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Abstract: Accurate forecasting of fossil fuel energy consumption for power generation is 

important and fundamental for rational power energy planning in the electricity industry.  

The least squares support vector machine (LSSVM) is a powerful methodology for solving 

nonlinear forecasting issues with small samples. The key point is how to determine the 

appropriate parameters which have great effect on the performance of LSSVM model.  

In this paper, a novel hybrid quantum harmony search algorithm-based LSSVM  

(QHSA-LSSVM) energy forecasting model is proposed. The QHSA which combines the 

quantum computation theory and harmony search algorithm is applied to searching the 

optimal values of σ  and C in LSSVM model to enhance the learning and generalization 

ability. The case study on annual fossil fuel energy consumption for power generation in 

China shows that the proposed model outperforms other four comparative models, namely 

regression, grey model (1, 1) (GM (1, 1)), back propagation (BP) and LSSVM, in terms of 

prediction accuracy and forecasting risk. 

Keywords: fossil fuel energy forecasting; power generation; LSSVM; quantum harmony 

search algorithm (QHSA) 
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1. Introduction 

Since the implementation of the policy of reform and opening to the outside world in 1979,  

China has experienced outstanding economic development, with an average annual growth rate of 10%. 

Due to the continuous sustainable positive economic growth rate and large scale industrialization, 

electricity consumption is rising quickly [1]. Electricity plays an important role in socio-economic 

development, which is considered as the backbone for national economy’s prosperity and progress.  

It is estimated that the electricity demand in China will continue to grow, since the Chinese 

government aims to raise its GDP with an incredible speed in the next 30 years. Affected by energy 

resource endowments, China’s power generation sector relies heavily on fossil fuel energy and its 

products. In 2011, national thermal power plants generated 3.8975 trillion kWh, accounting for 

82.54% of the total electricity generation [2]. The fossil fuel-based generation pattern will not change 

in a short term. In the future, the fossil fuel consumption for power generation will inevitably increase. 

Accurate forecasting of fossil fuel energy consumption for power generation is therefore important and 

fundamental for rational energy planning formulation in electric power industry. 

In energy prediction field, some traditional forecasting approaches have been adopted in the last 

decades, such as regression model, time series model, Grey forecasting technique and bottom up  

long-range energy alternatives planning system (LEAP) model. Zhang [3] and Limanond [4] applied 

partial least square regression model and log-linear regression model to forecast the transport energy 

demand in China and Thailand, respectively. Kumar [5] applied three time series models, namely  

Grey–Markov model, Grey–Model with rolling mechanism and singular spectrum analysis (SSA) to 

forecast the consumption of conventional energy in India. Amarawickrama [6] estimated the electricity 

demand functions for Sri Lanka using six econometric techniques. Hsu [7] proposed an improved  

GM (1, 1) model to predict the power demand in Taiwan. Huang [8] used a LEAP model to forecast 

long-term energy supply and demand and compared future energy demand and supply patterns, as well as 

greenhouse gas emissions in Taiwan. The conventional statistical methods usually require the 

assumption of the normal distribution of energy consumption data [9]. Moreover, they are inherently 

limited in the presence of nonlinearities in data, which partially results from the use of linear model 

structures or the static nonlinear function relationships. An alternative way to deal with nonlinearities is to 

use Neural Networks (NN), which a powerful data modeling tool that is able to capture and represent 

complex input/output relationships [10–13]. It is considered that the NN could perform better than the 

traditional models from a statistical aspect [14,15]. However, estimating the network weights requires 

large amounts of data, which may be very computer-intensive. Another, it always yields limited 

generalization capability and unpredictably large errors since the NN usually implements the empirical 

risk minimization (ERM) principle; and it may show slow convergence speed, arriving at local 

minimum and overfitting issues [16]. 

Support Vector Machine (SVM), pioneered by Vapnik in 1995 [17], can effectively solve the 

learning problems of small sample size, higher dimension and nonlinearities [18–20]. The main advantage 

is that the solution of SVM is global and unique since SVM implements the structural risk minimization 

(SRM) principle [21–23]. Moreover, the SVM often outperforms aritificial neural network (ANN) in 

practice and it is less prone to overfitting [24]. The Least Squares Support Vector Machine (LSSVM), 

proposed by Suykens and Vandewalle in 1999 [25], is a variant of SVM. LSSVM adopts a least 
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squares linear system as a loss function instead of the quadratic program in original SVM which is 

time consuming in training process [26–30]. The LSSVM shows manifest advantages, such as  

good nonlinear fitting ability, strong generalization capability, fast computing speed, dealing with 

small samples, not relying on the distribution characteristics of the samples and so on [31–34].  

The performance of the LSSVM model is largely dependent on the selection of the parameters. 

Therefore, to obtain better forecasting accuracy, how to set the parameters of the LSSVM is very 

crucial. So far, there is no effective way to guide the parameters selection process. The contribution of 

this paper is to develop a hybrid quantum harmony search algorithm-based LSSVM (QHSA-LSSVM) 

energy forecasting model. In our work, the QHSA is applied to determining the optimal parameters of 

LSSVM model in order to enhance the learning and generalization ability.  

The harmony search algorithm (HSA), a novel evolutionary algorithm, is a metaheuristic technique 

mimicking the improvisation behavior of musicians [35–38]. The QHSA combines the quantum 

computation theory [39,40] and harmony search algorithm, which adopts concepts and principles of 

the quantum mechanism, such as quantum bit (qubit) and superposition of states [41,42] to the HSA.  

