of wind power generation is phase space
reconstruction, and the key of phase space reconstruction is the value of the embedding dimension
m and time delay T. Although Takens proposed and proved the embedding theorem, he didn’t give
a certain method to choose the parameters of phase space reconstruction. If m is too small, it cannot
display the real structure of a complex system; while, if m is too large, it will make the true structure
of the points unclear due to the reduction of the density of points. The data required for phase space
reconstruction is significantly increased, which greatly complicates the calculation work, so we need
to choose an appropriate embedding dimension m to make the attractor open completely, and cause
less noise. The choice of T is not important in principle, but it is critical to select the appropriate value
for the actual finite data. If T is too small, the correlation of the coordinates is too strong and the
information is not easy to reveal; if T is too large, it will make the dynamic system described by the
time series distortion [32]. If the maximum Lyapunov exponent of the attractor in the reconstructed
phase space is greater than 0, then it is proved that the time series has the chaos attribute [33].

2.1.1. Mutual Information Method to Determine the Delay Time

Generally, the autocorrelation method and mutual information method are used to calculate the
delay time. The autocorrelation method extracts the linear correlation of time series. The mutual
information method, which is superior to the autocorrelation method in the selection of delay time,
measures the linear or nonlinear random correlation between two random variables. Based on
this, we select the mutual information method to determine the delay time. The basic principle is
as follows:

Based on discrete random variable X, Y, mutual information (X, Y) is expressed as:

I(X,Y) = H(X) + H(Y) — H(X,Y) @)

q
H(X) = =) P(x;)logP(x;) 3)
i=1
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Among them, P(x;) is the probability of event x;, g is the count of events and states which might
happen, logarithmic functions often take 2 to the base.

For time series xi and delay time T with the length of n, if the probability of xi appearing in
{x;} is set as p(x;), then the probability of x;, . appearing in {x;} is P(x;; ), which is calculated by
the frequency of occurrence in the corresponding time series. The joint probability of x; and x;; .
appearing in both two sequences is P(x;, x; ), which can be obtained from the corresponding lattice
on the plane (x;, x; ). Thus, mutual information I(X;, X; ;) is a function I(t) of delay time T. The
time delay of phase space reconstruction is the residence time when the function I(t) reaches the
minimum value for the first time.

2.1.2. False Nearest Neighbors Method (FNN) to Determine the Embedding Dimension

From the geometry point of view, a chaotic time series is the projection of the trajectory
of the chaotic motion of the high-dimensional phase space in a one-dimensional space. In the
projection process, the chaotic motion trajectory will be distorted. Points which are not adjacent
in high-dimensional phase space may be adjacent when projected onto the one-dimensional axis,
constituting false neighbor points. This is the reason why the chaotic time series is irregular.
Reconstruction of phase space is actually the recovery of the chaotic motion trajectory from the chaotic
time series. With the increase of embedding dimension m, the orbit of chaotic motion will gradually
open, false neighbor points will be eliminated gradually and the trajectory of chaotic motion will be
recovered, which is the starting point of false nearest neighbors method (FNN) [34].

In the d dimensional phase space, each phase point vector x(i) = {x(i), x(i + ©),--- , x(i + (d — 1)1)},
has a nearest neighbor point xNN (i) within certain distance and its distance can be described as:

Ry(i) = || x(i) — x"N(i) || )

When the dimension of phase space increasing from d to d 4+ 1, the distance will change to
Rj41(i), and:
R341() = R3() + || x(i + wd) — x"NN(i + 7d) | (5)

If the value of R;41(i) is much larger than that of R;(i), it can be considered the it is caused by
the reason that the two adjacent points of the high dimensional chaotic attractor are projected to the
lower dimensional orbit and become two adjacent points. Thus, such neighbor points are false.

Assuming that:
| x( +td) — xNN(i + 1d) ||

Rd(i)

a1, d) = (6)

If a1 (i, d) > R+, then xNN(i) is the false nearest neighbor point of x(i). Threshold value R can be
selected between [10, 50].

