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Abstract: This paper presents an investigation of the transmitted power in a wireless
power transfer system that employs a metamaterial. Metamaterials are a good means to
transfer power wirelessly, as they are composed of multiple inductively-coupled resonators.
The system can be designed and matched simply through magneto-inductive wave theory,
particularly when the receiver inductor is located at the end of the metamaterial line.
However, the power distribution changes significantly in terms of transmitted power,
efficiency and frequency if the receiver inductor slides along the line. In this paper, the
power distribution and transfer efficiency are analysed, studying the effects of a termination
impedance in the last cell of the metamaterial and improving the system performance for the
resonant frequency and for any position of the receiver inductor. Furthermore, a numerical
characterisation is presented in order to support experimental tests and to predict the
performance of a metamaterial composed of spiral inductor cells with very good accuracy.
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1. Introduction

In recent years, wireless power transfer (WPT) has been one of the most interesting and innovative
topics studied by both research centres and technology industries, particularly due to the large number
of potential applications in which it can be applied (vehicle charging, electronic and biomedical
devices [1–3]). However, even if WPT is widely developed for electronic devices and improved for
simple systems, to date, there are still a lot of open issues, e.g., the low efficiency due to large distances
or misalignments between emitter and receiver coils. Generally, resonators or metamaterials can be used
in order to solve these problems [4], arranging, for example, the coupled resonators along a line or in two
directions in a plane and letting the receiver slide on them or in a slab whose electrical parameters can be
optimised in order to enhance the power transfer efficiency between two-faced coils [5,6]. In this way,
power transfer for longer distances is enabled. Such a multiresonator system introduces new problems,
particularly in terms of efficiency and frequency: in fact, for a large number of coupled resonators,
the efficiency falls, and the power delivered to the receiver coil no longer coincides with the maximum
transmitted one for every operating frequency.

In a previous paper, Stevens showed that the efficiency can be improved along a metamaterial line,
as depicted in Figure 1, with the introduction of a termination impedance connected to the last cell,
whose value depends on the receiver position [7]. This paper extends the considerations in [7] with
an accurate investigation of the effects of the termination impedance on the transmitted power and
efficiency as a function of frequency and receiver position. Moreover, efficiency peaks are discussed
in this paper. Finally, a numerical characterisation is also shown in order to predict with good accuracy
the performance of the system analysed.

This paper is based on magneto-inductive wave theory (MIW) to simply explain the behaviour of
a metamaterial. Hence, a brief theoretical discussion of MIW is presented in Section 2. Further, the
theoretical modelling of the single resonator used in experiments and the system is shown in Section 3.
In Sections 4 and 5, the experimental apparatus and the main results of the transmission coefficient
and efficiency are presented, and some comparisons between measures and simulated predictions are
given in order to validate and support the experimental tests. Finally, the discussions of the results and
conclusions are presented in Section 6.

Figure 1. Metamaterial WPT system composed of n-coupled resonators arranged in a line.
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2. Theoretical Background and Basic Assumptions

The theory behind magneto-inductive waves (MIW) has been widely discussed in the
literature [8–10]. In this section, the main considerations for wireless power transfer applications and
equivalent circuits are reviewed. Generally, a metamaterial is a periodic array formed by resonator
cells (resonant circuits formed by an inductor L and a capacitor C in series) coupled to each other
magnetically. Considering a system composed of a finite number n of cells, as shown in Figure 2, the
associated equivalent circuit is analytically described by the following system of n equations:

V̂s +RsÎ1 + ẐÎ1 + jωM1,2Î2 = 0
jωM2,1Î1 + ẐÎ2 + jωM2,3Î3 = 0

...
...

jωMi,i−1Îi−1 + ẐÎi + jωMi,i+1Îi+1 = 0
...

