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Abstract: Subsynchronous oscillation (SSO) of generators caused by high voltage direct 

current (HVDC) systems can be solved by applying supplemental subsynchronous 

damping controller (SSDC). SSDC application in mitigating SSO of single-generator 

systems has been studied intensively. This paper focuses on SSDC application in 

mitigating SSO of multi-generator systems. The phase relationship of the speed signals of 

the generators under their common mechanical natural frequencies is a key consideration 

in SSDC design. The paper studies in detail the phase relationship of the speed signals of 

two generators in parallel under their shared mechanical natural frequency, revealing 

regardless of whether the two generators are identical or not, there always exists a 

common-mode and an anti-mode under their common natural frequency, and the phase 

relationship of the speed signals of the generators depends on the extent to which the  

anti-mode is stimulated. The paper further demonstrates that to guarantee the effectiveness 

of SSDC, the anti-phase mode component of its input signal should be eliminated. Based on 

the above analysis, the paper introduces the design process of SSDC for multi-generator 

systems and verifies its effectiveness through simulation in Power Systems Computer 

Aided Design/Electromagnetic Transients including Direct Current (PSCAD/EMTDC). 

Keywords: subsynchronous oscillation (SSO); supplemental subsynchronous damping controller 

(SSDC); multi-generator system; shaft oscillation characteristic; common-mode; anti-mode 
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1. Introduction 

Apart from series-compensated AC transmission lines, power electronics converters like those in 

High-Voltage Direct Current (HVDC) systems can also cause Subsynchronous Oscillation (SSO) of 

generators nearby [1–4]. This category of SSO usually results from the fast-response characteristics of 

the controller of the converters, due to which the electrical system provides negative electrical 

damping in the subsynchronous frequency range [3,4]. The electrical damping also depends on HVDC 

power level, AC system strength and parameters of the converter controllers [4]. SSO due to HVDC 

was first experienced in the Square Butte system in America [1]. In China, several HVDC systems 

have experienced similar problems in recent years [5,6]. As the number of HVDC systems in China 

grows, it is highly possible that the SSO problem will become more severe.  

SSO problems due to HVDC can generally be solved applying supplemental subsynchronous 

damping controller (SSDC) [2,6–9]. One kind of SSDC [6,8,9] takes signals reflecting SSO 

information as its input signal, and its output signal is a current or power reference deviation, added to 

the constant current or power reference value of the converter controller, thus inducing an additional 

electrical torque on the generators suffering SSO. This torque, ∆T̃e(λ), can be regulated by properly 

selecting the structure and parameters of the SSDC, so that it is within ±90° with respect to the speed 

deviation, ∆ω̃, of the generator in the whole subsynchronous frequency range, providing an additional 

positive damping to mitigate SSO. SSDC based on such a principle has clear physical meaning and 

high reliability, and is widely used.  

SSDC application in mitigating SSO in single-generator systems has been intensively studied and 

its effectiveness is well verified. As for multi-generator systems, relevant research is comparatively 

lacking. In fact, SSDC design for multi-generator systems is more complex than for single-generator 

systems, especially when the multiple generators share several mechanical natural frequencies. If there 

are multiple identical generators in parallel, they share all their natural frequencies. In reference [10], 

Alden studies shaft dynamics of closely coupled identical generators, and reveals that when two identical 

generators operate in parallel, under each of their shared mechanical natural frequencies, the oscillation 

modes of the two generators are no longer de-coupled. Instead, there arises two modes in which both 

generators participate, namely, a common-mode in which the masses of both generator shafts oscillate 

in-phase and an anti-mode in which the masses of both generator shafts oscillate out-of-phase.  

As the anti-mode can hardly be excited, the identical generators, whose common-mode reveals their 

common behavior, can be represented by a single equivalent generator. For non-identical generators, 

equivalence is barely possible. Reference [11] investigates the torsional interaction of two  

non-identical generators with a common mechanical natural frequency, revealing that there will be 

noticeable phase difference of speed deviations of the two non-identical generators under their 

common mechanical natural frequency when oscillation occurs. This paper further investigates such 

situation, showing that if the equivalent electrical stiffness coefficients of the system are much smaller 

than the modal stiffness coefficients of the generator shafts, then in the anti-mode, the generator 

masses of the two shafts will oscillate almost out-of-phase, and the oscillation amplitudes of the 

generators masses are nearly reversely in proportion to the corresponding modal inertias. The reason 

why there is phase difference between speed deviations of the two generators when oscillation occurs 

is that both the common-mode and the anti-mode will be excited and the relative extent to which the 
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two modes are excited is uncertain. This paper also shows that due to the uncertain phase difference 

between the generator speed deviations, taking the speed signal of either generator as the input of the 

SSDC will hardly guarantee its effectiveness in mitigating oscillation of both generators. Furthermore, 

this paper points out that as the anti-mode is mainly due to the local interaction of the two generators 

and does not couple with the HVDC system, it is inherently stable. By appropriate linear combination 

of the speed signals of the generators, the anti-mode component can be eliminated and only the 

common-mode component will be left. If this combined signal is taken as the input signal of SSDC,  

as the common-mode signal of the generators are in-phase and they have a definite phase relationship, 

the design of the SSDC becomes feasible and the effectiveness of the SSDC can be guaranteed.  