It can effectively improve the performance of HSA. The practical annual energy consumption data of 

power generation is employed to test the performance of the proposed QHSA-LSSVM forecasting model. 

The remainder of this paper is structured as follows: Section 2 introduces the LSSVM model, 

QHSA theory, and then a hybrid QHSA-LSSVM model is proposed in detail. Section 3 shows the data 

source for simulation. The empirical simulation and results analysis are presented in Section 4.  

Finally Section 5 gives our main conclusions. 

2. Methodologies 

2.1. Least Squares Support Vector Machine (LSSVM) 

SVM represents a relatively new computational learning method based on statistical learning  

theory [17]. The basic idea of SVM is that the original input data space is mapped into a higher 

dimensional dot product space called a feature space. The actual problem is transformed into a 

quadratic programming problem with inequality constraints. LSSVM is an alternate formulation of 

SVM regression. In LSSVM, the inequality constraints are replaced with equality constraints; and a 

least squares linear system is adopted as a loss function instead of the time-consuming quadratic 

program in original SVM [25,26,29,33,43,44]. In the following, LSSVM algorithm is described briefly.  

Let  m

iii yx
1

,


 be a given training set of m data points, where n

i Rx   is the input vector and Ryi   

is the corresponding output vector. LSSVM maps the input vector ix to a higher dimensional feature 

space, using a nonlinear kernel function  φ  , shown as Equation (1). Through Equation (1),  

the nonlinear estimation in original space can be transformed into linear function estimation in  

feature space: 

   Tφy x w x b   (1) 

where w  and b  denote the weights vector and the bias respectively, which should be estimated from 

the training data. For LSSVM function estimation, the formulation of optimization issue can be written 

as follows: 
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where C is the regularization factor, and ξ i  is the slack variable which expresses the difference 

between the desired output and the actual output. Next, the corresponding Lagrangian function 

 , ,ξ,L w b a  is constructed to solve the above optimization problem, shown in Equation (3): 
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where Rai   is a Lagrangian multiplier. From the Karush–Kuhn–Tucker (KKT) conditions, the following 

equations must be satisfied: 
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After eliminating the variables w  and ξ i , the solution is given by the following set of linear 

equations, shown in Equation (5): 

T
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 (5) 

where T1 [1,1, ,1]


 , T

1 2[ , , , ]mY y y y , T

1 2[ , , , ]mA a a a , and I is the identity matrix. Define 

     
T

, φ φij i j i jQ K x x x x  , which is satisfied with Mercer’s condition. In our work, the Gaussian 

radial basis function (RBF) is selected as the kernel function, as is expressed in Equation (6): 

   
2

2, exp 2σi j i jK x x x x    (6) 

The LSSVM regression model becomes: 

    bxxKaxy
m

i

ii 
1

,  (7) 

The kernel function width coefficient σ  and the regularization factor C have manifest influence on 

the performance of the LSSVM model. The width coefficient σ  affects the width of RBF, and the 

regularization factor C influences the complexity of the model and the penalty degree. In order to 

avoid selecting the parameters arbitrarily, the optimal values of these two parameters are determined 

by QHSA, which can effectively enhance the prediction accuracy.  
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2.2. Quantum Harmony Search Algorithm (QHSA) 

The harmony search algorithm (HSA), proposed by Geem et al. [35], is a novel  

phenomenon-mimicking algorithm inspired by the improvisation process of musicians [38]. The HSA 

has been successfully applied to many computational optimization problems, such as the traveling 

salesman problem [35], continuous engineering optimization [45], the layout of pipe networks [46] and 

course timetabling issues [47], due to its advantages of fewer parameters, excellent effectiveness and 

robustness compared with other heuristic optimization algorithms [48]. However, the performance of 

the HSA seems to be affected by the initial harmony memory (HM) parameters and solution vectors, 

and it usually falls into local searching for complicated numerical optimization issues. Inspired by 

quantum theorem, the quantum harmony search algorithm (QHSA) is proposed in our work to solve 

the aforementioned problems and effectively enhance the convergence rate, generalization ability and 

optimization capability.  

Quantum theory is considered as one of the greatest scientific achievements in the twentieth century. 

The concept of quantum computing is presented by Benioff [49] and Feynman [50] in the 1980s 

through combing quantum theory and information science. In quantum computing, the qubit is adopted 

to express the information; and the theory of superposition, entanglement and collapse of states is 

employed for information computation [39,40,42,51]. Quantum computing greatly improves the 

computational efficiency and has attracted widespread interest and research. QHSA merges the 

quantum computing theory with HSA. In QHSA, the qubit is employed to express the harmony vector 

in HM; and the new harmony vector is introduced to adjust the bandwidth (BW) dynamically.  

This algorithm can improve the global search ability and optimization speed through combining 

superposition of qubits. The concrete optimization procedures of QHSA are as illustrated in Figure 1. 

 

Initialize the optimization problem and QHSA parameters

To minimize the objective function f(x)

Algorithm parameters: decision variables 

the lower and upper bounds for each decision variable

HMS, HMCR, PAR, termination criterion 

Step 1

Initialize the Quantum Harmony 

Memory (QHM)

Generate initial quantum harmony through 

quantum encoding process

Step 2

Improvise a new harmony

based on three rules: (a) memory 

consideration,;

(b) pitch adjustment (adjust BW 

dynamically based on Fibonacci 

theorem),;

(c) random selection.

Step 3

If new 

Harmony solution better 

than the worst harmony 

in HM?

Updata the HM

Termination

criterion satisfied?