For the measured time series, we calculate the proportion of false nearest neighbors from the
minimum embedding dimension, then increase 4 until the proportion of false nearest neighbors is
less than 5 %, or the number of false nearest neighbors no longer decreases with the increase of d. At
this time, the chaotic attractor can be thought to open completely and 4 is the embedding dimension.
FNN is regarded as a quite effective method in terms of determining the embedding dimension of
phase space dimension.

2.1.3. The Maximum lyapunov Exponent for Chaotic Recognition

The value of the Lyapunov exponent reflects the shrinkage and tensile properties of the system
in all directions. This paper calculates the Lyapunov exponent by means of a small data method to
determine the chaos characteristics of the original sequence.
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2.2. ESN

ESN is a new recurrent neural network composed of input, hidden and output layers [35]. The
basic idea is to simplify the network training process, using large-scale recursive networks with
random connections to replace the middle layer of a classic neural network. Among them, the
hidden layer, called dynamic reservoir, is the core structure of the ESN network, and it is composed
of relatively rich neurons with random and sparse connection relations, as shown in Figure 3.

Input layer Reservoir Output layer

Figure 3. Echo state network (ESN) structure.

ESN reservoirs have a large number of neurons, approximately 20-500, so they have a great
short-term memory [31]. Assuming that an ESN network has M input units, N internal neurons, and
L output units, then the input unit u(#n), internal state x(1) and output unit y(n) at the moment n are
described as:

u(n) = [u1(n), ua(n), -, upa(m)”
x(n) = [x1(n), x2(m), -, xn ()] @)
y) = [y1(n), ya(m), -y ()]

The reservoir state and output of ESN are updated according to the following formulas:
x(n+1) = FNx(n) + Wigta(n) + Wiary(m)) ®)
901 +1) = fout(Wouelx(n + 1), u(n + 1), y(m)] + Wiiao) ©)
W represents the connection weight matrix within the reservoir, and its sparse connection
usually remains at 1%-5%, while the spectral radius p is usually less than 1 to ensure the echo
state property and the dynamic memory capacity and stability of reservoir of ESN; Wi, and Wk,
respectively, represent the connection weight matrix of input and output to state variables; Woyut
represents the connection weight matrix of reservoirs, inputs and outputs to output, W2t is a bias
term of output, or may represent noise; f = f[f1, f2, - fn] indicates the internal neuron activation
function, and f;(i = 1,2--- N) normally takes hyperbolic tangent function. The output function is
fout = [fdue foutr -+ - fE4]- Typically, fi (i = 1,2 - - L) takes the identity function. In network training,
the connection weight matrixes W, Wi, and Wy, connected to the reservoir are generated randomly,
and will not change once generated, while the connection weight matrix Woyt connected to the output
is generated through testing. Therefore, the training purpose of ESN is to determine the output weight

Wout [28]

When predicting a chaotic time series, we use the basic model with no output feedback, that is
Wpack = 0. Meanwhile, to simplify the calculation, we also assume that the connection weight of
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input to output and output to output should be 0. The training procedure of output weight matrix
Wout is as follows [26]:

(1) Initialize the ESN. The weight matrixes W and Wi, are generated randomly, elements of them
are initialized to random numbers obeying [0, 1] uniform distribution, and will not change
once produced. The state vector x(0) is set to zero;

(2) Update the state vector of ESN reservoir. According to the formula Equation (4), calculate
the new reservoir state vector x(n + 1) with the given input vector u(n) and state connection
vector x(n);

(3) Calculate the output weight matrix Woyyt. Select all state connection vectors and desired output
vectors after the time point n = Ap, then train the weight matrix Wy according to the
following formulas:

n=ApAp+1,---A
X = [x(Ag), x(Ag +1), - x(A)]"
Y = [y(Ao), y(Ag +1),- - y(A)]"
(Wou)" = X~1Y

(10)

(4) After completing the training of output weight matrix Wyyt, set all the input vectors
u(n),(n = A+1,---,N) after time point n = A as the test input vectors and take them into the
Equation (5) to get the predicted output vector j(n).

