Supplementary Materials: Integrated Assessment of Carbon Capture and Storage (CCS) in South Africa's Power Sector #### Peter Viebahn, Daniel Vallentin and Samuel Höller For further information, reference is made to project report [1] on which this article is based. #### ad Section 1. Introduction Table S1. List of organizations interviewed in South Africa (face-to-face interviews). | Organization | Date of interview | |---|-------------------| | Industry | | | Sasol | 24/10/2011 | | Eskom | 27/10/2011 | | Anglo American | 27/10/2011 | | Civil society | | | Fossil Fuel Foundation (FFF) | 25/10/2011 | | Greenpeace Africa | 31/10/2011 | | Science, consultancies and think-tanks | | | County African Comban for Contrar Comban and Change (CACCCC) | 24/10/2011 | | South African Centre for Carbon Capture and Storage (SACCCS) | 25/10/2011 | | IMBEWU – Sustainability Legal Specialists | 27/10/2011 | | Council for Geoscience | 28/10/2011 | | School of Chemical and Metallurgical Engineering at University of Witwatersrand | 31/10/2011 | #### Questionnaire (research interviews) #### Your General Position on CCS - 1. Please describe your function and how you are involved in the debate on CCS in South Africa. - 2. What do you think about carbon capture and storage (CCS) in general and its potential in South Africa? - 3. In which way are you and your organization dealing with CCS technologies? #### CCS Stakeholders in South Africa - 4. Which stakeholders are most important with regard to the prospects of CCS in South Africa, both within the government and industry? - 5. Is there a public opinion on CCS and CO₂ storage in South Africa in particular? Is public acceptance an important determinant for the deployment of CCS? #### CCS in South Africa's Energy Sector - 6. Which technological and economic parameters are of decisive meaning for a possible market introduction and diffusion of CO₂ capture technologies in South Africa? - 7. What are the most important CO₂ capture activities (demonstration projects, policy initiatives *etc.*) going on in South Africa at the time being? - 8. Which technology path is most relevant for South Africa and globally (post-combustion, pre-combustion, oxyfuel)? - 9. Is CCS primarily considered for the power sector or also for other industrial CO₂ large-point sources? - 10. What share of South Africa's power plant fleet could be equipped with CCS until 2030 or 2050? - 11. To which degree do you expect the costs of CCS plants in South Africa to be different from the international level? Why? - 12. Does the proximity of South Africa's CO2 sources or storage sites inhibit or support CCS? - 13. Is there a problem regarding increased water needs for CO₂ capture in water scarce regions? #### **Energy Scenarios** - 14. What are the most relevant scenario projections (until 2050) for energy and power demand in South Africa? - 15. Which of these scenario projections could be used as a basis for a conservative, moderate and ambitious development of CCS in South Africa? - 16. How far can CO₂ be transported in South Africa for geological storage in a feasible manner? Is there a maximum value (e.g., 500 km)? #### CO₂ storage - 17. What are the most important CO₂ storage activities (demonstration projects, policy initiatives *etc.*) going on in South Africa at the time being? - 18. Which storage estimates seem to be most realistic for South Africa? - 19. Do you know other estimates of or research projects on South Africa's underground storage capacity? - 20. Which formations seem most promising in South Africa for CO₂ storage: Coal fields (ECBM), depleted oil or gas fields, deep saline aquifers or basalt formations? - 21. Regarding CO₂ sequestration in aquifers: Is a production of water needed to increase the amount of space? If this is the case, what should be done with the produced water to avoid environmental hazard? - 22. Do you see a potential conflict of interest between groundwater supply, geothermal energy production and CO₂ storage projects? - 23. Could CO₂-EOR help to boost CCS in South Africa and increase oil production? Are there new