Supplementary Materials: Integrated Assessment of Carbon Capture and Storage (CCS) in South Africa's Power Sector

Peter Viebahn, Daniel Vallentin and Samuel Höller

For further information, reference is made to project report [1] on which this article is based.

ad Section 1. Introduction

Table S1. List of organizations interviewed in South Africa (face-to-face interviews).

Organization	Date of interview
Industry	
Sasol	24/10/2011
Eskom	27/10/2011
Anglo American	27/10/2011
Civil society	
Fossil Fuel Foundation (FFF)	25/10/2011
Greenpeace Africa	31/10/2011
Science, consultancies and think-tanks	
County African Comban for Contrar Comban and Change (CACCCC)	24/10/2011
South African Centre for Carbon Capture and Storage (SACCCS)	25/10/2011
IMBEWU – Sustainability Legal Specialists	27/10/2011
Council for Geoscience	28/10/2011
School of Chemical and Metallurgical Engineering at University of Witwatersrand	31/10/2011

Questionnaire (research interviews)

Your General Position on CCS

- 1. Please describe your function and how you are involved in the debate on CCS in South Africa.
- 2. What do you think about carbon capture and storage (CCS) in general and its potential in South Africa?
- 3. In which way are you and your organization dealing with CCS technologies?

CCS Stakeholders in South Africa

- 4. Which stakeholders are most important with regard to the prospects of CCS in South Africa, both within the government and industry?
- 5. Is there a public opinion on CCS and CO₂ storage in South Africa in particular? Is public acceptance an important determinant for the deployment of CCS?

CCS in South Africa's Energy Sector

- 6. Which technological and economic parameters are of decisive meaning for a possible market introduction and diffusion of CO₂ capture technologies in South Africa?
- 7. What are the most important CO₂ capture activities (demonstration projects, policy initiatives *etc.*) going on in South Africa at the time being?
- 8. Which technology path is most relevant for South Africa and globally (post-combustion, pre-combustion, oxyfuel)?
- 9. Is CCS primarily considered for the power sector or also for other industrial CO₂ large-point sources?

- 10. What share of South Africa's power plant fleet could be equipped with CCS until 2030 or 2050?
- 11. To which degree do you expect the costs of CCS plants in South Africa to be different from the international level? Why?
- 12. Does the proximity of South Africa's CO2 sources or storage sites inhibit or support CCS?
- 13. Is there a problem regarding increased water needs for CO₂ capture in water scarce regions?

Energy Scenarios

- 14. What are the most relevant scenario projections (until 2050) for energy and power demand in South Africa?
- 15. Which of these scenario projections could be used as a basis for a conservative, moderate and ambitious development of CCS in South Africa?
- 16. How far can CO₂ be transported in South Africa for geological storage in a feasible manner? Is there a maximum value (e.g., 500 km)?

CO₂ storage

- 17. What are the most important CO₂ storage activities (demonstration projects, policy initiatives *etc.*) going on in South Africa at the time being?
- 18. Which storage estimates seem to be most realistic for South Africa?
- 19. Do you know other estimates of or research projects on South Africa's underground storage capacity?
- 20. Which formations seem most promising in South Africa for CO₂ storage: Coal fields (ECBM), depleted oil or gas fields, deep saline aquifers or basalt formations?
- 21. Regarding CO₂ sequestration in aquifers: Is a production of water needed to increase the amount of space? If this is the case, what should be done with the produced water to avoid environmental hazard?
- 22. Do you see a potential conflict of interest between groundwater supply, geothermal energy production and CO₂ storage projects?
- 23. Could CO₂-EOR help to boost CCS in South Africa and increase oil production? Are there new EOR operations being planned?
- 24. Is there a limit to the amount of CO₂ that can be injected safely in the subsurface per year and site (injection rate)?
- 25. Does seismic activity exclude formations and regions from being potential CO₂ storage sites? Which regions?

Political Aspects of CCS

- 26. Which political developments are decisive for CCS deployment in South Africa?
- 27. In which way are South Africa's governments supporting the development and deployment of CCS?
- 28. Do regulatory frameworks and incentives exist or are they being developed?
- 29. Would the integration of CCS into the CDM foster CCS development and deployment?

ad Section 3.2. Long-term usable CO2 storage potential for South Africa's power sector Energy

Scenario Analysis

Table S2. Overview of existing long-term energy scenarios for South Africa and assessment of their suitability for this study arranged by year of publication.