2.3. The Prediction Steps of Chaotic ESN
Specific prediction steps using chaos ESN are as follows:

(1) Construct the network. Establish the network between an input matrix X and output vector
Y, using the calculated embedding dimension m and delay time 7 of chaotic time series as the
input number [36,37]:

X1 X1+t o Xiqp(m—D)t
Xy X2 e X _
O a1

Xn Xntr 0 Xpp(m—1)7
X2 4 (m—1)t
X _

Y — '3+(m T (12)
Xn+1

(2) Learning period. Select a certain length time series, and train the network using the matrix X
as input and the vector Y as output. By adopting the output of the before process, compare
the result with the target model. If there is any error, start the back-propagation process
immediately, and correct the network weights in order to reduce error.

(3) Forecasting period. The input of ESN is set to be X’ = [xn+1f(m71)v Xy 1—(m—2)0 " an],
and then the output will be the actual prediction value Y = x,,,, of the sequence. The predicted
value should be used in the iteration prediction, as the network input of a new round.

3. Theoretical Introduction of Optimization Algorithm

During the training of ESN network, over reliance on the training set is prone to appear as over
fitting and reduce the generalization of the network. This paper optimizes the output weights through
the hybrid complementary algorithm of particle swarm optimization and tabu search to improve
generalization of the network.
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3.1. Basic Theory of Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm is an evolutionary algorithm. It originates from
observing birds’ behavior while searching for food. The conversion process of the motion of whole
flock from disorderly to orderly comes from information shared by each individual bird in the flock,
so as to find food [38].

The method optimized by PSO is to initialize a set of stochastic particles swam and find out the
best method through multiple iterations. In the iteration process, each particle updates its direction
and position constantly according to two extreme values. The first one is the optimal solution found
by the particle itself, called individual extreme ppest, and the other is the current optimal solution
found by the entire particle swarm, named global extreme gpeqt. At the beginning of the iterations,
the position of each initialized particle is the individual extreme, while the best position of the particle
swarm is the global extreme.

After all of the particles in the swarm complete the first iteration, After all particles finish the
first iteration, the front and rear position of each particle should be compared, and the individual
extreme with the optimal solution in this iteration should be updated if the new position is better
than the previous one. Then, we need to get the optimal solution throughout the individual extremes
of all particles in the swarm as the global extreme by comparison, and update the global extreme if
the new one is better than the old one. The final global extreme obtained through these cycle iteration
operations determines the optimal solution [39]. The diagram of the movement of particles is shown
in Figure 4.

After obtaining individual extreme and global extreme in the process, each particle needs to
update its velocity and position according to the following formulas:

Vjj+1 = WU j+C1 * random() = (Pbest,-,j — Pi,]')‘i’ 13)
2 # random()*(gpest,, — P;)

Piji1 = Pij+vijn (14)

where, v; ; denotes the velocity of the i particle after j iterations, P; ; means the position of the i particle
after j iterations, Phest;; and Sbest;; are on behalf of the individual extreme and global extreme of the
i particle after j iterations, w is the inertia weight of the updated speed to the speed of pre update,
random() is a random number within (0, 1), ¢; and c; are learning factors within (0, 2]. The velocity
of particles in the swarm is limited in (0, vmax), and the updated value should be replaced with vmax
if it exceeds maximum vmax during the iteration process.

The next
position

The optimal position
of ant colony

The optimal position 3
| of individual ant

Figure 4. Movement of particles.
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In the particle swarm optimization algorithm process, particles share the global extreme value
with other particles within the group. This one-way flow of shared information and data makes
the whole search process follow the group within the current optimal solution. Therefore, the initial
particle swarm optimization algorithm has fast global convergence capability.