EOR operations being planned? - 24. Is there a limit to the amount of CO₂ that can be injected safely in the subsurface per year and site (injection rate)? - 25. Does seismic activity exclude formations and regions from being potential CO₂ storage sites? Which regions? #### **Political Aspects of CCS** - 26. Which political developments are decisive for CCS deployment in South Africa? - 27. In which way are South Africa's governments supporting the development and deployment of CCS? - 28. Do regulatory frameworks and incentives exist or are they being developed? - 29. Would the integration of CCS into the CDM foster CCS development and deployment? # ad Section 3.2. Long-term usable CO2 storage potential for South Africa's power sector Energy # Scenario Analysis Table S2. Overview of existing long-term energy scenarios for South Africa and assessment of their suitability for this study arranged by year of publication. | Year | Scenario | Target
year | Coal
capacity
given | CCS
for | Installed CCS capacity | Cumulative
stored CO ₂
up to target year | CCS share of electricity generation | Decision | Remark | |---------|---|----------------|---------------------------|--------------------------------------|------------------------------------|---|-------------------------------------|-----------------------------------|---| | World I | Bank | | | | | | | | | | Sources | : [2,3] (compiled by Vito [E | elgium]; Ene | rgetski Institut | t Hrvoje Požar | [Hungary]; Cape | Town University's Er | nergy Research Ce | entre [South Africa] |)*1) | | 2011 | Reference | 2030 | Yes | | | | | n.c. | | | | Baseline (IRP revised balance scenario) | 2030 | Yes | Natural
gas (2025) | Figures for 2020/25/30 0.2–2.4 GW | 19 Mt *1) | 2% | n.c. | | | | Baseline with EOR/ECBM | 2030 | Yes | Natural
gas | Only figure
for 2030:
2.4 GW | 23 Mt *1)
+ 4 Mt retrofit | 2% | n.c. | | | | CO ₂ Price Scenarios | 2030 | Yes | Coal:
2025 or
(mainly)
2030 | Figures for 2025/30 5.9–7.3 GW | 162/177/283 Mt *1)
+ 15.4/0/0 Mt
retrofit | 10–16% | n.c. | | | EREC a | nd Greenpeace Internation | al | | | | | | | | | Sources | : [4] (compiled by German | Aerospace C | enter and ecof | ys [the Nether | lands]) | | | | | | 2011 | Reference | 2050 | Yes | | | | | Taken as
pathway E2:
middle | Up to 2030 based on [5]
and updated with figures
from IRP (May 2011)
(committed and newly
built options); updated up
to 2050 | | | Energy [R]evolution | 2050 | Yes | | | | | Taken as pathway E3: low | Up to 2030 based on IRP
(May 2011) (committed
power plants only);
updated up to 2050 | Table S2. Cont. | Year | Scenario | Target
year | Coal
capacity
given | CCS
for | Installed CCS capacity | Cumulative
stored CO ₂
up to target year | CCS share of electricity generation | Decision | Remark | |--|--|----------------|---------------------------|---------------|------------------------|---|-------------------------------------|-------------|------------------------| | WWF S | South Africa | | | | | | | | | | Source: [6] (compiled by Cape Town University's Energy Research Centre [South Africa]) | | | | | | | | | | | 2010 | Reference Case | 2030 | Yes | | | | | n.c. | Uses LTMS framework | | | Alternative Scenario | 2030 | Yes | | | | | n.c. | Uses LTMS framework | | Depart | Department of Environment Affairs and Tourism South Africa | | | | | | | | | | Source | s: [7,8] (compiled by Cap | e Town Uni | versity's Ene | ergy Research | h Centre [South A | Africa]) *2) | | | | | 2007 | LTMS Scenario 1 | 2050 | Yes | | | | | Taken as | 5 new CTL plants each | | | "Growth without | | | | | | | pathway E1: | 80,000 bbl/d=½ Secunda | | | constraints" | | | | | | | high | | | | LTMS Scenario 2 | 2050 | | | | | | | Storylines | | | "Required by | | | | | | | | | | | Science" | | | | | | | | | | | "Start now" | ??? | | Synfuels | No figures | 2 Mt/a | | n.c. | *3) | | | "Scale up" | ??? | | Synfuels | No figures | 23 Mt/a or | | n.c. | *2), *3) | | | - | | | - | | 20 Mt/a | | | | | | "Use market" | | | | | | | n.c. | | | | "Reach goal" | | | | | | | n.c. | | Figures in italics: exclusion criteria; n.c. = not considered. *1) Whole