Yes
Step 4

No
Stop

Yes

No

Step 5

observing operation of 

Harmony

HMCR, PAR

 

Figure 1. Quantum Harmony Search Algorithm (QHSA) optimization procedures. 
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Step 1. Initialize the optimization problem and algorithm parameters. 

Minimize  xf , s.t. NiXx ii ,,2,1   

where  xf  is the objective function; x is the set of each design variable  ix ; iX  is the set of the 

possible range of values for each design variable; N is the number of design variables. In addition,  

the HS algorithm parameters including harmony memory size (HMS), harmony memory considering 

rate (HMCR), pitch adjusting rate (PAR) should also be specified in this step.  

Step 2. Initialize the Quantum Harmony Memory (QHM). 

The HM is a location storing all the solution vectors. The HM matrix is filled with randomly 

generated solution vectors and sorted by the values of the objective function  xf . Inspired by the 

concept of states superposition in quantum computing, qubit is adopted to express the harmonies in HM.  

In quantum computing, the qubit is the smallest quantum piece of information, which may be in the 

1  state, 0  state, or in any superposition of the two [39,40,42]. Each qubit state can be represented as 

the linear superposition of the two basic states, shown in Equation (8): 

φ 0 1    (8) 

where α  and β  is a pair of complex numbers that specify the probability amplitudes of the corresponding 

state; 
2

α and 
2

β give the probabilities that the qubit will be in the state “0” and “1” respectively,  

with 
2 2

α β 1  . Compared with the single bit in classical computing, the qubits with superposition 

of states can carry more information and improve the computational efficiency.  

In QHSA, the individual harmony can be written as Equation (9) or Equation (10): 

1 2

1 2

1 2

α α α
1,2, ,

β β β

t t t

i i int t t t

i i i in t t t

i i in

q q q q i m
 

     
  

 (9) 

 t

in

t

i

t

i

t

iq  21  (10) 

where i
tq  is the ith quantum harmony individual at generation t in HM denoting a potential  

solution vector; 
t

ij  and βt

ij , initialized with 21 , are the probability amplitude for i
tq  with 

2 2

α β 1t t

ij ij   ( mi ,,1 , nj ,,1 ); θt

ij  is the quantum rotation angle of i
tq  which satisfies 

α cosθt t

ij ij , β sinθt t

ij ij ; m is the size of HM; n is the dimension of the problem concerned.  

Step 3. Improvise a new harmony from the HM based on HMCR and pitch adjustment.  

The new harmony vector is randomly selected from the historical values stored in the HM with 

searching probability HMCR and the possible range of values with searching probability (1-HMCR). 

The harmony vector is pitch-adjusted with PAR, which is shown as follows: 

() BWi ix x rand    (11) 

Since BW and PAR have great influence on the precision of solutions and the ability of  

fine-tuning [52], how to determine the suitable values of these two parameters is an important issue.  

A small BW value can enhance the local optimization capacity around the new harmony vector, while, 

a large BW can enlarge the search area of new vectors in the process of pitch adjusting and is good to 

escape the local optima. In classical HSA, BW is taken a fixed value and usually selected by practical 
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experience, not considering the effect of BW on global or local optimization. In our work, to enhance 

the performance of the QHSA, BW is adjusted dynamically based on Fibonacci theorem.  

To use the new harmony information, we adjust BW dynamically and decrease the number of 

parameters chosen in the initialization process. The new harmony is adopted to calculate BW,  

as shown in Equation (12): 

'

'

π
(0,1) , (0,1) 0.618

2

(0,1) , (0,1) 0.618

ijnew ijnew ijnew

ijnew ijnew ijnew

q q Rand q Rand

q q Rand q Rand

 
     

 

   

 (12) 

where '

ijnewq  is the new vector after pitch adjusting; ijnewq  is the new vector before pitch adjusting; 

)1,0(Rand  is a uniform random number. In classical HSA, the algorithm chooses an upper neighboring 

value with 50% probability and lower with 50% around new vector. Inspired by Fibonacci theorem, 

0.618 is chosen as the border of vector adjusting direction, shown in Equation (12) [51,53]. 

Step 4. Update the HM. 

First, transform the new harmony vector to a solution with real values and use the objective function 

to get the fitness value. The quantum harmony collapses to a single state through Equation (13).  

The harmony observing operation is repeated during the process of updating procedure:  

2

1 , when (0,1) α

0 ,others

t

ij ij

t

ij

q rand

q

 

 nj

mi

,,2,1

,,2,1








 (13) 

Second, on condition that the new harmony vector shows better fitness function than the worst 

harmony in the HM, the new harmony is included in the HM and the existing worst harmony is 

excluded from the HM.  

Step 5. The Quantum Harmony Search Algorithm is terminated when there is no significant 

improvement in the best found solution after some predetermined number of iterations or the 

maximum number of iterations is reached. If not, repeat Steps 3 and 4. 

2.3. QHSA Based LSSVM Model 

The QHSA-based LSSVM (QHSA-LSSVM) forecasting model is described in this section.  

In QHSA-LSSVM, the optimization objective function is specified as the mean absolute percentage 

error (MAPE). The MAPE index is the most widely used accuracy measurement in forecasting.  

It expresses the forecasting errors from different measurement units into percentage errors on actual 

observations [54], shown in Equation (14): 

 

 

1

min max

min max

1
min ( ,σ) min

. . ,

σ σ ,σ

T
t t

t t

y y
f C

T y

s t C C C



  
  

  







 
(14) 

where ty  is the actual value for the tth period; ty


 represents its forecasting result for the same period; 

minC  and maxC  are the lower and upper bound for the regularization factor C; minσ  and maxσ  are the 
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lower and upper bound for the kernel function width coefficient σ ; T is the number of data used for the 

MAPE calculation. The basic idea of parameters optimization in LSSVM is to search the  

optimal values of C and σ  through iterative algorithm. The concrete procedures of QHSA-LSSVM are 

described as follows:  

Step 1. Initialize the optimization problem and algorithm parameters. 