3.2. Tabu Search

The tabu search algorithm adopts a neighborhood search algorithm through imitating human’s
memory to avoid local optimal solutions. The algorithm must be able to accept an inferior solution,
that is to say, the solution obtained from iteration is not necessarily better than the previous one,
but once the inferior solution is accepted, it is possible for an iteration to fall into a circle [40]. The
basic theory is to operate on the current solution through the application of a moving operator when
giving an initial solution. A set of neighborhoods of the current solution will be generated after that.
Then an optimal solution is searched as the current solution through the neighborhoods. The above
operation is repeated until the convergence condition is satisfied. To avoid falling into a search loop,
a flexible “memory” technology is utilized in the search: setting a taboo table of designated length so
that it is propitious to record and select optimization procedures which have been carried out before,
as well as to guide the next search direction. Once the algorithm puts some move into the tabu table,
it will be banned. In this way, it is possible to prevent algorithm from revisiting a solution which has
been already visited in the last several iterations, which averts the circulation and helps the algorithm
avoid local optimal solutions. The tabu table will be updated in the iterative process. After iteration
for a certain number of times, a move which is beyond the length of the taboo list will be shifted out
of the table and the solution is released from it. Such a rule is called contempt criteria [41]. In general,
tabu search has several key elements as follows:

(1) Encoder mode: the initial solution of the TS can be randomly generated. It can also be readily
obtained by means of heuristics based on the properties of the problem at hand;

(2) The choice of candidate solutions: the number of candidate solutions should be firstly
determined followed by the choice of the optimal candidate solution. In principle, all
neighborhood solutions of the current solution should be executed. However, when the scale
of a problem is large, there will be a great number of neighborhood solutions. Considering the
efficiency of neighborhood search, it is better to merely select subsets of the neighborhood. As
for the selection of best candidate solution, the general approach is to choose the best one that
meets the principle of contempt or non-taboo in the set of candidate solutions;

(3) Tabu table and its length: tabu table usually adopts a FIFO queue and its length can be fixed or
change adaptively;

(4) Contempt principles: it often uses simple contempt principles that if a solution is better than
the optimum, its tabu properties are ignored. The solution are selected as the current solution;

(5) Termination condition: the common condition is the maximum number of functions or the
maximum continuous iteration number when the best solution can sustain.

It is advantageous for tabu search to accept inferior solutions through the search process and it
has strong mountain climbing ability, which can avoid slipping into local optimal spot. The drawback
is that the initial has strong dependence. Iterative search process is moving a solution to another one,
which reducing the efficiency of obtaining global optimal solution.

3.3. Hybrid Algorithm Based on Particle Swarm Algorithm and Tabu Search

The particle swarm algorithm belongs to iterative random search algorithm in nature, which can
optimize a variety of functions effectively. It also has the advantage of simple operation and strong
global searching ability. Great results are demonstrated in continuous optimization and discrete
optimization problems. However, as the execution progresses, the algorithm can easily fall into a
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local extreme point. Meanwhile, the search precision value is not high and the convergence velocity
is slow. It is prone to the precocious phenomenon.

The tabu search algorithm has a fast convergence rate and strong local search ability, but its
search performance relies heavily on the initial value which is already given. A better initial solution
often makes the tabu search algorithm converge to the global optimal solution quickly while a poor
one may greatly diminish its convergence velocity. Thus, another heuristic algorithms is often applied
to provide a better initial solution, in order to improve the performance of the search algorithm.

In consideration of the characteristics of the two algorithms, this paper introduces the diversity
thought of tabu search algorithm into the mechanisms of “group share” and “random search” of
the particle swarm to make the search process have memory. Owing to the better globe search
capability of the particle swarm algorithm, it is available in the first stage. The tabu search algorithm
can work in the later stage in consideration of its stronger local search capability. The TS algorithm
with its strong local search ability is introduced in the later period of the particle swarm algorithm.
Consequently, we can leverage their comparative advantages successfully and readily solve the
difficulty of hard convergence.

To improve search efficiency, this paper assumes that the key in the combination of these two
algorithms is to escape this local optimal state through the tabu algorithm when the particle swarm
algorithm tends to precocious phenomenon. However, as it is difficult to determine whether the
precocious phenomenon takes place, we adopt the sample variance of fitness to judge precociousness
referring to [42]:

m<ojoy <n (15)

where, o is the variance of sample’s fitness after particle swarm optimization; ¢ is the sample
variance after the last particle swarm optimization; m and n are two numbers approaching to 1. It
is possible to deem that the particle swarm algorithm is going to be premature when the changes
of variance generated from two adjacent optimizations are small. There is no theoretical method to
determine the values of m and n. If the neighborhood of [m,n] is too large, the program is likely
to jump outside global search. To achieve the best effects, this paper sets m = 0.9,n = 1.1 through
multiple operations.