Apart from the above considerations, for good SSDC design, it is important that in various system 

operating conditions, for instance, generators put into or out of service, power level altered, or network 

configuration changed, the SSDC should always be effective.  

The effectiveness of the SSDC, designed for a system containing four generators in two types,  

in various system operating conditions is verified by time-domain simulation. 

The paper is organized as follows. Section 2 reviews the design method of SSDC based on  

phase-compensation principle. Section 3 analyzes in detail the relevant issues about SSDC design for 

multi-generator system, including phase relationship of key variables, shaft SSO characteristics of 

parallel generators, and separation of common-mode and anti-mode in SSDC input signal. In Section 4,  

a case study of a system containing four generators in two types is carried out. The effectiveness of the 

SSDC designed for this system in various system operating conditions is verified by time-domain 

simulation. Conclusions are presented in Section 5. 

2. SSDC Design Method Based on Phase-Compensation Principle 

In reference [9], Tang introduces the SSDC design method based on phase compensation method; 

now we briefly review it as follows.  

Referring to Figure 1a, the input signal of SSDC is the generator speed deviation, ∆ω, and the 

output signal of SSDC is a reference direct current deviation signal, ∆Id_ref, which is then transmitted 

to the constant-direct-current controller of the HVDC converter (shown in Figure 2). The output signal 

of SSDC, ∆Id_ref, will then induce an additional electrical torque, ∆𝑇e , on the generator. For each 

subsynchronous oscillation mode frequency λf0 (0 < λ < 1, f0 is the rated frequency of the power grid) 

of the system, the aim of SSDC design is that the additional electrical torque induced on the generator 

due to SSDC, ΔT̃e(λ), and the speed deviation of the generator in oscillation, Δω̃(λ), have a phase 

difference within ±90°. Under this condition, the generator will experience a positive damping torque 

to mitigate the oscillation, as is shown in Figure 1b. This phase difference is composed of two parts. 

One part is the phase difference between the induced additional electrical torque, ΔT̃e(λ), and the 

current reference value deviation of the converter, ∆Ĩd_ref(λ) . This part is denoted as ∠TRI(λ) .  

The other part is the phase difference between the current reference value deviation of the converter, 

∆Ĩd_ref(λ), and the speed deviation, Δω̃(λ). This part is actually the phase compensated by SSDC and 

it is denoted as ∠SSDC(λ). 
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(a) 

 

(b) 

Figure 1. Phase relationship of key variables in SSDC design: (a) transfer scheme; (b) phasor diagram. 

 

Figure 2. Topology of SSDC with multi-modal structure based on the phase-compensation principle. 

Hence, our basic aim is that −90° < ∠𝑆𝑆𝐷𝐶(λ) + ∠𝑇𝑅𝐼(λ) < 90°  for each subsynchronous 

oscillation mode frequency λ𝑓0 . In SSDC design, we can firstly obtain ∠TRI(λ) by the test signal 

method [12] in time-domain simulation software such as PACAD, according to which ∠SSDC(λ) can 

be determined then. ∠SSDC(λ), the desired phase-frequency characteristic of SSDC, can be realized 

through lead-lag components. In addition, as the frequency of each subsynchronous oscillation mode is 

mainly determined by the mechanical parameters of generators and thus almost fixed, the SSDC can 

adopt the multi-modal structure [6], as is shown in Figure 2. This multi-modal structure is also based 

on the phase-compensation principle. In this structure, a band-pass filter for each oscillation mode 

frequency is applied to the input signal of SSDC. Referring to Figure 2, we can see that control of  

each mode can thus be decoupled and generally one lead-lag stage for each mode is sufficient to 

compensate the corresponding ∠𝑇𝑅𝐼(λ) . Adopting multi-modal structure can achieve better  
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flexibility and effectiveness. In addition, this structure is also insensitive to noises in signals with 

application of filters. 

After the condition −90° < ∠𝑆𝑆𝐷𝐶(λ) + ∠𝑇𝑅𝐼(λ) < 90° is satisfied, the proportional gain of each 

mode in SSDC should be properly set to guarantee that the SSDC can provide sufficient damping 

toque to the generators to effectively damp SSO. 

Admittedly, as the power stations are usually located miles away from converter stations, if speeds 

of generators are taken as the input signals of SSDC, signal transmission may cause time delay or 

interference problems. Hence, from the practical standpoint, it is preferable to choose a signal native in 

the converter station as the input signal of SSDC. References [2,6] take frequency of the converter bus 

voltage as the input signal of SSDC. For multi-generator situations, however, it is difficult to choose a 

native signal which can reflect the oscillation conditions of all the generators. Considering that only 

generators near converter stations (for instance, within 300 km) may suffer SSO and signal 

transmission time delay of optical fibers corresponding to such distance is generally within 1 ms, 

which is very small compared to subsynchronous oscillation periods, we may believe that taking 

generator speed as the input signal of SSDC is feasible. 