In our study, the MAPE serves as the fitness function to identify the suitable parameters in the 

LSSVM model. Algorithm parameter selection is an unavoidable issue in the intelligent optimization 

field process. The parameters are usually selected according to trial-and-error methods, not avoiding 

blindness and randomness. The uniform design technique is adopted to realize the selection of initial 

parameters of QHSA, which can make the combination of parameters uniformly distribute in value range 

space during part experiment process [55]. It can greatly reduce the number of the trials and ensure the 

representativeness of the test results. There are two design parameters, σ  and C; and the upper bound 

and lower bound should be set in this step. Moreover, HMS, HMCR and PAR will also be initialized. 

Step 2. Quantum Encoding of Harmony Memory. 

According to QHSA theory, each harmony vector is firstly transformed into a quantum state, 

namely the quantum harmony vector (QHV). For QHSA-LSSVM, C and σ  are encoded into quantum 

harmony vectors which are formulated by a quantum bits encoding process.  

Step 3. Improvise a new harmony from the HM. 

A new harmony vector is generated based on three rules: memory consideration, pitch adjustment 

and random selection.  

Step 4. Observation of Harmony and Update the HM. 

Collapse the new quantum harmony vector to a single state with real values by Equation (13);  

and then calculate the objective function. Update the HM on condition that the new harmony vector 

shows better fitness than the worst harmony in the HM.  

Step 5. Stopping criterion. 

If there is no significant improvement in the best found solution or the maximum number of 

iterations is reached, the QHSA stopping criterion satisfies. The optimal values of C and σ  in the 

LSSVM model can be obtained. Otherwise, go back to Step 2. 

3. Data Sources 

This section describes how to apply the QHSA to searching for the optimal values of C and σ  in 

LSSVM and then establish the QHSA-LSSVM forecasting model for energy consumption to validate 

the performance of the aforementioned method. The annual data of the fossil fuel energy consumption 

for power generation from 1992 to 2012 were collected from China Energy Statistical Yearbooks [56]. 

The primary energy consumption data were converted to standard coal consumption (108 tce) through 

using conversion coefficients from the General Principles for Calculation of the Comprehensive 

Energy Consumption (Chinese National Principle, GB/T 2589-2008) [57]. The converted standard coal 

consumption data are shown in Table 1. 
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Table 1. Annual standard coal consumption of China between 1992 and 2012 (unit: 108 tce). 

Year Energy Consumption Year Energy Consumption Year Energy Consumption 

1992 2.2397 1999 3.7304 2006 7.1388 

1993 2.3788 2000 3.9590 2007 8.2251 

1994 2.6089 2001 4.2523 2008 9.2669 

1995 2.8411 2002 4.4687 2009 9.1993 

1996 3.1704 2003 4.9264 2010 9.6327 

1997 3.5003 2004 5.6848 2011 10.3205 

1998 3.7539 2005 6.2886 2012 11.7500 

4. Empirical Simulation and Results Analysis 

4.1. The Selection of Comparison Models 

Several comparative forecasting models for energy consumption prediction were selected so as to 

compare the results with the proposed QHSA-LSSVM model. It can be seen from Table 1 that the 

annual energy consumption series exhibits an obvious increasing trend, so the regression model and 

GM (1, 1) model were employed as the classical methods to capture the rising trend. The BP and 

LSSVM were adopted as the artificial intelligent techniques to simulate the relationship between  

the current data and a number of its previous values. The forecasting performance of the proposed 

QHSA-LSSVM model will be compared with linear regression model, GM (1, 1) model, BP model 

and LSSVM model in the next section. 

4.2. The Network Structure and Parameters Setting 

The selected data were the annual standard coal consumption of China during the period of  

1992–2012. A total of 21 data points are divided into the training set (1992–2007) and the testing set 

(2008–2012).  

In our work, according to the roll-based forecasting technique, three previous values are selected as 

the input variables of the BP, LSSVM and QHSA-LSSVM for each current output value. That means 

the inputs are 123 ,,  nnn XXX  and the corresponding output is nX . Firstly, the top three energy data 

(from 1992 to 1994) were fed into BP, LSSVM and QHSA-LSSVM model, and then the first forecasting 

value of 1995 could be obtained. Secondly, the next roll-top three energy data (from 1993 to 1995) 

were employed for forecasting value of 1996. Similarly, the processes are cycling until all the forecasting 

values are obtained. 

In LSSVM and QHSA-LSSVM model, the MAPE indicator was adopted as the optimization objective 

function f(x) to measure the accuracy in a fitted time series value in statistics, which is expressed as 

Equation (14). The two parameters of σ  and C for the proposed QHSA-LSSVM model could be 

optimized using QHSA. A flowchart of the QHSA algorithm for parameter initialization is shown in 

Figure 1. The details of the initial parameters are set as: HMS = 35, HMCR = 0.99, PAR = 0.6, BW = 1, 

lb = 0.001, ub = 250; that is, the lower bound (lb) and upper bound (ub) for σ  and C are set 0.0001 and 

250, respectively. In the typical LSSVM model, the default values of σ  and C were set 20 and 35, 

respectively. And the structure of LSSVM is the same with QHSA-LSSVM. For BP network,  

the neuron number of hidden layer is chosen with experience. In our work, the BP model contains 
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three layers with three input neurons, eight hidden neurons and only one output neuron. The maximum 

number of training epochs (iterations) is 5000. 