of the Southern Africa Region; *2) Starting figure for 2010 is too low (32.8 GW instead of currently installed 38 GW); IRP figures not given at that time; *3) The low CCS application seems to be a contradiction to the statement that CCS is "included as a major component of energy security strategy" (p. 29). Main conclusions drawn from the assessment of existing energy scenarios and roadmaps (Table S2): - No scenarios exist that go up to 2050 and that include use of CCS for power plants; - Only one scenario applies CCS for coal-to-liquid plants (20 or 23 Mt CO₂/a), but considers the existing Secunda plant only; - Two scenarios attempt to achieve climate goals in 2030 and 2050 without using CCS or nuclear energy [4,6], respectively); Only one study is up-to-date compared with the current power plant development plan of the South African government. [4] adapted both the *Energy* [R]evolution Scenario and the IEA WEO 2010 scenario, which is taken as the Reference Scenario, to the May 2011 Policy Adjusted Scenario of the Integrated Resource Plan (IRP) for Electricity [9]. Since IRP only covers the period up to 2030, the figures were updated to 2050. ## **CCS** Deployment **Table S3.** Conventional and CCS-based coal-fired power plant capacity installed in South Africa in the three pathways *E1–E3* for the base case (CCS from 2030). | Type of capacity | 2010 | 2020 | 2030 | 2040 | 2050 | |--|------|------|-----------|------|------| | E1: high | | | | | | | Currently installed | 37 | 42 | 28 | 10 | 5 | | Newly built without CCS | | | 23 | 16 | 16 | | Newly built with CCS | | | | 34 | 58 | | Retrofitted with CCS | | | 4 | 12 | 12 | | CCS penalty load newly built | | | | 6 | 139 | | CCS penalty load retrofitted | | | 1 | 2 | 2 | | Total CCS newly built + penalty | | | | 40 | 67 | | Total CCS retrofitted + penalty | | | 5 | 14 | 14 | | Total CCS | | | 5 | 54 | 81 | | Total | 37 | 42 | 56 | 80 | 102 | | E2: middle | | | | | | | Currently installed | 37 | 42 | 28 | 10 | 5 | | Newly built without CCS | | 7 | 12 | 10 | 10 | | Newly built with CCS | | | | 19 | 24 | | Retrofitted with CCS | | | 4 | 6 | 6 | | CCS penalty load newly built | | | | 3 | 4 | | CCS penalty load retrofitted | | | 1 | 1 | 1 | | Total CCS newly built + penalty | | | | 22 | 28 | | Total CCS retrofitted + penalty | | | 5 | 7 | 7 | | Total CCS | | | 5 | 29 | 35 | | Total | 37 | 49 | 45 | 49 | 50 | | E3: low | | | | | | | Currently installed | 37 | 42 | 28 | 10 | 5 | | Newly built without CCS | | | | | | | Newly built with CCS | | | | 8 | 8 | | Retrofitted with CCS | | | 4 | 4 | 4 | | CCS penalty load newly built | | | | 2 | 2 | | CCS penalty load retrofitted | | | 1 | 1 | 0 | | Total CCS newly built + penalty | | | | 10 | 10 | | Total CCS retrofitted + penalty | | | 5 | 5 | 5 | | Total CCS | | | 5 | 15 | 15 | | Total | 37 | 42 | 33 | 24 | 20 | | All quantities are given in Gt CO ₂ | | | | | | ## **Power Plant Analysis** **Table S4.** Overview of parameters assumed for future coal-fired power plants in South Africa. | | Unit | 2010 | 2020 | 2030 | 2040 | 2050 | | |--|---------------------|----------|-----------|------------|-------------|--------|--| | Share of power plan | | | | | 2040 | 2050 | | | Supercritical | % | coai iii | 100 | 90 | 70 | 60 | | | Integrated Gasification Combined Cycle | % | | 0 | 10 | 30 | 40 | | | · | newly built coal- | fired no | | | - 50 | -10 | | | Supercritical | % | 38 | 39 | 41.5 | 42 | 42 | | | Integrated Gasification Combined Cycle | % | 30 | 44 | 46.5 | 47 | 47 | | | Efficiency losses through CCS | | | | | | | | | Efficiency penalty post-combustion | %-pt | 12 | 8.5 | 7 | 6 | 5 | | | Efficiency penalty pre-combustion | %-pt | 8 | 6.5 | 6 | 6 | 6 | | | Additional efficiency penalty for retrofitting | | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | | Traditional emercines permits for recommendations | Other paramete | | 1.0 | 1.0 | 1.0 | 1.0 | | | Origin of hard coal: import share | % | 0 | | | | | | | Net calorific value for medium-quality | MJ/kgcoal | 19.6 | | | | | | | South African coal | ,, , | | | | | | | | Price of hard coal mix (100% domestic) | \$2011/kwh | 1.33 | 1.73 | 2.20 | 2.67 | 3.15 | | | Technical lifetime of newly built | a | | | 50 | | | | | coal-fired plants | | | | | | | | | Plant load factor (PLF) | % | | | 80 | | | | | , | h/a | | | 7,000 | | | | | CO ₂ capture rate | % | | | 90 | | | | | Average/maximum CO ₂ transport distance | km | | | 550 | | | | | CO ₂ leakage of storage sites | %/a | | | 0 | | | | | | Cost paramete | r | | | | | | | Coal-fire | d power plants v | vithout | CCS | | | | | | Capital cost | \$2011/kWel | 2,297 | Further | developm | ent deper | nds on | | | O&M cost (4% of capital cost) | $$2011/kW_{\rm el}$ | 92 | installed | capacities | within pa | thways | | | | | 92 | | E1-I | E3 | | | | Learning rate capital cost | % | | | 1.7 | | | | | Learning rate O&M cost | % | | | 3.9 | | | | | Interest rate | % | | | 8 | | | | | Depreciation period | a | | | 25 | | | | | Resulting annuity factor | %/a | | | 9.37 | | | | | Coal-fi | red power plants | with C | CS | | | | | | Capital cost (175% of capital cost w/o CCS) | \$2011/kWel | | | Develo | pment fro | m 2030 | | | O&M cost (183% of O&M cost w/o CCS) | \$2011/kWel | | | depei | nds on ins | talled | | | | | | | capaci | ties in pat | hways | | | | | | | | E1-E3 | | | | Learning rate capital cost | % | | | 2.5 | | | | | Learning rate O&M cost | % | | | 5.8 | | | | | CO ₂ transportation costs via pipeline | \$2011/(tcO2,100 | | | 5.5 | | | | | | km) | | | | | | | | Average/maximum CO ₂ transport distance | km | | | 550 | | | | | | Other paramete | ers | | | | | | | CO ₂ costs | \$2011/tCO2 | | 42 | 49 | 56 | 63 | | # Source-Sink Matching **Table S5** shows the comparison of the *high storage scenario S1600km* with coal development pathways *E1–E3*. First, the onshore Zululand basin is filled with 0.4 Gt of CO₂ in each scenario. The offshore Durban & Zululand basin is then filled until all emissions have been stored. The matched capacity amounts to 22.0, 9.3 and 4.0 Gt of CO₂ for pathways *E1*, *E2* and *E3*, respectively. **Table S5.** Source-sink match of effective storage scenario *S1600km: high* with coal development pathways *E1–E3* in South Africa (authors' calculation with data from [10]). | Basin | Formation | S1600km: high | E1: high
(22.0) | E2: middle
(9.3) | E3: low (4.0) | |-------------------------|----------------|---------------|--------------------|---------------------|---------------| | Zululand | Onshore basin | 0.4 | 0.4 | 0.4 | 0.4 | | Durban & Zululand | Offshore basin | 42.3 | 21.6 | 8.9 | 3.6 | | Total | | 42.7 | 22.0 | 9.3 | 4.0 | | All quantities are give | en in Gt CO2 | | | | | Matching the *intermediate storage scenario* $S2_{600km}$ with the identified emissions, a similar picture can be seen for the combination with E2 and E3 (Table S6) as for $S1_{600km}$. All captured emissions in these two pathways (9.3 and 4.0 Gt of CO₂) can be stored. Regarding pathway E1, the available storage capacity is insufficient for storing the entire amount of captured emissions. Hence 17.1 Gt of CO₂ is the matched capacity for E1. **Table S6.** Source-sink match of effective storage scenario *S2600km: intermediate* with coal development pathways *E1–E3* in South Africa (authors' calculation with data from [10]). | Basin | Formation | S2600km: intermediate | E1: high
(22.0) | E2: middle
(9.3) | E3: low (4.0) | |----------------------------|----------------|-----------------------|--------------------|---------------------|---------------| | Zululand | Onshore basin | 0.2 | 0.2 | 0.2 | 0.2 | | Durban & Zululand | Offshore basin | 16.9 | 16.9 | 9.2 | 3.9 | | Total | | 17.1 | 17.1 | 9.3 | 4.0 | | All quantities are given i | n Gt CO2 | | | | | In contrast to S1600km and S2600km, low storage scenario S3600km does not include onshore capacity; hence only 4.2 Gt of CO_2 is available in the offshore Durban & Zululand basin (**Table S7**). The total estimated emissions captured therefore exceed the storage space available for E1 and E2. Thus the matched capacity for S3600km equals the total storage capacity of 4.2 Gt of CO_2 in these two cases. For E3, it was possible to store the entire quantity of emissions of 4.0 Gt of CO_2 . **Table S7.** Source-sink match of effective storage scenario *S3*_{600km}: *low* with coal development pathways *E1–E3* in South Africa (authors' calculation with data from [10]). | Basin | Formation | S3600km: low | E1: high