3. SSDC Design When There are Multiple Generators Near HVDC Converter 

The principle of SSDC design for multiple generator system is similar to what is introduced in 

Section 2. However, the issue we should pay special attention is that, any output signal, ∆Ĩd_ref(λ),  

of SSDC will induce an additional electrical torque, ∆T̃ek(λ) (k = 1, 2, ⋯ , 𝑁, 𝑁 is the total number of 

generators in the system.), on each generator in the system. That is to say, if we try to utilize only one 

SSDC to damp the SSO of the multiple generators simultaneously, it will not be easy to decouple the 

control of the generators and an interaction problem may arise, which we will explain by a system 

containing two generators in parallel as follows.  

Assume that there are two generators operating in parallel in the system, which we denote as 

Generator A and Generator B. Suppose Generator A has a mechanical natural frequency λA𝑓0. When 

SSO occurs, the speed deviation of Generator A will contain the component, Δω̃A(λA) , of this 

frequency. Correspondingly, the SSDC will output a current reference signal ∆Ĩd_ref(λA). It should be 

noted that this current reference signal will not only induce an additional electrical torque, ∆T̃eA(λA), 

of frequency λA𝑓0  on Generator A. Simultaneously, it will induce an additional electrical torque, 

∆T̃eB(λA), of the same frequency on Generator B. If Generator B has no mechanical natural frequency 

close to λA𝑓0 (within 0.3 Hz, for instance), then we can believe that ∆T̃eB(λA) has no obvious effect on 

shaft oscillation of Generator B. On the other hand, if Generator B happens to have a natural frequency 

close to 𝜆𝐴𝑓0, special attention should be paid to the interaction between the two generators.  

Now assume that the two generators have the common mechanical natural frequency of λA𝑓0 .  

For clarity, phase relationship of key variables in this situation is shown in Figure 3. In Figure 3, 

∆Ĩd_ref(λA)  is the output signal of SSDC. ∠TRIA(λA)  and ∠TRIB(λA)  are the phase differences 

between the additional electrical torques induced on the generators, ∆T̃eA(λA)  and ∆T̃eB(λA), and 

∆Ĩd_ref(λA) respectively. Δω̃A(λA) and Δω̃B(λA) are the speed deviations of the two generators under 

the common natural frequency. From Figure 3, it is clear that the phase difference of ∆T̃eA(λA) and 

∆T̃eB(λA) is ∠TRIA(λA) − ∠TRIB(λA), which is almost constant and depends on the configuration of 
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the electrical system. Then, the question arises that whether or not the phase difference of the speed 

deviations, Δω̃A(λA) and Δω̃B(λA), is also constant. If it is not so, obviously the SSDC cannot be 

guaranteed to provide a positive damping for the two generators simultaneously. Hence the phase 

difference of the speed deviations of the two generators under their common mechanical natural 

frequency is the subject we are going to treat.  

 

Figure 3. Phase relationship of key variables concerned in double-generator SSDC design. 

3.1. Shaft Oscillation Characteristic of Double Generators Having a Common Mechanical  

Natural Frequency 

For double identical generators operating in parallel, eigenvalue analysis results will show that 

under each common natural frequency of the generators, there are two oscillation modes in which both 

generators will participate, namely, a common-mode and an anti-mode. In common-mode, the masses 

in each generator shaft oscillate in-phase. Common-mode reflects the interaction between the outer 

electrical system and the two generators. On the other hand, in anti-mode, the masses in each generator 

shaft oscillate out-of-phase. Anti-mode reflects the native interaction between the two generators [10]. 

If our main attention is on the torsional characteristic of the shaft systems of the generators,  

we can briefly treat the electrical system as ‘electrical springs’ [10]. That is to say, we will 

approximately have ∆𝑇𝑒 = K∆δ, from the classical power-angle equation that 𝑃𝑒 = 𝐸𝑆𝐸𝑅 sin δ /𝑋𝑒𝑞, or 

∆𝑇𝑒 ≈ ∆𝑃𝑒 = 𝐸𝑆𝐸𝑅 cos δ0 ∆δ/𝑋𝑒𝑞. Also, under a natural frequency ω𝑚 of a generator shaft, from the 

perspective of the outer system, the generator shaft can be viewed as a single equivalent mass in 

connection with a single equivalent ‘mechanical’ spring. The inertia, 𝑀, of the equivalent mass is 

called the modal inertia and we have 𝑀 = ∑ 𝐽𝑘(𝑣𝑘/𝑣𝑔)
2
 where 𝐽𝑘 are the inertias of the real masses in 

the shaft and 𝑣𝑘 and 𝑣𝑔 are the mode shapes of the corresponding mode [13]. The stiffness coefficient 

of the equivalent ‘mechanical’ spring, 𝑠𝑚, can be calculated from the relationship that √𝑠𝑚/𝑀 = ω𝑚, 

where ω𝑚  is the natural frequency. Combing the equivalent electrical system and the equivalent 

mechanical system, under the common mechanical natural frequency of the generators, the whole 

system can be represented by a simplified mechanical equivalent, shown in Figure 4. In Figure 4, 𝑀A 

and 𝑀B are respectively the modal inertias of generator A and generator B under their common natural 

frequency, and smA and smB are the corresponding equivalent modal mechanical stiffness coefficients. 