The BP, LSSVM and QHSA-LSSVM model are all realized in MATLAB 7.6.0 (R2008a) on 

Windows 7 with a 32-bit operating system. After training, the BP, LSSVM and QHSA-LSSVM can be 

used to forecast the future energy consumption value.  

4.3. Experimental Results and Analysis 

With the given data (1992–2012), about two-thirds (1992–2007) of it were used as training data to 

calculate the corresponding parameters of these five models, and the remaining one-third were used as 

testing data to validate the forecasting performance of the models. The solution parameters in 

regression model and GM (1, 1) model were determined using the training data. In our work,  

30 independent runs were implemented in order to test the stability of model for BP, LSSVM and 

QHSA-LSSVM. In the proposed QHSA-LSSVM model, Gaussian radial basis function (RBF) is 

selected as the kernel function. According to the roll-based technique, the two parameters σ  and C can 

be optimized step by step, and until the QHSA reaches the stopping criterion. The finally obtained 

optimal values for σ  and C are 23.8564 and 150.00, respectively.  

Due to the use of the roll-based technique, only 13 (1995–2007) data are suggested, i.e.,  

the simulation results for year 1992, 1993 and 1994 cannot be obtained. Therefore, the error evaluation 

is conducted from 1995 to 2012 to ensure the same comparison condition. The forecasting results and 

errors of regression, GM (1, 1), BP, LSSVM and QHSA-LSSVM are listed in Table 2.  

Table 2. Forecasting results and errors of Regression, GM (1, 1), BP, LSSVM and  

QHSA-LSSVM (unit: 108 tce). 

Year Actual 
Regression GM (1, 1) BP LSSVM QHSA-LSSVM 

Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%) 

1995 2.8411 2.7573 −2.9496 2.6636 −6.2490 3.6039 26.8492 3.0052 5.7759 2.9767 4.7728 

1996 3.1704 3.1052 −2.0565 2.9054 −8.3600 3.6864 16.2750 3.1217 −1.5361 3.1894 0.5993 

1997 3.5003 3.4531 −1.3485 3.1691 −9.4621 3.9730 13.5047 3.3180 −5.2081 3.4760 −0.6942 

1998 3.7539 3.801 1.2547 3.4568 −7.9148 4.1609 10.8425 3.5915 −4.3262 3.8063 1.3959 

1999 3.7304 4.149 11.2213 3.7706 1.0773 4.3371 16.2637 3.9208 5.104 3.5591 −4.5920 

2000 3.9590 4.4969 13.5868 4.1129 3.8868 4.1735 5.4182 4.1392 4.5517 3.8160 −3.6120 

2001 4.2523 4.8448 13.9336 4.4862 5.5015 4.9150 15.5851 4.3516 2.3352 4.4611 4.9103 

2002 4.4687 5.1927 16.2016 4.8935 9.5061 5.0721 13.5038 4.5897 2.7077 4.7478 6.2457 

2003 4.9264 5.5406 12.4675 5.3377 8.3494 5.2183 5.9253 4.9523 0.5257 5.0392 2.2897 

2004 5.6848 5.8886 3.5850 5.8223 2.4183 6.0260 6.0027 5.4627 −3.9069 5.4183 −4.6879 

2005 6.2886 6.2365 −0.8285 6.3508 0.9893 7.0366 11.8949 6.2335 −0.8762 5.9874 −4.7896 

2006 7.1388 6.5844 −7.7660 6.9273 −2.9622 7.2799 1.9770 7.1550 0.2269 6.9851 −2.1530 

2007 8.2251 6.9323 −15.7177 7.5562 −8.1325 8.2276 0.0302 8.0985 −1.5392 7.5299 −8.4522 

2008 9.2669 7.2803 −21.4375 8.2421 −9.6503 8.9703 −3.2003 8.7695 −5.3675 8.9352 −3.5794 

2009 9.1993 7.6282 −17.0783 8.9903 −0.3547 9.1812 −0.1969 8.9244 −2.9883 9.3967 2.1458 

2010 9.6327 7.9762 −17.1974 9.8065 4.1871 8.8555 −8.0690 8.5952 −10.7706 9.9820 3.6262 

2011 10.3205 8.3241 −19.3441 10.6967 6.4669 9.3514 −9.3901 8.2691 −19.8769 10.3205 0.0000 

2012 11.7500 8.6720 −26.1958 11.6677 2.3828 9.3913 −20.0746 8.1174 −30.9157 11.5587 −1.6281 
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Figure 2 shows the corresponding forecasting curves of these five models in order to make a clear 

comparison between the proposed QHSA-LSSVM model and other four comparative models.  

We tested the performance of the proposed QHSA-LSSVM model with other four comparative models 

(regression model, GM (1, 1), BP, and LSSVM) for training data, testing data and all the sample data, 

respectively. The details are shown in the next sections. 
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Figure 2. The curves of original data and forecasting results of five models. 

4.3.1. Simulation Performance Comparison for Training Data 

In our work, the simulation data points and the simulation errors for five models from 1992 to 2007 

(training set) have been conducted to assess the models’ fit performance. Table 3 lists the comparison 

of simulation performance among five models for training set, and Figure 3 shows the corresponding 

error histograms for direct observation. 

Table 3. The comparison of simulation performance among five models for training set. 