...
jωMn,n−1În−1 + ẐÎn + ẐT În = 0

(1)

where V̂s and Rs are the voltage source applied to the first inductor and its internal resistance, respectively,
Îi the current flowing in the i-th cell, Ẑ = R+ jωL+ 1/ jωC is the impedance of each cell, R is the
alternating current (AC) resistance, L the self-inductance, C the capacitance and ẐT is an optional
termination impedance connected to the last cell of the line. Hence, each cell is a L-C series resonant
circuit tuned to a single resonant frequency f0 = 1/(2π

√
LC). Mi,i+1 = Mi+1,i = M is the mutual

inductance between two adjacent resonators. In the equivalent circuit, the mutual inductance between
two non-adjacent resonators is neglected. According to the MIW theory, the wave travelling along the
metamaterial is expressed in terms of current as Îi = Î1e−γ̂(i−1)d , where Î1 is the phasor of the current
flowing in the first cell, d is the periodic distance between two adjacent cells and γ̂ is the propagation
constant defined as γ̂ = α+ jβ . α and β are the attenuation and phase constants, respectively, and they
could also be expressed in terms of electrical parameters; in particular, it is important to express the
attenuation per cell, because it represents the wave reduction along the metamaterial:

αd = sinh−1(
1

kQ
) (2)

where k = 2M/L is the coupling coefficient and Q = ω0L/R is the quality factor of each inductor. From
the coupling coefficient, it is possible to obtain the bandwidth in which the wave propagation is achieved
with very low losses, f0/

√
1+ k ≤ f ≤ f0/

√
1− k [11,12].

Figure 2. Equivalent circuit of a system composed of n resonator cells with optional
termination impedance in the last cell.
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It is known in the literature that the matching condition is achieved by introducing a terminal
impedance in the last cell equal to ẐT = jωMe−γ̂d (shown in Figure 2), becoming purely real for f = f0

and equal to ZT = ω0M, as demonstrated in [11,13].
Generally, considering a receiver inductor with a load Rload in series and facing the i-th cell of the

metamaterial, it is enough to add a further equation in Equation (1) in order to represent the whole system
shown in Figure 3a:

V̂s +RsÎ1 + ẐÎ1 + jωMÎ2 = 0
jωMÎ1 + ẐÎ2 + jωMÎ3 = 0

...
...

jωMÎi−1 + ẐÎi + jωMÎi+1 + jωMi,r Îr = 0
...

...
jωMÎn−1 + ẐÎn + ẐT În = 0

jωMr,iÎi + Ẑr Îr = 0

(3)

where Ẑr = Ẑ+Rload with the subscript r identifying the receiver inductor. The receiver impedance seen
from the nearest cell can be expressed as an impedance of value Ẑd = ω2M2

r,i/Ẑr connected in series to
the cell (see Figure 3b). This value is obtained by introducing the expression of Îr, obtained from the last
equation of system Equation (3) into the equation of the i-th cell, which can be written:

jωMÎi−1 +(Ẑ + Ẑd)Îi + jωMÎi+1 = 0. (4)

(a)

(b)

Figure 3. Equivalent circuit of a system composed of n resonator cells with a receiver (a)
and with the impedance Zd (b).
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In this sense, it is enough to set:
Ẑd = ω0M (5)

in order to obtain the matching condition when the receiver couples to the last cell and avoid a standing
wave; this condition can be achieved, for example, by an accurate adjustment of the inductances of
the receiver, being Mr,i = kr,iL [13]. However, this does not hold if the receiver inductor moves along
the metamaterial as a reflected wave is generated, and standing waves result in an extra frequency
dependence to the input impedance.

The multiple resonator system can be simplified with an equivalent impedance Ẑeq, representing the
whole metamaterial and connected in series to the impedance of the first cell, as depicted in Figure 4. If
the matching condition is satisfied, then Ẑeq = ω0M [14]. In all other cases, the equivalent impedance
can be also calculated analytically through a continued fraction (as used in [15] for four resonators)
whose value depends mainly on the position of the receiver and a possible terminal impedance. For
example, considering the receiver located on the third cell of a metamaterial composed of five cells and a
termination impedance ẐT , the equivalent impedance can be calculated as follows (this case corresponds
to the experimental setup detailed in Section 4):

Ẑeq =
(ωM)2

Ẑ +
(ωM)2

Ẑ + Ẑd +
(ωM)2

Ẑ +
(ωM)2

Ẑ + ẐT

(6)

and for f = f0:

Ẑeq =
(ω0M)2

R+
(ω0M)2

R+Zd +
(ω0M)2

R+
(ω0M)2

R+ ẐT

(7)

Hence, the input impedance can be calculated as Ẑin = R+ Ẑeq at the resonant frequency.