𝑠eA , 𝑠eB  and 𝑠em  are the equivalent electrical stiffness coefficients, whose magnitudes are well 

separated with those of mechanical ones from observation of typical values, namely, 𝑠eA, 𝑠eB, 𝑠em ≪

𝑠mA, 𝑠mB. Hence, “electrical springs” have little impact on the mechanical natural frequencies and the 

modal shapes of the generator shafts.  
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Figure 4. Mechanical equivalent of double-generator system. 

Now, we analyze situations with two non-identical generators operating in parallel. Denoting the 

common natural frequency of the two generators as ωcommon, we have: 

√𝑠mA 𝑀A⁄ = √𝑠mB 𝑀B⁄ = ωcommon (1) 

The state equation of the system is: 

[
𝑀A 0
0 𝑀B

] [
∆δ̈A

∆δ̈B

] = [
−𝑠mA − 𝑠eA − 𝑠em 𝑠em

𝑠em −𝑠mB − 𝑠eB − 𝑠em
] [

∆δA

∆δB
] (2) 

where ∆δA  and ∆δB  are the power angle deviations of the two generators. Considering  

𝑠eA, 𝑠eB ≪ 𝑠mA, 𝑠mB, Equation (2) can be simplified to: 

[
𝑀A 0
0 𝑀B

] [
∆δ̈A

∆δ̈B

] = [
−𝑠mA − 𝑠em 𝑠em

𝑠em −𝑠mB − 𝑠em
] [

∆δA

∆δB
] (3) 

With Equations (1) and (3), we can verify that this equivalent system has two oscillation modes, 

whose frequencies and modal shapes are: 

ω1 = ωcommon 

∆δ̃1 = (1 1)t 
(4) 

And: 

ω2 = √ωcommon
2 + 𝑠em (𝑀A + 𝑀B) (𝑀A𝑀B)⁄ , 

∆δ̃2 = (−𝑀B 𝑀A)t 
(5) 

From above analysis, we verify that for systems with two non-identical generators operating in 

parallel, under their common mechanical natural frequency, there still exists a common-mode and an 

anti-mode. It should be pointed out that by the common-mode, we merely mean that the generator 

masses, instead of all the masses, in the two generator shafts oscillate in-phase. Similar meaning also 

applies to anti-mode. Moreover, from the modal shape of the anti-mode, ∆δ̃2, it can be seen that in this 
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mode, the oscillation amplitudes of the two generator masses are reversely in proportion to the 

corresponding modal inertia. The physical interpretation of this phenomenon is that the anti-mode 

reflects the native interaction of the two generators through the “electrical spring”, 𝑠em. Hence, the 

restoring torques the two generator masses experience in oscillation have the same magnitude, so that 

the oscillation amplitudes as well as the angular accelerations of the two generators will be reversely in 

proportion to the corresponding modal inertias.  

Now we take system #2 of the IEEE SSO second benchmark model (SBM) [13] as an example to 

verify the above analysis. In this system, there are two non-identical generators operating in parallel. 

Generator A (600 MVA), with four masses in its shaft, has mechanical natural frequencies of  

24.65 Hz, 32.39 Hz and 51.10 Hz. Generator B (700 MVA), with three masses in its shaft, has 

mechanical natural frequencies of 24.65 Hz and 44.99 Hz. It can be seen that the two generators, 

though non-identical, share the common natural frequency of 24.65 Hz. The detailed mechanical data 

of the shaft system of the generators are shown in Tables 1 and 2. The modal inertias of the generators 

under their common natural frequency, 24.65 Hz, are shown in Table 3. This example is representative 

and we now calculate its modal shapes. 

Table 1. Mechanical data for Generator A.  

Mass Inertia lbm∙ft2 Damping lbf∙ft∙sec/rad Spring Constant in lbf∙ft/rad 

Exciter 1383 4.3 4.39e6 

Generator 176,204 547.9 97.97e6 

Low-pressure turbine 310,729 966.2 50.12e6 

High-pressure turbine 49,912 155.2 – 

Table 2. Mechanical data for Generator B. 

Mass Inertia lbm∙ft2 Damping lbf∙ft∙sec/rad Spring Constant in lbf∙ft/rad 

Generator 334,914 208.2 156.1e6 

Low-pressure turbine 370,483 230.4 198.7e6 

High-pressure turbine 109,922 68.38 – 

Table 3. Modal inertias of the generators under their common natural frequency. 

Generator Modal Inertia (p.u.) Rated Capacity (MVA) 

A 1.55 600 

B 2.495 700 

As has been pointed out, the equivalent electrical stiffness coefficients, 𝑠eA, 𝑠eB and 𝑠em, whose 

magnitudes are well separated with those of mechanical ones, have no great impact on the modal 

shapes of the system. Approximately, in our calculation, we take 𝑠em = 𝑉A𝑉B/(𝑋tA + 𝑋tB) (𝑉A, 𝑉B are 

the terminal voltage magnitudes of the two generators and 𝑋tA, 𝑋tB are the leakage reactances of their 

transformers) and 𝑠eA = 𝑠eB = 0.5𝑠em.  