Model Regression GM (1, 1) BP LSSVM QHSA-LSSVM 

MAPE 0.0792 0.0575 0.1108 0.0297 0.0378 

RMSE 0.5375 0.3094 0.4989 0.1391 0.3314 

MAE 0.4026 0.2627 0.4439 0.1226 0.2701 

AAE 0.0845 0.0551 0.0932 0.0257 0.0567 

MaxAPE 0.1620 0.0951 0.2685 0.0578 0.0845 
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Figure 3. The error histogram for QHSA-LSSVM and other comparative models for training data. 

(1) Training Data Point Analysis 

In this part, the simulation data points are validated and compared among the five models.  

The deviations between the simulation results and the actual values are calculated, shown in Table 2. 

For annual data forecasting, the error range [−5%, +5%] is considered as a satisfactory and practical 

error bound. For 13 data points, there are five simulation data points larger than 5%, and two points 

smaller than −5% for the regression model. The maximum error is 16.2016% in 2002 and the 

minimum relative error is −15.7177% in 2007. In the GM (1, 1) model, there are three points larger 

than 5% and five points lower than −5%. The corresponding maximum and minimum errors are 

9.5061% and −9.4621% in 2002 and 1997, respectively. For BP, there are only two data points within 

the error bound, and the maximum and minimum errors are 26.8492% in 1995 and 0.0302% in 2007. 

In LSSVM, there is only one simulation data point larger than 5%, and only two points smaller than 

−5%. The maximum relative error is 5.7759% in 1995, and the minimum relative error is −5.2081% in 

1997. In QHSA-LSSVM model, there are only two data points that exceeds the relative error range 

[−5%, +5%], one is larger than 5% and the other is smaller than −5%. The maximum relative error is 

6.2457% in 2002, and the minimum relative error is −8.4522% in 2007.  

Next, the maximum absolute percentage error (MaxAPE) is compared to measure the simulation risk. 

The MaxAPE indicator is calculated according to Equation (15), and the results are shown in Table 3.  

MaxAPE max 100, 1,2, ,t t

t
t

y y
t N

y

 
    

   

(15) 

where ty  is the energy consumption value in the tth year; ty


 
represents its simulating (or forecasting) 

result for the same period; and N is the number of data. 

MaxAPE concentrate on the maximal absolute percentage error which reflects the forecasting risk 

of choosing one certain model. For the training set, the MaxAPE values are 0.1620, 0.0951, 0.2685, 

0.0578 and 0.0845 for regression model, GM (1, 1), BP, LSSVM and QHSA-LSSVM, respectively. 
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Compared with other four models, the MaxAPE of LSSVM is the smaller than that of other comparative 

models, especially the proposed QHSA-LSSVM model. Will it really be less risky to choose LSSVM 

than to choose QHSA-LSSVM not only to simulate the historical training data but also to future 

unknown data? It is not necessary the case. We should assess the risk both in the simulation process and 

in prediction process to check the possible overfitting problem in models.  

(2) Simulation Performance Comparison and Analysis 

In this section, several common-used accuracy measures, including MAPE, root mean square error 

(RMSE), mean absolute error (MAE) and average absolute error (AAE), are employed to o assess the 

simulation performance in a comprehensive aspect. These error criterion indicators are expressed  

as follows:  

1
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Table 3 provides the MAPE, RMSE, MAE and AAE values of all models, which can reflect how 

well the models, with estimated parameters, fit the data. The non-scaled error metric MAPE is the 

mean of the absolute percentage errors of forecasts, providing the errors in terms of percentage. It can 

avoid the problem of positive and negative errors canceling each other out. It can be seen from Table 3 

that the MAPE values are 0.0792, 0.0575, 0.1108, 0.0297 and 0.0378 for the regression model,  

GM (1, 1), BP, LSSVM and QHSA-LSSVM. The RMSE values of regression, GM (1, 1), BP, LSSVM 

and QHSA-LSSVM are 0.5375, 0.3094, 0.4989, 0.1391 and 0.3314. The MAE and AAE for these five 

models are 0.4026, 0.2627, 0.4439, 0.1226, 0.2701 and 0.0845, 0.0551, 0.0932, 0.0257, 0.0567, 

respectively. For the training data, the LSSVM model shows smaller error values of MAPE, RMSE, 

MAE and AAE than those of QHSA-LSSVM and GM (1, 1) model. The worst two models in 

simulation performance are the regression model and BP neural network model. Although, the RMSE, 

MAE and AAE error values of GM (1, 1) model are smaller than those of QHSA-LSSVM, the values 

of MAPE and MaxAPE are larger than those of QHSA-LSSVM, so it is a little difficult to determine 

the overall simulation performance difference between GM (1, 1) and QHSA-LSSVM. The forecasting 

performance of these two models will be compared in the next section. It seems that the QHSA-LSSVM 

model for the training data shows no obvious advantages over the LSSVM and GM (1, 1) models,  

but the most important aim for model construction is to forecast future data accurately. Whether a 

model is good or not lies in the predictive ability or the extrapolation ability, not merely the simulation 

ability for training data. Next, the forecasting performances of these models are compared in details for 

testing data. 

http://link.springer.com/search?dc.title=MAPE&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
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4.3.2. Forecasting Performance Comparison for Testing Data 

The purpose for building a model is to apply it to extend future forecasts, so it is necessary to 

identify which model may prove accurate and be useful for forecasting. Table 4 lists the different error 

criterion indicator values of these five models for the testing set, and the corresponding error histogram 

is drawn in Figure 4.  
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Figure 4. The error histogram for QHSA-LSSVM and other comparative models for testing data. 