4. Chaotic ESN Optimized by Particle Swarm and Tabu Search

Neural networks have powerful parallel processing and nonlinear mapping capability. In other
words, they can combine various approaches to process non-linear signals and tools. This can be used
to study time series, predict and control for unknown power system. As the chaotic time series has
regularity in the interior which arises from the nonlinearity, it indicates some correlation among time
series in the time delay state space, which makes the system seems have a memory function, while it
is also difficult to express this rule by conventional analytical methods. This information processing
manner is exactly what the neural networks have; therefore, neural networks are adaptive to predict
chaotic time series.

The ESN is a new type of large-scale recurrent neural network proposed by Jaeger and Haas [35]
in 2004. Currently, this model has been widely used to predict and study chaotic time series [26-29].
However, ESN also has its own shortcomings. In many instances, ESN’s state matrix would be
ill-conditioned, causing excessive amplitude of output weights and influencing the model’s accuracy
and generalization ability. To solve the problem, this paper proposes a combined optimization model
to optimize the ESN’s output weights based on particle swarm and tabu searching to improve the
robustness of the model. Figure 5 and the specific forecasting steps and are shown as below.

(1) Determine the delay time T and embedding dimension m according to the mutual information
method and FNN method to reconstruct the phase sequence of wind power generation;
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2

®)

(4)
©)
(6)

@)

®)

)

Use the reconstructed data as sample data, separate the training set and test set and set the
parameters of the model, including: particle swarm size M, iteration number, tabu search
length, etc.;

Initialize the parameters of the particle swarm optimization and determine the initial position
and speed to find the initial self-optimal position of each particle, that is, the position of each
particle itself;

Calculate the fitness of particle swarm, and find out ppest and gpest;

Update the position and speed of all particles according to Equations (13) and (14);

According to Equation (15), judge that whether the particle tends to premature. If yes, then go
to the next step of tabu search; otherwise, determine whether the particle swarm optimization
meet the convergence condition, if yes, then output results, otherwise, go to Step (3);

Set the current solution optimized by particle swarm as the initial solution of the tabu search,
use the neighborhood function of the current global extremum to produce a number of
neighborhood values, and select some candidate solutions with the highest fitness;

Judge each candidate using the contempt criterion, if satisfactory, replace the current solution
Pbest With the candidate solution and update the tabu list and optimal solution, then go to the
Step (6), otherwise, proceed to the next step;

Judge whether the candidate solution is in the tabu list, select the best state instead of the
current solution, find the corresponding tabu object to replace the taboo object which firstly
entered the tabu table;

(10) Judge whether meet the maximum iteration number, if yes, then output optimal solution,

otherwise, go to Step (3).

| Start | R ittt

Determine parameters of the model, including: the length
of the taboo, the length of the taboo list, etc.

!

Determine the delay time and embedding dimension
according to mutual information method and FNN method to
reconstruct the phase sequence of wind power generation.

Set the current solution optimized by particle swarm as
the initial solution of the tabu search

Put the reconstructed data as sample data, separate the training
set and test set and set the parameters of the model.

v

Initialize the parameters of the particle swarm optimization

and determine the initial position and speed to find the initial

self optimal position of each particle, that is, the position of
each particle itself.

current solution

v
Take candidate solution of the relative optimal value of
the adaptation value

Calculate the fitness of particle swarm,
and find out Py, and Lpesr

I No

Update the position and speed of all particles

I
I
I
I
I
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I
I
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I
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)

Output optimal solution

Figure 5. Flow chart of chaos ESN optimized by particle swarm and tabu search algorithm.
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5. Empirical Analysis

5.1. Multi Time Scale Forecasting of Short-term Wind Power Generation without Considering
Seasonal Factors

Ultrashort-term and short-term wind power forecasting with high prediction accuracy of the
model requirements, have great significance for reducing the phenomenon of abandoned wind
power, optimizing the conventional power generation plan, adjusting maintenance schedules and
developing real-time monitoring systems. In this paper, we consider different time scales and predict
the wind power output. Through reading the literature, we can find that for the time scale of
wind power generation minutes, hours and days are usually chosen [5-7,16,19-21]. Thus, without
considering the seasonal factors, we select a set data from the Jilin wind farm in the second quarter in
2013 for 5 min’ ultrashort-term and hour-ahead short-term wind power forecasting. The prediction
of day-ahead wind power generation will be discussed in the next section in the seasonal forecasting
of wind power.