With the data above we can obtain the state equations of this system and carry out eigenvalue 

analysis to calculate the frequency and mode shape of each oscillation mode. The calculation result is 

shown in Table 4. In Table 4, each row represents the right-eigenvector of an oscillation mode, which 

is also the mode shape of the corresponding mode. As the eigenvalues and eigenvectors appear in 
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conjugate pairs, only those with a positive imaginary part are displayed. From the first and second row 

of Table 4, it can be seen that there are both a common-mode and an anti-mode, in which both 

generators participate, under the shared natural frequency of the two generators. The frequencies of 

common-mode and anti-mode are near to each other. The first row of Table 4 corresponds to the 

common-mode, whose eigenvector reveals that the generator masses of the two generator shafts 

oscillate almost in-phase. The second row of Table 4 corresponds to the anti-mode, whose eigenvector 

reveals that the generator masses of the two generator shafts oscillate almost out-of-phase. Apart from 

the above two modes, the remaining three modes are all the natural modes of one of the generators.  

As the frequencies of those three modes are well separated with each other, it can be seen from their 

eigenvectors that only the corresponding generator participates in oscillation.  

Table 4. Eigenvalue result of the equivalent double-generator system. 

Eigenvalue Frequency/Hz 

Mode Shape (right-eigenvector) 

Masses in Generator A Masses in Generator B 

∆𝛚𝐇𝐏𝐀 ∆𝛚𝐋𝐏𝐀 ∆𝛚𝐆𝐞𝐧𝐀 ∆𝛚𝐄𝐱𝐜𝐀 ∆𝛚𝐇𝐏𝐁 ∆𝛚𝐋𝐏𝐁 ∆𝛚𝐆𝐞𝐧𝐁 

−0.03 + 

j155.2 
24.7 

0.500 + 

j0.000 

0.127 + 

j0.000 

−0.366 + 

j0.000 

−0.479 + 

j0.000 

0.400 + 

j0.006 

0.234 + 

j0.003 

−0.394 − 

j0.006 

−0.04 + 

j157.0 
25.0 

0.596 + 

j0.000 

0.141 + 

j0.000 

−0.434 + 

j0.000 

−0.573 + 

j0.000 

−0.215 + 

j0.003 

−0.124 + 

j0.002 

0.217 + 

j0.003 

−0.05 + 

j203.6 
32.4 

−0.890 + 

j0.000 

0.252 + 

j0.000 

−0.194 + 

j0.000 

−0.327 + 

j0.000 

−0.002 + 

j0.000 

0.000 + 

j0.000 

0.003 + 

j0.000 

−0.03 + 

j282.8 
45.0 

0.000 + 

j0.000 

0.000 + 

j0.000 

−0.001 − 

j0.000 

−0.004 + 

j0.000 

0.933 + 

j0.000 

−0.350 − 

j0.000 

0.081 + 

j0.000 

−0.05 + 

j321.1 
51.1 

0.000 − 

j0.000 

−0.001 + 

j0.000 

0.010 − 

j0.000 

−1.000 + 

j0.000 

−0.000 + 

j0.000 

0.000 − 

j0.000 

−0.000 + 

j0.000 

For the anti-mode, we obtain that the oscillation amplitude ratio of the two generators is: 

∆ω
GenA

∆ω
GenB

⁄ = 0.434 0.217⁄ = 2.00 (6) 

On the other hand, referring to Table 3, the ratio of the modal inertias of the two generators under 

the common natural frequency is: 

𝑀B 𝑀A⁄ =
2.495 ∗ 700

1.55 ∗ 600
= 1.88 (7) 

Thus, the conclusion that in anti-mode, the oscillation amplitudes of the two generators masses are 

reversely in proportion to the corresponding modal inertias is basically valid. The reason why there is 

an error is that the equivalent electrical stiffness coefficients, 𝑠eA , 𝑠eB , and the modal damping 

coefficients slightly influence the frequencies and modal shapes of the oscillation modes.  

In reference [11], it is shown that the phase relationship and relative amplitude of the generator 

masses in common-mode and anti-mode are also very dependent on the presence of series capacitors, 

especially when the electrical natural frequency matches the mechanical one. This is because under 

this condition, the magnitude of the electrical damping coefficient may become very large and have a 

noticeable impact on the oscillation modes of the system. In this paper, however, we mainly treat 
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systems without series capacitors so that a resonance condition will not occur. Hence the statement that 

the electrical system has no great impact on the oscillation modal shapes can be considered reasonable. 

In addition, we mention that for situations of two identical generators operating in parallel,  

as the modal inertias of the two generators under each common natural frequency are the same,  

the oscillation amplitudes of the two generator masses in each anti-mode are also the same, which can be 

regarded as a special case of the above reversely proportional relationship. 

3.2. Phase Relationship of the Speed Deviation Signals of Two Generators Operating in Parallel 

Under Their Common Natural Frequency 

As has been shown, the phase relationship of the speed deviation signals of the generators under 

their common natural frequency is a key consideration for SSDC design. For two generators operating 

in parallel, under their common natural frequency there exist both a common-mode and an anti-mode. 