Year	Scenario	Target year	Coal capacity given	CCS for	Installed CCS capacity	Cumulative stored CO ₂ up to target year	CCS share of electricity generation	Decision	Remark
World I	Bank								
Sources	: [2,3] (compiled by Vito [E	elgium]; Ene	rgetski Institut	t Hrvoje Požar	[Hungary]; Cape	Town University's Er	nergy Research Ce	entre [South Africa])*1)
2011	Reference	2030	Yes					n.c.	
	Baseline (IRP revised balance scenario)	2030	Yes	Natural gas (2025)	Figures for 2020/25/30 0.2–2.4 GW	19 Mt *1)	2%	n.c.	
	Baseline with EOR/ECBM	2030	Yes	Natural gas	Only figure for 2030: 2.4 GW	23 Mt *1) + 4 Mt retrofit	2%	n.c.	
	CO ₂ Price Scenarios	2030	Yes	Coal: 2025 or (mainly) 2030	Figures for 2025/30 5.9–7.3 GW	162/177/283 Mt *1) + 15.4/0/0 Mt retrofit	10–16%	n.c.	
EREC a	nd Greenpeace Internation	al							
Sources	: [4] (compiled by German	Aerospace C	enter and ecof	ys [the Nether	lands])				
2011	Reference	2050	Yes					Taken as pathway E2: middle	Up to 2030 based on [5] and updated with figures from IRP (May 2011) (committed and newly built options); updated up to 2050
	Energy [R]evolution	2050	Yes					Taken as pathway E3: low	Up to 2030 based on IRP (May 2011) (committed power plants only); updated up to 2050

Table S2. Cont.

Year	Scenario	Target year	Coal capacity given	CCS for	Installed CCS capacity	Cumulative stored CO ₂ up to target year	CCS share of electricity generation	Decision	Remark
WWF S	South Africa								
Source: [6] (compiled by Cape Town University's Energy Research Centre [South Africa])									
2010	Reference Case	2030	Yes					n.c.	Uses LTMS framework
	Alternative Scenario	2030	Yes					n.c.	Uses LTMS framework
Depart	Department of Environment Affairs and Tourism South Africa								
Source	s: [7,8] (compiled by Cap	e Town Uni	versity's Ene	ergy Research	h Centre [South A	Africa]) *2)			
2007	LTMS Scenario 1	2050	Yes					Taken as	5 new CTL plants each
	"Growth without							pathway E1:	80,000 bbl/d=½ Secunda
	constraints"							high	
	LTMS Scenario 2	2050							Storylines
	"Required by								
	Science"								
	"Start now"	???		Synfuels	No figures	2 Mt/a		n.c.	*3)
	"Scale up"	???		Synfuels	No figures	23 Mt/a or		n.c.	*2), *3)
	-			-		20 Mt/a			
	"Use market"							n.c.	
	"Reach goal"							n.c.	

Figures in italics: exclusion criteria; n.c. = not considered. *1) Whole of the Southern Africa Region; *2) Starting figure for 2010 is too low (32.8 GW instead of currently installed 38 GW); IRP figures not given at that time; *3) The low CCS application seems to be a contradiction to the statement that CCS is "included as a major component of energy security strategy" (p. 29).

Main conclusions drawn from the assessment of existing energy scenarios and roadmaps (Table S2):

- No scenarios exist that go up to 2050 and that include use of CCS for power plants;
- Only one scenario applies CCS for coal-to-liquid plants (20 or 23 Mt CO₂/a), but considers the existing Secunda plant only;
- Two scenarios attempt to achieve climate goals in 2030 and 2050 without using CCS or nuclear energy [4,6], respectively);

Only one study is up-to-date compared with the current power plant development plan of the South African government. [4] adapted both the *Energy* [R]evolution Scenario and the IEA WEO 2010 scenario, which is taken as the Reference Scenario, to the May 2011 Policy Adjusted Scenario of the Integrated Resource Plan (IRP) for Electricity [9]. Since IRP only covers the period up to 2030, the figures were updated to 2050.

CCS Deployment

Table S3. Conventional and CCS-based coal-fired power plant capacity installed in South Africa in the three pathways *E1–E3* for the base case (CCS from 2030).

Type of capacity	2010	2020	2030	2040	2050
E1: high					
Currently installed	37	42	28	10	5
Newly built without CCS			23	16	16
Newly built with CCS				34	58
Retrofitted with CCS			4	12	12
CCS penalty load newly built				6	139
CCS penalty load retrofitted			1	2	2
Total CCS newly built + penalty				40	67
Total CCS retrofitted + penalty			5	14	14
Total CCS			5	54	81
Total	37	42	56	80	102
E2: middle					
Currently installed	37	42	28	10	5
Newly built without CCS		7	12	10	10
Newly built with CCS				19	24
Retrofitted with CCS			4	6	6
CCS penalty load newly built				3	4
CCS penalty load retrofitted			1	1	1
Total CCS newly built + penalty				22	28
Total CCS retrofitted + penalty			5	7	7
Total CCS			5	29	35
Total	37	49	45	49	50
E3: low					
Currently installed	37	42	28	10	5
Newly built without CCS					
Newly built with CCS				8	8
Retrofitted with CCS			4	4	4
CCS penalty load newly built				2	2
CCS penalty load retrofitted			1	1	0
Total CCS newly built + penalty				10	10
Total CCS retrofitted + penalty			5	5	5
Total CCS			5	15	15
Total	37	42	33	24	20
All quantities are given in Gt CO ₂					

Power Plant Analysis

Table S4. Overview of parameters assumed for future coal-fired power plants in South Africa.