5.1.1. Ultrashort-Term Wind Power Generation Based on the Time Scale of 5 Min

Wind power output in a certain wind farm from 1 to 5 June 2013 was selected as a sample for
analysis, sampling every 5 min and collecting 288 points a day to form a dataset with a total of 1430
sample points for empirical analysis. Among them, the first 1152 data are set as training samples, and
the last 278 data in the last four days are used as test samples.

The original data should be normalized before the network study:

x— > Jmin (16)
Xmax — X¥min

After the normalized treatment, the values of each variable are between [0, 1], which eliminates
the dimensional effect. We select the mutual information method for delay time to reconstruct
the chaotic time series. As we know, the time when the mutual information function reaches the
minimum time for the first time is the optimal value, so as shown in Figure 6. T = 4 is the optimal
delay time.

Figure 6. Optimal delay time calculated by mutual information method.

The embedding dimension is determined by the FNN false nearest neighbor point method.
When the false nearest neighbor points no longer decreases with the increase of m, the minimum
embedding dimension is m. It can be seen from Figure 7 that all discriminant curves of discriminant
1, 2 and the joint curve display when m is greater than or equal to 5, no longer decrease with the
increase of m, and tend to be stable. Thus the minimum embedding dimension is m = 5.
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Figure 7. FNN method for minimum embedding dimension.

The phase are reconstructed with the time delay T = 4 and the embedding dimension m = 5.
Using the small data volume method, we know that the maximum Lyapunov exponent is A1 = 3.1.
The result of A; > 0 verifies the time series of wind power generation has chaotic properties, so it can
be predicted by the chaos method.

The reconstructed training samples are put into the ESN network, choosing the pool dimension
of 500 and maintaining a 3% sparse connection. As the spectral radius of the connection weight matrix
has no uniform standards and algorithms, the optimal value is found through many experiments.
This paper determines a spectral radius of 7.54, pool dimension of 500 and maintain sparse connection
of 3% through the calculations.

The activation function of the pool is tansig and the output unit adopts a linear activation
function. The output weights of the training method refer to the particle swarm and tabu search
training process. At the same time, the standard ESN network and BP neural network are used
for comparison. The network parameters of the standard ESN network are the same as ESN
network optimized by PSO and TS algorithm (PSOTS-ESN), and the output weights use the least
squares method.

Various error metrics between the actual and forecasting data have been defined to assess the
forecasting performance. In our experiments, mean absolute percentage error (MAPE), root mean
square error (RMSE) and mean absolute error (MAE) are introduced to appraise and compare the
different simulation results:

A

n
MAPE = %Z Yi— Yi (17)
i=1

Y

(18)

I,

MAE = E; 19i — vl (19)
Based on the parameter settings, the results of the prediction of the wind power output by
the particle swarm tabu search optimized ESN and the comparison methods are illustrated in
Figures 8-10 respectively. Overall, the forecasting trends predicted by the four models are consistent
with the actual value. The PSOTS-ESN algorithm and the standard PSO-ESN algorithm are closer to
the actual curve, while the deviation of BP forecasting curve is relatively large, especially at the peak

point of the curve. Error evaluations of the different algorithms are presented in Table 1.
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Table 1. Error and computational time comparison of the different algorithms. Echo state network
optimized by particle swarm optimization and tabu search algorithm: PSOTS-ESN; particle swarm
optimization echo state network: PSO-ESN; echo state network: ESN; back propagation: BP; mean
absolute percentage error: MAPE; mean absolute error: MAE; root mean square error: RMSE.

