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Abstract: For the interconnected power system with large-scale wind power, the problem 

of the small signal stability has become the bottleneck of restricting the sending-out of wind 

power as well as the security and stability of the whole power system. Around this issue, this 

paper establishes a small signal stability region boundary model of the interconnected power 

system with large-scale wind power based on catastrophe theory, providing a new method 

for analyzing the small signal stability. Firstly, we analyzed the typical characteristics and 

the mathematic model of the interconnected power system with wind power and pointed out 

that conventional methods can’t directly identify the topological properties of small signal 

stability region boundaries. For this problem, adopting catastrophe theory, we established a 

small signal stability region boundary model of the interconnected power system with  

large-scale wind power in two-dimensional power injection space and extended it to multiple 

dimensions to obtain the boundary model in multidimensional power injection space. 

Thirdly, we analyzed qualitatively the topological property’s changes of the small signal 

stability region boundary caused by large-scale wind power integration. Finally, we built 

simulation models by DIgSILENT/PowerFactory software and the final simulation results 

verified the correctness and effectiveness of the proposed model. 
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1. Introduction 

With the facts of fossil energy exhaustion and global ecology environment deterioration, wind power 

generation [1–3], as the most mature and effective renewable energy technology, is developing rapidly 

all over the world. In particular, China plans to construct nine ten-million kilowatt wind power  

bases [4,5] and parts of these bases have been put into operation. After these large-scale wind farms 

were put into operation, the large-scale wind power and traditional power system were connected to each 

other, sending out wind-thermal-bundled [6,7] power, which has become the typical operation mode of 

the power system. However, the current structure of the wind power transmission grid is still not strong 

enough to satisfy the scale of wind power integration. Thus, small signal stability has become the 

bottleneck restricting the sending-out of large-scale wind power as well as the transmission capacity of 

the power grid. To maintain the stability margin of the power grid, wind farms may even need to cease 

power production frequently. Thus, it is necessary to research the small signal stability of power grids 

with large-scale wind power integration. 

Some [8–10] have studied the small signal stability of power systems with wind power integration so 

far. Generally speaking, however, most of this research is limited to a certain grid and typical working 

conditions, which is not a universal situation and may even yield conflicting results. The study of the 

small signal stability region boundary has broader perspectives and shows all the critical operating points 

of the small signal stability, which provides a more scientific and reasonable basis for the safety 

monitoring, defense and control of power systems. 

In theory, the small signal stability region boundary [11,12] consists of saddle node bifurcation 

(SNB), Hopf bifurcation (HB) and singularity induced bifurcation (SIB). Among them, HB [13,14], 

which physically represents a pair of conjugate eigenvalues crossing the imaginary axis, is related to the  

system oscillatory instability. This paper mainly focuses on stability region boundary consisting of  

Hopf bifurcations. 

At present, some papers also report research on the small signal stability region boundary.  

Seydel [15], Roose et al. [16] and Hiskens [17] studied the methods for obtaining the small signal 

stability region boundary based on a direct method and a continuation method, respectively.  

Sun and Yu [18] proposed fitting a boundary consisting of Hopf bifurcations using hyper-planes. Based 

on an implicit function, Yang et al. [19] presented a method to obtain the small signal stability region 

boundary through polynomial approximation. Jia et al. [20,21], and Li et al. [22] studied the influences 

on the small signal stability region boundary of exciter voltage limits, time delays and saturated links, 

respectively. Generally, these works were mainly focused on quickly finding the small signal stability 

region boundary of the traditional power system and the influences of various factors on the small signal 

stability region boundary, without paying attention to the boundary of the interconnected power system 

with large-scale wind power. Besides, most of the research methods in these papers are just massive 

calculations and iterations based on the electromagnetic model of the power system, unable to directly 
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provide enough information to reveal the topological properties of the small signal stability region 

boundary on the whole. In fact, for the interconnected power system with large-scale wind power,  

the small signal stability region boundary is still determined by the eigenvalue. From the perspective of 

the eigenvalues’ changes, under certain conditions, a pair of complex eigenvalues may turn into real 

eigenvalues or from the opposite direction [23,24]. This phenomenon that the eigenvalues’ change under 

critical conditions essentially shows obvious catastrophe indications and it’s a kind of typical catastrophe 

phenomenon. Catastrophe theory [25–27] is often used in systems with obvious catastrophe indications. 

A significant advantage of catastrophe theory is that it can establish a functional relationship between 

control variables and state variables without contacting any special inner mechanism to avoid solving 

differential equations of the whole power system. At present, catastrophe theory has been widely applied 

in road traffic [28], biology [29], geotechnical engineering [30], and sociology [31], but seldom in power 

systems. Sallam and Dineley [32], and Wvong and Mihiring [33,34] studied the dynamic stability and 

transient stability of power systems based on catastrophe theory. Mahmoud [35] used catastrophe theory 

to analyze the voltage stability of a distribution network and proposed some new voltage indexes. 

Yusheng et al. [36] set up a cusp catastrophe model for over-heating faults of oil-immersed transformers 

and further proposed a remaining life prediction method for this kind of transformer. However, 

catastrophe theory has no application in small signal stability or other related wind power research as of 

yet. Hence, this paper establishes the small signal stability region boundary model of an interconnected 

power system with large-scale wind power based on catastrophe theory and the catastrophe indications 

of the eigenvalues. 