Figure 4. Equivalent circuit of the WPT in terms of an equivalent impedance Ẑeq.
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3. Single Cell and System Characterisation

In Figure 5, an example of the resonator cell considered in this work and its equivalent lumped circuit
model are shown. L and R are respectively the self-inductance and the resistance considered as a function
of frequency associated with the metallic track, and Cp represents the stray capacitance of the resonator.
For a single layer resonator, the self-inductance depends on the external dimension, l, the number of
turns, N, the width of the conductor tracks, w, and the space between turns, s. The self-inductance L
can be predicted with a procedure based on the theory of partial inductance [16]. Here, L is found by
calculating the partial self- and mutual inductances between all of the sub-elements in which the whole
structure is divided. For the partial self-inductance calculation, the exact formula of rectangular bars
proposed in [17] is used, and the numerical procedure detailed in [18] is implemented for the partial
mutual inductance calculation. Finally, for the calculation of the stray capacitance and AC resistance,
the validated formulas reported in [19,20] can be used in order to take account of both skin and proximity
effects increasing significantly with frequency.

(a) (b)

Figure 5. Example of a spiral resonator considered in this study (a) and its quasi-static
equivalent circuit (b).

For a multiple resonator system, the equivalent circuit may be more complex, because the mutual
inductance between each couple of cells must be taken into account. Hence, the whole system could be
easily represented in a matrix form through the following equation:

V̂ = ẐÎ (8)

where V̂ = [ V̂s 0 ... 0 ]T with V̂s the phasor supply voltage of the emitter coil, Î the phasor of the
current flowing in the cells and Ẑ the symmetric matrix of the impedances defined for an n cell system
as follows:

Ẑ =


Rs + Ẑ1 jωM12 ... jωM1n jωM1r

jωM21 Ẑ2 ... jωM2n jωM2r
...

... . . . ...
...

jωMn1 jωMn2 ... Ẑn jωMnr

jωMr1 jωMr2 ... jωMrn Ẑr

 (9)

where Ẑi = Ri + jωLi + 1/ jωCi (i = 1,2, ...n) represents the impedance of each inductor. In particular,
Mi j is the mutual inductance between the cells i and j that can be obtained with the same formula used
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for the partial mutual inductance calculation. Ci is the total capacitance in series to the self-inductance of
each cell considering both the stray, Cp, and the lumped capacitances added, Cadd , to tune the resonance
condition (ω0 = 1/

√
L(Cp +Cadd)). In this form, the currents circulating in each resonator are calculated

by inverting the impedance matrix:
Î = Ẑ−1V̂ (10)

so that the transmitted power and system performance can be quickly numerically predicted [21].

4. Experimental Setup

The metamaterial used in this work consists of five equal resonators of a square shape, mutually
coupled and arranged in a planar line separated by gaps equal to g = 0.2 mm. The experimental system
is shown in Figure 6.

The single metamaterial cell is fabricated with a printed circuit board (PCB) with N = 1, l = 40 mm,
w= 1 mm and s= 1 mm. The value of the measured self-inductance is 0.135 µH, equal to the numerically
calculated one. The mutual inductance between two cells is calculated from measurement by resonance
splitting, and it is found equal to −16.3 nH (very close to the predicted one −18.7 nH). As the stray
capacitance is small, a lumped capacitance equal to 1 nF is added to each cell in order to tune the resonant
frequency to f0 = 13.56 MHz (as it is a license-free industrial, scientifical and medical (ISM) band).
All of the capacitances are parallel to the inductors. The source is connected in series as in Figure 2.
Finally, the measured and calculated AC resistances are equal to 0.303 Ω and 0.152 Ω, respectively.
The measured AC resistance includes also the solder connections and series resistance of the lumped
capacitances plus any radiation losses. The layout of the receiver resonator used in these tests is identical
to the cells of the metamaterial: a load resistance (Rload = 3.3 Ω) is soldered in series to the lumped
capacitance of 1 nF. In case the emitter and receiver coils are single-layer solenoid or single-layer spiral
coils, they can be designed with the procedure presented in [22].