In the actual oscillation, the speed deviation signal will be the addition of both of these two modes.  

If the anti-mode is hardly excited, the speed deviations will contain mostly the common-mode 

component, and the speed deviation signals of the two generators will be in-phase. On the other hand, 

if the common-mode is hardly excited, the speed deviations will contain mostly the anti-mode 

component, and the speed deviation signals of the two generators will be out-of-phase. More generally, 

however, if both the common-mode and the anti-mode are simultaneously excited, then there will be 

an uncertain phase relationship between the speed deviation signals of the two generators.  

As we know, the extent to which mode k of a system is excited depends on: 

𝑐k =Ψ
k

𝑋0 (8) 

where Ψk  is the left eigenvector corresponding to mode k and 𝑋0  is the initial value of the state 

variables of the system [14].  

For situations where two identical generators, generator A and generator B, operating in parallel, 

and assume that they deliver the same power, then for anti-mode k of the system, we have: 

Ψk = [ΨkA ΨkB] = [ΨkA −ΨkA] (9) 

and: 

𝑋0 = [𝑋0A 𝑋0B]t = [𝑋0A 𝑋0A]t (10) 

Apparently, now 𝑐k = 0, namely, the anti-mode of this system would not be excited. This is exactly 

the reason why in this system, the speed deviation signals of the two generators will be in-phase.  

If the two identical generators do not deliver the same power, then Equations (9) and (10) will hold 

not exactly but approximately, so that in this situation we have ck ≈0; namely, the anti-modes will be 

excited slightly. Hence the speed deviation signals of the two generators will almost be in-phase.  

Finally, for situations of two non-identical generators operating in parallel, the parameters of the 

generators are no longer the same; the oscillation amplitudes of the shaft masses in the anti-mode may 

be different and even the number of shaft masses of the two generators may differ. As a result,  

Equations (9) and (10) will no longer hold and we have 𝑐k ≠ 0; namely, the anti-mode of the system 

may be excited. As the extent to which the common-mode and the anti-mode are excited is uncertain, 

the phase relationship of the speed deviation signals of the two generators will also be uncertain.  
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In reference [10], it is shown that when two identical generators operate in parallel, the speed 

deviation signals of the two generators will be in-phase and the two generators can be represented by a 

single equivalent generator. In reference [15], it is shown that if the two identical generators do not 

deliver the same power, then there will be a slight phase difference, which is generally no more  

than 40°, between the speed deviation signals of the two generators. These observations are consistent 

with the above analysis we have made. In this paper, whether there will be a definite phase relationship 

between the speed deviation signals of the generators, regardless of whether they are identical or  

non-identical, is demonstrated to be dependent on the extent to which the anti-mode of the system  

is excited.  

In addition, there is one more issue to mention. The frequencies of the common-mode and the 

corresponding anti-mode will be very close but not exactly the same. Hence, when the common-mode 

component and the anti-mode component are added, a phenomenon called ‘beat’ will arise, namely, 

the amplitude of the resultant signal will oscillate at a very low frequency. This phenomenon is 

common. For instance, we may sometimes observe that the amplitude of a decaying oscillation can 

temporarily increase even though there is no negative damping in the system. In SSDC design, most 

attention is paid to the phase relationship of the signals, and the ‘beat’ phenomenon does not have a 

noticeable impact.  

3.3. SSDC Design Based on Mode Separation 

As has been demonstrated in Section 3.2, for systems with two non-identical generators operating in 

parallel, the phase relationship of the speed deviation signals of the two generators under their 

common natural frequency is uncertain. However, as has been shown in the beginning of this section, 

if the phase relationship of the speed deviation signals of the generators is uncertain, it can hardly be 

guaranteed that the SSDC is capable of providing a positive damping for all the generators 

simultaneously. Hence, simply taking the original speed signals of the generators as the input signal of 

SSDC is infeasible.  

The reason why there is an uncertain phase relationship between the speed deviation signals of the 

generators is that during the oscillation, the common-mode and the anti-mode are simultaneously 

excited. As the anti-mode represents the local interaction of the two generators, it does not couple with 

the HVDC system. Hence, under the impact of the mechanical damping of the generator shafts, the 

anti-mode is inherently stable. That is to say, only the common-mode may be influenced by the HVDC 

system and become unstable. Hence, in the input signal of SSDC, we can eliminate the anti-mode 

component and only reserve the common-mode component, so that the anti-mode and the  

common-mode are separated and the SSDC is used for common-mode damping. As in the  

common-mode, the speed deviation signals of the generators have the definite in-phase relationship;  

it is totally possible that the SSDC can provide positive damping for all the generators simultaneously.  