	Unit	2010	2020	2030	2040	2050	
Share of power plan					2040	2050	
Supercritical	%	coai iii	100	90	70	60	
Integrated Gasification Combined Cycle	%		0	10	30	40	
·	newly built coal-	fired no			- 50	-10	
Supercritical	%	38	39	41.5	42	42	
Integrated Gasification Combined Cycle	%	30	44	46.5	47	47	
Efficiency losses through CCS							
Efficiency penalty post-combustion	%-pt	12	8.5	7	6	5	
Efficiency penalty pre-combustion	%-pt	8	6.5	6	6	6	
Additional efficiency penalty for retrofitting		1.5	1.5	1.5	1.5	1.5	
Traditional emercines permits for recommendations	Other paramete		1.0	1.0	1.0	1.0	
Origin of hard coal: import share	%	0					
Net calorific value for medium-quality	MJ/kgcoal	19.6					
South African coal	,, ,						
Price of hard coal mix (100% domestic)	\$2011/kwh	1.33	1.73	2.20	2.67	3.15	
Technical lifetime of newly built	a			50			
coal-fired plants							
Plant load factor (PLF)	%			80			
,	h/a			7,000			
CO ₂ capture rate	%			90			
Average/maximum CO ₂ transport distance	km			550			
CO ₂ leakage of storage sites	%/a			0			
	Cost paramete	r					
Coal-fire	d power plants v	vithout	CCS				
Capital cost	\$2011/kWel	2,297	Further	developm	ent deper	nds on	
O&M cost (4% of capital cost)	$$2011/kW_{\rm el}$	92	installed	capacities	within pa	thways	
		92		E1-I	E3		
Learning rate capital cost	%			1.7			
Learning rate O&M cost	%			3.9			
Interest rate	%			8			
Depreciation period	a			25			
Resulting annuity factor	%/a			9.37			
Coal-fi	red power plants	with C	CS				
Capital cost (175% of capital cost w/o CCS)	\$2011/kWel			Develo	pment fro	m 2030	
O&M cost (183% of O&M cost w/o CCS)	\$2011/kWel			depei	nds on ins	talled	
				capaci	ties in pat	hways	
					E1-E3		
Learning rate capital cost	%			2.5			
Learning rate O&M cost	%			5.8			
CO ₂ transportation costs via pipeline	\$2011/(tcO2,100			5.5			
	km)						
Average/maximum CO ₂ transport distance	km			550			
	Other paramete	ers					
CO ₂ costs	\$2011/tCO2		42	49	56	63	

Source-Sink Matching

Table S5 shows the comparison of the *high storage scenario S1600km* with coal development pathways *E1–E3*. First, the onshore Zululand basin is filled with 0.4 Gt of CO₂ in each scenario. The offshore Durban & Zululand basin is then filled until all emissions have been stored. The matched capacity amounts to 22.0, 9.3 and 4.0 Gt of CO₂ for pathways *E1*, *E2* and *E3*, respectively.

Table S5. Source-sink match of effective storage scenario *S1600km: high* with coal development pathways *E1–E3* in South Africa (authors' calculation with data from [10]).

Basin	Formation	S1600km: high	E1: high (22.0)	E2: middle (9.3)	E3: low (4.0)
Zululand	Onshore basin	0.4	0.4	0.4	0.4
Durban & Zululand	Offshore basin	42.3	21.6	8.9	3.6
Total		42.7	22.0	9.3	4.0
All quantities are give	en in Gt CO2				

Matching the *intermediate storage scenario* $S2_{600km}$ with the identified emissions, a similar picture can be seen for the combination with E2 and E3 (Table S6) as for $S1_{600km}$. All captured emissions in these two pathways (9.3 and 4.0 Gt of CO₂) can be stored. Regarding pathway E1, the available storage capacity is insufficient for storing the entire amount of captured emissions. Hence 17.1 Gt of CO₂ is the matched capacity for E1.

Table S6. Source-sink match of effective storage scenario *S2600km: intermediate* with coal development pathways *E1–E3* in South Africa (authors' calculation with data from [10]).