Algorithm MAPE (%) MAE (MW) RMSE (MW) Computational time (s)

PSOTS-ESN 3.97 8.82 2.97 144
PSO-ESN 5.51 12.7 3.49 152
ESN 7.79 14.43 3.75 155
BP 8.6 15.8 4.8 201
110
---- Actual data
100 3 —=— PSOTS-ESN
90
g Mo
£ 70
é 60
£ s
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I I I |
150 200 250 300
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Figure 8. Curves of proposed model forecasting results and actual wind power output.
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Figure 9. Curves of comparison model forecasting results.
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Figure 10. Curves of Back Propagation (BP) model forecasting results.

The error of MAPE, MAE and RMSE of PSOTS-ESN is the smallest, which improves the effect
of short-term wind power forecasting. The RMSE and MAE of PSOTS-ESN method are 2.97 MW and
8.82 MW, respectively. The maximum is BP with the value of 4.8 MW and 15.8 MW. Compared with
other methods, the proposed method has less computation time and the convergence speed of the
algorithm is improved.

From the above tables and figures, it can be concluded that:

(a) The result of Figures 8 and 9 and Table 1 denote that the proposed PSOTS-ESN model in
this paper has more obvious advantages than the PSO-ESN model. The error metrics and
computation time of the PSOTS-ESN are all less than those of the PSO-ESN model. The main
reason is the fact that the hybrid optimization algorithm makes up for the defects of any single
algorithm and chaotic time reconstruction can eliminate the chaos of the original data without
regularity which improves the accuracy and the generalization ability of the model and makes
for a better prediction effect.

(b) Comparing Figures 8-10 we can find that the forecasting precision of the combined model is
higher than that of the single model. As the combination forecasting model can realize the
complementary advantages of different algorithms to improve the accuracy of the algorithm,
the prediction of a single model has a large limitation.

(c) From Figures 9 and 10 and Table 1, we can find that the forecasting precision of the standard
ESN is higher than that of the BP neural network. The conclusion can be drawn as follows: for
the forecasting of non-stationary time series, the processing power of ESN is better than that of
BP, and the prediction accuracy is higher.

5.1.2. Short-Term Wind Power Generation Based on the Time Scale of 1 H

In wind power prediction, hourly prediction is the most common way used. As short-term wind
power forecasting has high precision requirements and has important practical significance for the
power grid enterprise scheduling, this paper selects 352 consecutive hours of wind power output
from a wind farm data for testing to validate the generalization ability of the proposed method. The
first 282 data points are used as training set and the latter 70 data are as testing set. The same analysis
can be made as proposed in Section 5.1.1.

Figure 11 displays the forecast curves of the proposed PSOTS-ESN method and the comparison
with the two BP and ESN model methods. Figures 12 and 13 present the histograms of the relative
errors of the three methods.
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Figure 11. Curves of forecasting model results of echo state network optimized by particle swarm
optimization and tabu search algorithm (PSOTS-ESN), ESN and BP.
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Figure 12. Error distribution histogram of PSOTS-ESN.
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Figure 13. Error distribution histogram of ESN and BP.

Seen from Figures 12 and 13 and Table 2, the method presented in this paper has higher accuracy.
The vast majority of the predictive error of the proposed method is within 20%, and 70% of the
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relative error is within 5%. At the same time, the numerical values of the three error functions are
less than the contrast methods. The prediction results are satisfactory. In the comparison with ESN
and BP, the relative error of the prediction results are both within 50%, the overall error of ESN is less
than BP. The result shows that the effect of ESN prediction is better than BP model for short-term
non-stationary sequence. From the final results, the proposed method demonstrate the excellent
performance in the wind power forecasting based on the time scale of 1 h with strong generalization
ability and robustness.

Table 2. Error comparison of different algorithms for 1 h forecasting.

Algorithm MAPE (%) MAE (MW) RMSE (MW)

PSOTS-ESN 5.9012 0.68 0.63081
ESN 9.7283 1.03 1.3733
BP 9.0579 1.15 1.8571

5.2. Multi Time Scale Forecasting of Short-term Wind Power Generation considering Seasonal Factors

The wind power output depends mainly on the local wind resources, and the characteristics of
wind resources mainly refers to the change of wind speed. There are obvious differences in wind
speed and wind direction during the different seasons in China. Consequently, the seasonal factor
has an important influence on the wind power forecasting. With the changes of the seasonal cycle,
the wind speed in the same season and the same month has a certain periodicity. Based on this
feature, wind power output also has a certain periodicity. The seasonal analysis of wind power can
be predicted according to the rules of different seasons to improve the prediction accuracy.