As has been demonstrated in Section 3.1, in anti-mode, the oscillation amplitudes of the generators 

are reversely in proportion to their modal inertias. Denoting the modal inertias of the generators under 

their common natural frequency as 𝑀A and 𝑀B, then the input signal of the SSDC can be taken as: 

𝑋input =
(𝑀A∆ωA + 𝑀B∆ωB)

(𝑀A + 𝑀B)
 (11) 
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where 𝑀A + 𝑀B is the coefficient for normalization, in case that a large gain in the signal may bring 

adverse effect to the system stability. In this input signal, the anti-mode component under the common 

natural frequency of the generators will be almost eliminated and the common-mode component will 

be reserved. Apart from the common natural frequency, the oscillation components of the other natural 

frequencies of the generators are also reserved in their speed deviation signals.  

Admittedly, the relationship that the oscillation amplitudes of the generators in anti-mode are 

reversely in proportion to their modal inertias does not hold exactly. Hence, in the input signal of 

SSDC, the anti-mode component cannot be eliminated totally. However, the common-mode 

component will be the dominant part so that the in-phase relationship of the speed deviation signals of 

the generators will not get be influenced much.  

4. Case Study 

In this section, a typical example is adopted to illustrate the design process of SSDC for  

multi-generators and its effectiveness is verified through time-domain simulation.  

4.1. Introduction of the Example Studied 

The electrical network representation of the example studied is shown in Figure 5. In this example, 

there are four generators in two types, the capacities of which are 2 × 1120 MW + 2 × 890 MW.  

The four generators operate in parallel. The rated capacity of the HVDC system is 1500 MW.  

The remaining output power of the generators are sent out through an AC transmission line  

(without serious compensation). 

 

Figure 5. Electrical network representation of the case studied. 

The shaft parameters of the generators in the example is determined according to the principle that 

they have the same per-unit value as those in system #2 of the IEEE Second SSO benchmark model. 

As a result, the 890 MW generators have natural frequencies of 20.5 Hz, 27.0 Hz and 42.6 Hz.  

The 1120 MW generators have the natural frequencies of 20.5 Hz and 37.5 Hz. The generators share 

the natural frequency of 20.5 Hz.  
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4.2. The Main Operating Conditions Under Consideration 

To ensure that the SSDC is effective under various operating conditions, when obtaining the phase 

difference, ∠TRI(λ) , between the induced additional electrical torque induced on the generators, 

ΔT̃e(λ), and the current reference value deviation of the converter, ∆Ĩd_ref(λ) by test signal method,  

the following five main operating conditions are considered:  

(a) The four generators and the HVDC system all deliver the rated power;  

(b) One of the 1120 MW generators is out of service and the remaining three generators and the 

HVDC system deliver the rated power;  

(c) One of the 890 MW generators is out of service and the remaining three generators and the 

HVDC system deliver the rated power;  

(d) The four generators deliver half of their rated power and the HVDC system deliver the  

rated power;  

(e) The four generators and the HVDC system all deliver half of the rated power. 

4.3. SSDC Design 

As is shown in Figure 2, the SSDC is of multi-modal structure. A band-pass filter is applied for 

each oscillation mode. The lead-lag block for each mode is used to compensate the phase difference, 

∠TRI(λ), of the corresponding mode.  

Now we take the 20.5 Hz mode, which the generators of both types share, as the illustration to 

explain the SSDC design method in detail.  

Firstly, we obtain the phase difference, ∠TRI(λ), between the induced additional electrical torque 

induced on the generators, ΔT̃e(λ) , and the current reference value deviation of the converter, 

∆Ĩd_ref(λ) by test signal method, namely, we construct the studied modal in PACAD/EMTDC, then,  

a small test signal, ∆𝐼d_ref = 0.05 sin ω𝑡  𝑝. 𝑢. , where ω = 2π ∗ 20.5 rad/s , the angular frequency 

under study, is applied. After carrying out time-domain simulation, we can obtain the induced 

electrical torques on the generators corresponding to the test signal in the simulation result. The result 

for operating condition (a), introduced in Section 4.2, is shown in Figure 6. 

From Figure 6, we can obtain that the induced electrical torques, ∆𝑇𝑒, lags the test signal, ∆𝐼d_ref, 

about 17°  under operating condition (a). Repeating the above procedure for operating conditions  

(b)–(e), we obtain that the phase differences for these conditions range from 16° − 19°. Hence, for this 

mode, to maintain that the condition −90° < ∠𝑆𝑆𝐷𝐶(λ) + ∠𝑇𝑅𝐼(λ) < 90° is satisfied for all the five 

operating conditions considered, we can utilize a lead/lag stage to compensate 17° under 20.5 Hz.  

The phase-frequency characteristic of the lead/lag stage is shown in Figure 7. 
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Figure 6. The test signal, ∆𝐼d_ref, and the corresponding electrical torques, ∆𝑇𝑒, induced on 

the generators. 

 

Figure 7. Phase-frequency characteristic of the lead/lag stage to compensate 17° under 20.5 Hz. 

As has been demonstrated, in the input signal, the anti-mode component should be eliminated. 