Table 4. The comparison of forecasting accuracy indicators among five models for testing set. 

Model Regression GM (1, 1) BP LSSVM QHSA-LSSVM 

MAPE 0.2025 0.0390 0.0819 0.1398 0.0220 

RMSE 2.1270 0.5045 1.1996 1.9392 0.2480 

MAE 2.0578 0.3732 0.8840 1.4988 0.2139 

AAE 0.2051 0.0372 0.0881 0.1494 0.0213 

MaxAPE 0.2620 0.1106 0.2007 0.3092 0.0363 

(1) Testing Data Point Analysis 

It can be seen from Table 2 that all five forecasting data points are all within the error bound  

[−5%, +5%] in the proposed QHSA-LSSVM model. There are three data points exceeding the −5% 

lower bound in BP. In the GM (1, 1) model, there is one point larger than +5% and one point smaller 

than −5%. There is only one satisfactory forecasting data point within the error bound for LSSVM and 

none for the regression model. The maximum error is 3.6262% in 2010 and the minimum error is 0 in 

2011 for QHSA-LSSVM. The maximum errors and minimum errors for other four comparative 

models are larger than the proposed model. For testing set, the MaxAPE value of QHSA-LSSVM 

model is 0.0363, which is much smaller than that of other models. Therefore, the proposed  

QHSA-LSSVM model shows better forecasting ability on data point analysis.  
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(2) Forecasting Performance Comparison and Analysis for Testing Data 

Table 4 lists the MAPE, RMSE, MAE and AAE error values of the five models. The MAPE values 

are 0.2025, 0.0390, 0.0819, 0.1398 and 0.0220 for the regression model, GM (1, 1), BP, LSSVM and 

QHSA-LSSVM, respectively. The RMSE error values are 2.1270, 0.5045, 1.1996, 1.9392 and 0.2480; 

the MAE values are 2.0578, 0.3732, 0.8840, 1.4988 and 0.2139; the AAE values are 0.2051, 0.0372, 

0.0881, 0.1494 and 0.0213. It can be seen that the MAPE, RMSE, MAE and AAE values obtained by 

QHSA-LSSVM are much smaller than those obtained by the other four comparative models.  

It indicates that the proposed QHSA-LSSVM model shows better prediction accuracy and satisfactory 

forecasting performance for testing data. At the meantime, it is found that the MAPE, RMSE, MAE 

and AAE error values of LSSVM model are worse for the testing data than those for the training set. 

We can infer that the overfitting phenomenon occurs in the LSSVM model with small training samples, 

which may decrease the model’s forecasting performance. The LSSVM model looks better because it’s 

making absolutely small errors on the training (or learning) data, shown in Table 3, but when the 

LSSVM model is applied to a new dataset (the testing set), it does not perform as well on the testing 

data, with larger errors, shown in Table 4. The generalization ability of LSSVM model is poor.  

In this case, the LSSVM model overfits the training data; thus, it is not suitable for future prediction.  

The proposed QHSA-LSSVM model just makes good balance on training set and testing set. It has a 

relatively good accuracy on the learning data and the best accuracy on the testing data. Overall,  

the proposed QHSA-LSSVM model is suitable for both data simulation and future trend prediction.  

The prediction performance of GM (1, 1) for testing data is worse than the simulation performance for 

the training data. This model has ideal predictive effect for approximate homogenous exponential 

sequence; otherwise, it may result in larger forecasting error. Moreover, GM (1, 1) is not suitable for 

long time prediction periods. The forecasting performances of the regression model and BP for the 

testing data are the worst ones among these five models. 

4.3.3. Overall Accuracy Comparison for All Sample Data 

Besides, a comprehensive accuracy comparison of these five models for all sample data has been 

conducted. The values of five error criterion indicators, i.e., MAPE, RMSE, MAE, AAE and MaxAPE 

for all sample data are listed in Table 5; and the corresponding error histogram is shown in Figure 5. 

Table 5. The comparison of forecasting accuracy indicators among five models for all sample data. 

Model Regression GM (1, 1) BP LSSVM QHSA-LSSVM 

MAPE 0.1134 0.0524 0.1028 0.0603 0.0334 

RMSE 1.2105 0.3739 0.7613 1.0289 0.2563 

MAE 0.8624 0.2934 0.5661 0.5049 0.2018 

AAE 0.1385 0.0471 0.0909 0.0811 0.0324 

MaxAPE 0.2620 0.1106 0.2685 0.3092 0.0845 
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Figure 5. The error histogram for QHSA-LSSVM and other comparative models for all sample data. 

As shown in Table 5, the MAPE for regression, GM (1, 1), BP, LSSVM and QHSA-LSSVM are 

0.1134, 0.0524, 0.1028, 0.0603, and 0.0334. Compared with MAPE which aim is to assess average 

values of absolute percentage errors, RMSE is the square root of MSE; and MSE is the average value 

of the “total square error” which is the sum of the individual squared errors. The stated rationale for 

squaring each error is to remove the sign so that the “magnitude” of the errors influences the average 

error measure. For this indicator, large errors normally have a relatively greater influence on the “total 

square error” than do the smaller errors. In our work, the RMSE values of regression model, GM (1, 1), 

BP and LSSVM are 1.2105, 0.3739, 0.7613, 1.0289; while the RMSE of QHSA-LSSVM is only 

0.2563. It means that other four comparative models may concentrate within a decreasing number of 

increasingly larger individual errors, thus resulting in larger MSE and RMSE values.  