An HP 8753 vector network analyser (VNA) (Keysight Technologies, Santa Rosa, CA, USA) was
used in order to supply the source and to measure the transmission coefficient S21: the instrument output
is connected to the first cell, and the received signal is measured across the load resistance. This type of
circuital connection involves an adjustment of the transmitted power measured as the internal impedance
of the VNA is equal to Z0 = 50 Ω, quite different from Rload . Hence, the measured value is smaller than
the real one; consequently, it is possible to adjust the measure and to find the effective efficiency across
the load through:

η =
S2

21(1+Z0/Rload)

1−S2
11

. (11)

The transmission coefficient and efficiency are studied for three different conditions, corresponding
to different termination impedance values. In particular:

• Condition A: ZT = 0 Ω (corresponding to a short-circuited last cell);

• Condition B: ZT = 120 Ω (much larger than ω0M);

• Condition C: ZT � 120 Ω (corresponding to an open circuit last cell).
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Finally, the measurements are made considering the receiver inductor sweeping along the whole
length of the metamaterial at a height of almost 9 mm, corresponding to the receiver distance at which
the matching condition Equation (5) is satisfied.

Figure 6. Experimental setup.

5. Simulation and Measurement Results

The measured values of the transmission coefficient, S21, in dB for each termination impedance
considered as a function of frequency and receiver position are shown in Figure 7. As can be noticed,
the plot of S21 regarding Condition A is quite different from those relevant to the other two conditions,
which are very similar. The maximum values of the transmission coefficient are distributed for different
frequencies and positions depending on the considered condition. Particularly, in the frequency range
between about 12.4 and 15.5 MHz and when the receiver is positioned at 180 mm, i.e., perfectly facing
the last resonator, S21 is over −10 dB for Condition A, but much smaller for Conditions B and C
(−20 dB). Moreover, for Condition A, the concentration of high transmission coefficient values around
the resonant frequency means that the matching condition is achieved. For Conditions B and C, high
transmission coefficient values occur for different positions of the receiver along the metamaterial, as is
confirmed by the measures of S21 and the adjusted efficiency presented in Figure 8.

In fact, as can be seen, the behaviour of the efficiency alternates highs and lows, and the peaks are
located every two cells. If the last cell is short-circuited (ZT = 0 Ω), the maximum of the efficiency is
achieved when the receiver faces the I, III and V resonator (cell centres at 20, 100 and 180 mm). The
introduction of a high impedance (ZT = 120 Ω or ZT � 120 Ω) involves a displacement of peaks by one
cell: in fact, the efficiency peaks occur when the receiver is on the II and IV cell (cell centres at 60 and
140 mm). Furthermore, observing the equivalent impedance values reported in Table 1, the value of Zeq

is very close to ω0M = 1.39 Ω in positions where the efficiency is maximum. Finally, the correspondence
of the peaks at the resonant frequency is further validated by showing the behaviour of S21 as a function
of frequency when the receiver is perfectly located on each cell, as depicted in Figure 9. The behaviour
of the transmission coefficient is strongly affected by the introduction of a termination impedance ZT ,
which changes the distribution of the transmission coefficient peaks in the resonant frequency bandwidth.
In particular, with the connection or disconnection of the termination impedance, the maximum values
of S21 can be obtained at the resonant frequency in all of the receiver positions.
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Figure 7. Measurements of S21 as a function of frequency and receiver position for:
(a) ZT = 0 Ω; (b) ZT = 120 Ω; and (c) ZT � 120 Ω.
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Figure 8. Measurements of S21 (a) and adjusted efficiency (b) as a function of the receiver
position for the termination impedances used and at f = f0.
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Figure 9. S21 measured as a function of frequency for all receiver positions facing the I (a),
II (b), III (c), IV (d) and V (e) cell.