Basin	Formation	S2600km: intermediate	E1: high (22.0)	E2: middle (9.3)	E3: low (4.0)
Zululand	Onshore basin	0.2	0.2	0.2	0.2
Durban & Zululand	Offshore basin	16.9	16.9	9.2	3.9
Total		17.1	17.1	9.3	4.0
All quantities are given i	n Gt CO2				

In contrast to S1600km and S2600km, low storage scenario S3600km does not include onshore capacity; hence only 4.2 Gt of CO_2 is available in the offshore Durban & Zululand basin (**Table S7**). The total estimated emissions captured therefore exceed the storage space available for E1 and E2. Thus the matched capacity for S3600km equals the total storage capacity of 4.2 Gt of CO_2 in these two cases. For E3, it was possible to store the entire quantity of emissions of 4.0 Gt of CO_2 .

Table S7. Source-sink match of effective storage scenario *S3*_{600km}: *low* with coal development pathways *E1–E3* in South Africa (authors' calculation with data from [10]).

Basin	Formation	S3600km: low	E1: high (22.0)	E2: middle (9.3)	E3: low (4.0)
Zululand	Onshore basin	0.0	0.0	0.0	0.0
Durban & Zululand	Offshore basin	4.2	4.2	4.2	4.0
Total		4.2	4.2	4.2	4.0
All quantities are given i	n Gt CO2				

ad Section 3.4. Environmental impacts of CCS-based power plants from a life cycle assessment perspective

Table S8. Parameters used in the LCA of future coal-fired power plants in South Africa.

Parameter	Unit	PC	IGCC			
Coal-fired pow	ver plants without CCS	power plant	power plant			
Installed capacity	MWel	600	451			
Net efficiency	%	41.5	46.5			
Plant load factor (PLF)	%	8	5			
, ,	h/a	7,5	00			
Plant lifetime	a	2	5			
Type of cooling		Di	y			
Net calorific value of coal	MJth/kgcoal	19.	59			
Methane emissions from coal mining	kg CH4/kgcoal	0.0012				
CO ₂ emissions from coal	kg/MJth	0.0962				
Ci	O2 capture					
Type of capture process		Post-comb.	Pre-comb.			
Concentration of solvent	kg/t of CO ₂	1.958	0.011			
Energy required for capture	kWhel/t of CO ₂	178	119			
Energy required for compression	kWhel/t of CO ₂	92.	84			
CO ₂ capture rate	%	9)			
CO ₂ transportation and storage						
Average CO ₂ transport distance	km	550				
Energy required for recompressor	kWh/tkm	0.011				
Energy required for CO ₂ injection into 800 metre deep saline aquifer	kWh/kg CO2	0.00668				

References

- 1. Viebahn, P.; Esken, A.; Höller, S.; Vallentin, D. CCS Global—Prospects of Carbon Capture and Storage Technologies (CCS) in Emerging Economies; Wuppertal Inst. for Climate, Environment and Energy: Wuppertal, Germany, 2012; p. 550.
- 2. Kulichenko, N.; Ereira, E. Carbon Capture and Storage in Developing Countries: A Perspective on Barriers to Deployment. Energy and Mining Sector Board Discussion Paper; Report 25; The World Bank: Washington, DC, USA, 2011.
- 3. Tot, M.; Pesut, D.; Hudges, A.; Fedorski, C.; Merven, B.; Trikam, A.; Duerinck, J.; Ferket, H.; Lust, A. *Techno-Economic Assessment of Carbon Capture and Storage Deployment in Power Stations in the Southern African and Balkan Regions*; vito, Energelski institut Hrvoje Pozar, University of Cape Town: Mol, Belgium, 2011.
- 4. EREC; Greenpeace. Advanced Energy [R]evolution: A Sustainable Energy Outlook for South Africa; European Renewable Energy Council, Greenpeace International: Amsterdam, The Netherlands, 2011; p 108.
- 5. International Energy Agency (IEA). World Energy Outlook 2008; IEA: Paris, France, 2008.
- 6. World Wide Fund for Nature (WWF). 50% by 2030. Renewable Energy in a Just Transition to Sustainable Electricity Supply; WWF South Africa: Rosebank, South Africa, 2010.
- 7. Scenario Building Team. *Long-Term Mitigation Scenarios: Strategic Options for South Africa;* Department of Environment Affairs and Tourism South Africa: Pretoria, South Africa, 2007.
- 8. Energy Research Centre. *Long-Term Mitigation Scenarios: Technical Appendix;* Department of Environment Affairs and Tourism: Pretoria, South Africa, 2007.
- 9. Ministry of Energy (DOE). *Electricity Regulation Act No. 4 of 2006: Electricity Regulations on the Integrated Resource Plan 2010-2030*; Ministry of Energy, Government of South Africa: Pretoria, South Africa, 2011.
- 10. Viljoen, J. H. A.; Stapelberg, F. D. J.; Cloete, M. *Technical Report on the Geological Storage of Carbon Dioxide in South Africa*; Council for Geoscience South Africa: Pretoria, South Africa, 2010.