Similarly, MAE involves summing the magnitudes (absolute values) of the errors to obtain the “total 

error” and then calculating the average value of the “total error”. It is an average of the absolute errors, 

which summarizes performance in the way that disregards the direction of over- or under-prediction and 

does place emphasis on the mean signed difference. After calculating according to Equation (18),  

the MAE values are 0.8624, 0.2934, 0.5661, 0.5049 and 0.2018 for the regression model, GM (1, 1), 

BP, LSSVM and QHSA-LSSVM, respectively. This also demonstrates there are no obvious larger 

individual absolute errors between the actual data series and the forecasting data series in the  

QHSA-LSSVM model.  

AAE is a more comprehensive indicator since it can assess the deviation of individual absolute 

errors from the average value of actual data. The total “deviation” is divided by T, thus obtaining an 

AAE value. For the four comparative models, the AAE values are 0.1385, 0.0471, 0.0909 and 0.0811, 

respectively, while the AAE value of QHSA-LSSVM is only 0.0324, which is smaller than that of the 

four preceding comparative models.  

The MaxAPE values of regression model, GM (1, 1), BP and LSSVM model are 0.2620, 0.1106, 

0.2685 and 0.3092, respectively; and that of the proposed QHSA-LSSVM is only 0.0845, which means 

that selecting QHSA-LSSVM has less forecasting risk. 
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Through errors comparison, the regression errors are almost higher than other three models (i.e., 

GM (1, 1), BP and LSSVM). It means that the regression model is not suitable to capture the fluctuation 

increasing trend without constant growth rate in our work. The forecasting performance of GM (1, 1) 

for all sample data is better than the regression model since the errors of the GM (1, 1) model are lower; 

and it shows better performance for the training data than the testing data. The errors of BP are almost 

the highest, which indicates this model is the worst one, except for the regression model. Why does BP 

show such poor simulation performance not only in training data but also in testing data? The possible 

reasons are analyzed as follows: the network structure, especially the number of neurons in the hidden 

layer, has a tremendous influence on the final output. Both the number of hidden layers and the 

number of neurons in the input and output layers must be carefully considered. In our work,  

the neurons in the input layers are three, according to the rolling-based method, and the output neuron 

is the corresponding certain year data. The number in the hidden layer is only adjustable; and there is 

no theory yet to determine how many hidden neurons are reasonable for better model fitting. Therefore, 

the fixed number of hidden neurons is the main reason that leads to larger simulation error. Another, 

training neural network is a complex task using a large number of sample data, with probable long 

training time and local minimum. A second problem may occur even when the training data is 

insufficient. It indicates that BP needs a large number of samples to train the network, and is not 

suitable for small data samples.  

For LSSVM, the errors of LSSVM are satisfactory for the training set (1992–2007), and are even 

smaller than those of our proposed QHSA-LSSVM model. However, the errors for the testing data 

become much larger, which means it has poor performance in the testing set and is not suitable for 

future prediction. Moreover, the errors of LSSVM for all sample data are larger than that of  

QHSA-LSSVM. The most possible reason is that LSSVM model can easily fall into an over-fitting 

problem, so the prediction ability for future trends is not satisfactory. Another is that the use of the 

parameters σ  and C with fixed values may result in large errors.  

For QHSA-LSSVM, it can be observed from Table 5 and Figure 5 that MAPE, RMSE, MAE, AAE 

and MaxAPE of the proposed QHSA-LSSVM model is the lowest compared with the regression model, 

GM (1, 1), BP and LSSVM for all the sample data. The comparison findings prove that QHSA-LSSVM 

performs better than the other four comparative models in terms of forecasting accuracy for the whole 

data. The proposed QHSA-LSSVM is also suitable for foreseeable forecasting. 

In conclusion, we used MAPE, RMSE, MAE, AAE and MaxAPE to validate the forecasting 

performance of the five forecasting models. Through calculating the values of error criterion indicators 

for training data, testing data and all the sample data, the overall performance of QHSA-LSSVM is the 

best with the lowest error values. The results prove that the optimal parametersσ  and C determined by 

QHSA can effectively improve the model’s performance and the forecasting accuracy.  

5. Conclusions 

The difficulty in the LSSVM forecasting technique is how to choose suitable values for parameters 

σ  and C since this can affect the model’s learning performance and generalization ability. In order to 

avoid selecting the parameters randomly and reduce the adjustment process, a novel hybrid Quantum 

Harmony Search Algorithm-based LSSVM (QHSA-LSSVM) forecasting model is proposed for the 
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annual power generation standard coal consumption forecasting. The QHSA effectively combines the 

quantum computation and harmony search algorithm. Based on the concepts and principles of the 

quantum mechanism, QHSA can improve the global search ability and optimization speed through 

combining superposition of qubits. In LSSVM, the optimal values of the two parameters are determined 

through QHSA, which can solve the problem of parameters selection. To validate the performance of 

the proposed QHSA-LSSVM model, four other comparative models (regression model, GM (1, 1), BP 

and LSSVM) were employed in our work. Through calculating the error values of MAPE, RMSE, 

MAE, AAE and MaxAPE of the five models, the errors for QHSA-LSSVM are the smallest, not  

only for the testing data, but also for all the sample data. This indicates that the QHSA-LSSVM model 

is suitable for small sample forecasting and can effectively enhance the prediction accuracy. Moreover, 

the QHSA can determine the optimal parameters values of the LSSVM model, which could solve  

the random parameter selection problem and decrease the forecasting errors. In all, the proposed 

QHSA-LSSVM model is satisfactory for future data trend prediction.  
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