The empirical analysis is conducted with the daily data of wind power output for the four
quarters from 2014 to 2015 for a wind farm in Jilin. Each quarter selects the previous 70 data points
for the training set and the last 20 data points for the testing set, getting the following forecasting
results in Figure 14, where, the blue dotted line in Figure 14 represents the original value and the red
solid line shows the predicted value.
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Figure 14. Four quarters’ forecasting results by PSOTS-ESN model.
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Table 3 shows the error function values predicted by different methods in different seasons, while
the error values of forecasting results without considering the seasonal factors are also listed. From
the quarterly forecasting results, it can be seen that the forecasting error the quarter and the fourth
quarter are relatively small, while the forecasting error in the summer and fall are larger. This occurs
because the wind speed and wind direction in summer and autumn are not stable, causing a weak
regularity of the wind power output. In the seasonal wind power generation based on the time scale
of one day, the prediction error of the proposed method is the smallest and the prediction accuracy is
the highest, which verifies the generalization ability and robustness of the proposed method.

In this paper, we take the sample without considering the seasonal factors as a comparison. As
can be seen from the results, the prediction error of the PSOTS-ESN method in this paper is relatively
smaller, but the overall prediction error is far higher than for the quarterly forecasting results. The
wind power generation is influenced by the seasons. Through the above analysis, it can be known that
wind power generation has a certain seasonality and periodicity, which is advantageous to improve
the overall forecast accuracy by taking into account the seasonal wind power generation.

Table 3. Error comparison of different algorithms for seasonal forecasting.

E First quarter Second quarter Third quarter

TTOr  TPSOTS-ESN ESN BP PSOTS-ESN ESN BP PSOTS-ESN ESN BP
MAPE 3.231 4.5 5.98 8.2 10.3 12.6 8.8 9.2 10.7
RMSE 6 x10~* 1x1073 2 x 1073 55 x 10~* 1x1073 2 x 1073 8 x 10~* 3 x 1073 2 x 1072
MAE 2 x 1072 3 x 1072 3 x 1072 2 x 1072 2 x 1072 3 x 1072 5 x 1072 4 x 1072 5x 1072
E Fourth quarter Non-seasonal factor forecasting - - -

TTOr  TPSOTS-ESN ESN BP PSOTS-ESN ESN BP = E E
MAPE 5.52 9.6 13.5 11.79 13.5 18.4 - - -
RMSE 5x 104 1x 1072 2 x 1073 3 x 1072 0.4 0.8 - - -
MAE 1x 1072 2 x 102 4 x 1072 0.19 0.34 0.61 - - -

The unit of MAPE is %, unit of RMSE and MAE is MW.

6. Conclusions

In this paper, a novel composite PSOTS-ESN technique for ultrashort-term and short-term wind
power forecasting systems is proposed. The wind power generation results are affected by wind
speed, wind direction, temperature and other natural climate factors, showing a certain disorder and
regularity. The chaos time series method takes advantage in dealing with uncertain and regularity
time series. It can order the chaotic time series into a new sequence through the delay time and the
embedding dimension to meet the short-term forecast demands. The combination of particle swarm
optimization and tabu search show the advantages of the two algorithms, and also make up for the
deficiency of the single algorithm in the implementation process, making the optimization results
more accurate. This paper selects the wind power output data from a certain wind farm for multi
time scale forecasting. Meanwhile, the influence of seasonal factors on wind power is taken into
consideration. The results show that wind power has a seasonal pattern and the original wind power
time series demonstrate chaotic characteristics. The proposed PSOTS-ESN is used to predict the multi
time scale wind power output. The experiments demonstrate that the method proposed in this paper
outperforms other models for the same task and has strong generalization ability and robustness. It
is shown that the proposed model is effective to predict wind power time series with its short-time
memory ability and achieves satisfactory results.
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