Table 1. Equivalent impedance values, Zeq, and efficiency, η, at f = f0 for different receiver
positions and conditions calculated with Equation (7).

Receiver position ZT = 0 Ω ZT = 120 Ω

ZT � 120 Ω

Zeq [Ω] η% Zeq [Ω] η%
I cell 1.6 67% 7.2 30%
II cell 0.2 10% 1.1 58%
III cell 1.4 53% 6.2 5%
IV cell 0.3 5% 1.2 49%
V cell 1.3 43% 5.8 0%

The measurements are then compared with numerical simulations, made implementing the formulas
in Section 3 in a MATLAB programme [23]. In particular, the efficiency, peaks of efficiency and
optimum frequencies are studied, taking into account only two different conditions, A (ZT = 0 Ω, shown
in Figure 10a,c) and B (ZT = 120 Ω, shown in Figure 10b,d), as Conditions B and C (ZT � 120 Ω) are
found to be equivalent. Peaks of efficiency are defined as the maximum values of efficiency occurring
at the resonant frequency and optimum frequencies as those frequencies at which the peaks of efficiency
are achieved. As shown, all of the simulations match with very good agreement the experimental data.
Considering the efficiency, the largest difference is obtained for the receiver centre between 0 and 60
mm in Condition B (as can be noticed in Figure 10b). Moreover, a small difference (10%) is obtained
for the receiver centre between 80 mm and 120 mm, regarding the peaks of efficiency. Consequently, the
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prediction of the optimum frequencies shows a little disagreement with the measurement for the same
receiver positions (as shown in Figure 10d), even if the general behaviour is similar to the measurement.

Finally, it is worth noticing that the efficiency and efficiency peaks are very close when the
receiver is perfectly aligned with Resonators I, III and V for Condition A (see Figure 10a) or to
Resonators II and IV for Condition B (see Figure 10b). Correspondingly, in the same positions, the
optimum frequencies of both Conditions A and B are close to the resonant frequency, as shown in
Figure 10b,d, respectively. This behaviour enhances the assumption that the matching condition occurs
every two cells (as previously demonstrated by the equivalent impedance values; Table 1).
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Figure 10. Comparison of measured and simulated efficiency and efficiency peaks and
optimum frequency for ZT = 0 Ω (a) and (c) and ZT = 120 Ω, (b) and (d), respectively.

6. Discussion and Conclusions

The experimental analysis presented in this work shows the behaviour of the power delivered to
a receiver sliding along a metamaterial for three different values of a termination impedance, ZT

(Conditions A, B and C presented in Section 4). In the experiments, it was found that the termination
impedance affects the received power behaviour modifying the equivalent impedance Zeq and, hence, the
position of the receiver where the maximum value of efficiency is achieved. In this way, it is possible to
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obtain the best behaviour for any position of the receiver by varying the ZT value between zero and a high
value (in this work, 120 Ω, almost a hundred-times larger than ω0M) in order to maintain the equivalent
impedance at always about ω0M (as reported in Table 1). In Figure 11, the envelopes of the efficiency and
peaks of efficiency obtained for the termination impedances of 0 and 120 Ω with the respective optimum
frequencies are shown as a function of the receiver position. It can be seen that the envelope of the
efficiency has globally higher values than the cases with constant termination impedances. Moreover,
the envelope of the efficiency overlaps the envelope of the efficiency peaks for a number of receiver
positions. Furthermore, the optimum frequencies, with the exception of the first cells, are closer to the
resonant frequency: this is due to the equivalent impedance closer to the matching condition.

Transmitted power and efficiency are investigated under different termination impedance conditions,
which improve significantly the efficiency at the resonant frequency. All of the considerations presented
in this work are supported by circuital, numerical and experimental results.
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Figure 11. Comparison between simulated envelopes of efficiency and efficiency peaks (a)
and optimum frequencies (b).
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