Hence, the input signal is: 

𝑋𝑖𝑛𝑝𝑢𝑡 = 𝑋890𝑀𝑊∆ω890𝑀𝑊/(𝑀890𝑀𝑊 + 𝑀1120𝑀𝑊) +𝑋1120𝑀𝑊∆ω1120𝑀𝑊

/(𝑀890𝑀𝑊 + 𝑀1120𝑀𝑊) 
(12) 

where 𝑀890𝑀𝑊 is the modal inertia of 890 MW generator under 20.5 Hz and 𝑀1120𝑀𝑊 is the modal 

inertia of 1120 MW generator under 20.5 Hz. ∆ω890𝑀𝑊 and ∆ω1120𝑀𝑊 are the speed deviation signals 

of the 890 MW and 1120 MW generators, respectively.  

Finally, the proportion gain should be adjusted properly.  

Now, the detailed process of SSDC design for the 20.5 Hz mode has been introduced. The design 

method for the other modes is similar. However, as the other modes are not shared by all the 

generators, we do not need to take the combination of the speed signals as the input signal. Instead,  

we just take the speed signal of the corresponding generator as the input signal.  
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In addition, to maintain that the action of SSDC does not affect the normal operation of the HVDC 

system, the output signal of SSDC, ∆𝐼d_ref , is limited within ±0.05 p. u.  by a limiter. The whole 

structure of the SSDC is depicted in Figure 8.  

 

Figure 8. Whole structure of the SSDC. 

4.4. Time-Domain Simulation 

The example model shown in Figure 5 is constructed in PSCAD/EMTDC. The operating condition 

that the generators and the HVDC system all deliver the rated power (Operating condition a) is taken 

as the example. After the system goes into steady state, a three-phase-to-ground fault is applied on bus B 

shown in Figure 5. The fault lasts for 0.1 s. Figure 9 shows the torques and speeds of the generators 

without the SSDC applied. From Figure 9, we can see that the system is not stable. Moreover, utilizing 

a band-pass filter, we can obtain the 20.5 Hz components of the generator speed signals during the 

oscillation, as is shown in Figure 10. From Figure 10a, at the start of the oscillation, the 20.5 Hz 

components of the generator signals have an uncertain phase relationship because the resultant signals 

are the sum of both the common-mode and the anti-mode. However, after some time, as the anti-mode 

part damps out, only the common-mode part remains and the signals are in-phase, as is shown in 

Figure 10b. These observations are in agreement with the analysis made in the Section 3.  

 

Figure 9. Torques and speeds of generators when SSDC is not applied. 
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(a) 

 

(b) 

Figure 10. The 20.5 Hz components of the generator speed signals (a) at the start of the 

oscillation and (b) after some time. 

Then the SSDC is applied and the torques and speeds of generators now is shown in Figure 11, 

from which we can see that the SSDC is effective in mitigating the oscillation. Figure 12 shows the 

output signal, ∆𝐼d_ref, of SSDC. With the action of the limiter, the output signal of SSDC is limited 

within ±0.05 p. u. so that it will not affect the normal operation of the HVDC system.  

 

Figure 11. Torques and speeds of generators when SSDC is applied. 
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Figure 12. Output signal, ∆𝐼𝑑_𝑟𝑒𝑓, of SSDC during its action. 

Finally, if we take the speed signal of only one type of the generators as the input signal of the  

20.5 Hz mode, instead of the combination of the speed signals (Equation (12)) of all the generators, the 

oscillation will still not be mitigated, as is shown in Figure 13. This result verifies the necessity of 

taking the combined signal as the input signal of SSDC, as suggested by this paper. 

Simulation under other operating conditions has similar results.  

 

Figure 13. Generator speeds while speed of only one type of generator is taken as the input 

signal of the 20.5 Hz mode of SSDC. 

5. Conclusions 

This paper studies the SSDC design when there are multiple generators near HVDC converter 

stations. SSDC design for multi-generator systems is more complex than for single-generator systems, 

especially when the generators have common mechanical natural frequencies. The phase relationship 

of the speed deviation signals of the generators under their common natural frequencies is a key 

consideration for SSDC design. This paper investigates the phase relationship of the speed deviation 

signals of two generators operating in parallel under their common natural frequency. The result shows 

that whether the two generators are identical or not, under the common natural frequency, there will be 

both a common-mode and an anti-mode. In the anti-mode, the generator masses of the two shafts will 

oscillate almost out of phase, and the oscillation amplitudes of the generator masses are nearly 

reversely in proportion to the corresponding modal inertias. Due to that both the common-mode and 

the anti-mode will be excited simultaneously during oscillation, the phase difference of the speed 
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deviations of the two generators will be uncertain, so that taking the speed signal of either generator as 

the input of the SSDC will hardly guarantee its effectiveness in mitigating oscillation of both 

generators. Furthermore, this paper points out that as the anti-mode is mainly due to the local 

interaction of the generators and does not couple with the HVDC system; it is inherently stable.  

By appropriate linear combination of the speed signals of the generators, the anti-mode component can 

be eliminated and only the common-mode component will be left. This combined signal is taken as the 

input signal of SSDC. As the common-mode signal of the generators are in-phase, so that they have a 

definite phase relationship, design of SSDC becomes feasible and the effectiveness of SSDC can be 

guaranteed. The design process of SSDC is illustrated by a multi-generator system and its effectiveness 

is verified by time-domain simulation.  
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