(22.0) | E2: middle
(9.3) | E3: low
(4.0) | |----------------------------|----------------|--------------|--------------------|---------------------|------------------| | Zululand | Onshore basin | 0.0 | 0.0 | 0.0 | 0.0 | | Durban & Zululand | Offshore basin | 4.2 | 4.2 | 4.2 | 4.0 | | Total | | 4.2 | 4.2 | 4.2 | 4.0 | | All quantities are given i | n Gt CO2 | | | | | # ad Section 3.4. Environmental impacts of CCS-based power plants from a life cycle assessment perspective **Table S8.** Parameters used in the LCA of future coal-fired power plants in South Africa. | Parameter | Unit | PC | IGCC | | | | |--|----------------------------|-------------|-------------|--|--|--| | Coal-fired pow | ver plants without CCS | power plant | power plant | | | | | Installed capacity | MWel | 600 | 451 | | | | | Net efficiency | % | 41.5 | 46.5 | | | | | Plant load factor (PLF) | % | 8 | 5 | | | | | , , | h/a | 7,5 | 00 | | | | | Plant lifetime | a | 2 | 5 | | | | | Type of cooling | | Di | y | | | | | Net calorific value of coal | MJth/kgcoal | 19. | 59 | | | | | Methane emissions from coal mining | kg CH4/kgcoal | 0.0012 | | | | | | CO ₂ emissions from coal | kg/MJth | 0.0962 | | | | | | Ci | O2 capture | | | | | | | Type of capture process | | Post-comb. | Pre-comb. | | | | | Concentration of solvent | kg/t of CO ₂ | 1.958 | 0.011 | | | | | Energy required for capture | kWhel/t of CO ₂ | 178 | 119 | | | | | Energy required for compression | kWhel/t of CO ₂ | 92. | 84 | | | | | CO ₂ capture rate | % | 9 |) | | | | | CO ₂ transportation and storage | | | | | | | | Average CO ₂ transport distance | km | 550 | | | | | | Energy required for recompressor | kWh/tkm | 0.011 | | | | | | Energy required for CO ₂ injection into 800 metre deep saline aquifer | kWh/kg CO2 | 0.00668 | | | | | #### References - 1. Viebahn, P.; Esken, A.; Höller, S.; Vallentin, D. CCS Global—Prospects of Carbon Capture and Storage Technologies (CCS) in Emerging Economies; Wuppertal Inst. for Climate, Environment and Energy: Wuppertal, Germany, 2012; p. 550. - 2. Kulichenko, N.; Ereira, E. Carbon Capture and Storage in Developing Countries: A Perspective on Barriers to Deployment. Energy and Mining Sector Board Discussion Paper; Report 25; The World Bank: Washington, DC, USA, 2011. - 3. Tot, M.; Pesut, D.; Hudges, A.; Fedorski, C.; Merven, B.; Trikam, A.; Duerinck, J.; Ferket, H.; Lust, A. *Techno-Economic Assessment of Carbon Capture and Storage Deployment in Power Stations in the Southern African and Balkan Regions*; vito, Energelski institut Hrvoje Pozar, University of Cape Town: Mol, Belgium, 2011. - 4. EREC; Greenpeace. Advanced Energy [R]evolution: A Sustainable Energy Outlook for South Africa; European Renewable Energy Council, Greenpeace International: Amsterdam, The Netherlands, 2011; p 108. - 5. International Energy Agency (IEA). World Energy Outlook 2008; IEA: Paris, France, 2008. - 6. World Wide Fund for Nature (WWF). 50% by 2030. Renewable Energy in a Just Transition to Sustainable Electricity Supply; WWF South Africa: Rosebank, South Africa, 2010. - 7. Scenario Building Team. *Long-Term Mitigation Scenarios: Strategic Options for South Africa;* Department of Environment Affairs and Tourism South Africa: Pretoria, South Africa, 2007. - 8. Energy Research Centre. *Long-Term Mitigation Scenarios: Technical Appendix;* Department of Environment Affairs and Tourism: Pretoria, South Africa, 2007. - 9. Ministry of Energy (DOE). *Electricity Regulation Act No. 4 of 2006: Electricity Regulations on the Integrated Resource Plan 2010-2030*; Ministry of Energy, Government of South Africa: Pretoria, South Africa, 2011. - 10. Viljoen, J. H. A.; Stapelberg, F. D. J.; Cloete, M. *Technical Report on the Geological Storage of Carbon Dioxide in South Africa*; Council for Geoscience South Africa: Pretoria, South Africa, 2010.