The paper is organized as follows: the first section, as a preface, expounded the current situation of 

the research and problems studied in this paper. The second section analyzed typical characteristics and 

mathematical models of the interconnected power system with large-scale wind power. The third section 

discussed the disadvantages of traditional analysis methods of small signal stability region boundary. 

Section 4 introduced the basic principles of catastrophe theory. Section 5 analyzed the catastrophe 

indications of eigenvalues to apply catastrophe theory to the analysis of eigenvalues. Section 6 

established the small signal stability region boundary model of interconnected power system with  

large-scale wind power in two-dimensional power injection space and extend the 2D model to multi 

dimensions. In Section 7, simulations were conducted to verify the model. In the end, we summarized 

our work of this paper. 

2. An Interconnected Power System with Large-Scale Wind Power and Its Model 

2.1. Interconnected Power System with Large-Scale Wind Power and Its Typical Characteristics 

Due to that wind power resources in China are centralized and far from the load centers, wind power 

development always uses the manner of centralized development and long-distance transportation.  

For now, China is planning to construct nine ten-million kilowatts wind power bases in Gansu, Xinjiang, 

Hebei etc., which are connected to the traditional power system and together form the interconnected 

power system with large-scale wind power. These systems show some visible characteristics as follows: 

the capacity of wind power is much larger than that of the local loads which makes it hard for it to be 

consumed on site; wind farms cover large areas and the power of each wind farm is transmitted into a 



Energies 2015, 8 2315 

 

 

higher voltage power grid after collection at power collection points through transmission lines; wind 

power needs long distance lines to be sent out; wind power bases are always located together at the end 

of the power grid and the outward power delivery structure is relatively weak, which results in  

serious stability problems, etc. Figure 1 shows the Jiuquan wind power base and its outward power 

transmission channels. 

 

Figure 1. Outward power transmission channels of Jiuquan wind power base. 

2.2. Equivalence of Large-Scale Wind Power Base 

In the interconnected power system with large-scale wind power, a wind power base is composed of  

a large number of wind farms, covering a large area. Thus, wind power from the same area is always 

collected at certain HV bus power collection points and then sent out at a higher voltage class through a 

transformer. For example, the first-stage project of Jiuquan wind power base, mainly located in Yumen 

and Guazhou, forms nine power collection points, including seven 330 kV booster stations and  

two 330 kV substations. The wind power is then sent out through a 750 kV line. 

The wind farms of the same power collection point include large numbers of wind turbines, so it is 

impossible to establish different models for each wind turbine. On the other hand, the power output of 

these wind turbines show similar change trends [7] and the wind turbines have similar states when large 

amounts of wind is available. Therefore, it’s feasible to establish an equivalent model to simulate the 

operation of a wind farm group. That is to say, regard the power collection point as a unit and replace 

the wind farms of the same power collection point by an equivalent wind turbine, which specifically 

comes down to two steps: firstly, replace m wind turbines of the same wind farm by one equivalent wind 

turbine adopting the capacity weighted method [37]. The calculation of the parameters of the equivalent 

wind turbine is shown in Equation (1): 
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 (1)

In Equation (1), subscript m is the total number of wind turbines in a wind farm. Subscript i is the 

number of wind turbines. Subscript eq means equivalent parameters. xm is the magnetizing reactance,  

xs and rs represent the reactance and resistance of the stator circuit respectively, xr and rr represent the 

reactance and resistance of the rotor circuit respectively, the units of which are Ω. S is the capacity of 

the wind turbine in MVA. P is the active output of the wind turbine in MW. Q is the reactive output in 

Mvar. H is the inertia time constant in s. K represents the shafting stiffness coefficient in N·m/rad.  

D is the shafting damping coefficient in s. 

After the wind farm is made equivalent to one wind turbine, each power collection point will connect 

several equivalent wind farms. A typical sending-out model of wind power at the same power collection 

point is shown in Figure 2. 

 

Figure 2. Typical sending-out model of wind power. 

In Figure 2, Pi + jQi is the output power of wind farm i. The PCC bus of each wind farm is connected 

to the collection bus through the transmission line whose impedance is Ri + jXi, and the collection point 

is connected to the high voltage access point through the transmission line whose impedance is R + jX 

and the transformer. 

For the typical system with wind power sending-out in Figure 2, with the same method, several 

equivalent wind turbines of the same power collection point were replaced by another equivalent wind 

turbine. For the collection system, an equivalent power loss method was adopted, assuming that different 

wind farms have the same voltage U. The voltage of the equivalent wind farm is also U and RΣ + jXΣ 

represents the impedance of the equivalent collection system, thus:  
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Then we obtain:  

 (3)

So far, we have replaced the wind farm group of the same power collection point with an equivalent 

wind turbine. Because a wind power base always consists of limited power collection points, we replace 

the base with a group of wind turbines. Now, the typical structure of interconnected power system with 

large-scale wind power is as shown in Figure 3. 

 

Figure 3. Typical structure of interconnected power system with large-scale wind power. 

2.3. Model of Interconnected Power System with Large-Scale Wind Power 

For the interconnected power system with large-scale wind power, the dynamic elements including 

the wind turbine can be expressed as a set of differential algebraic equations [38,39]: 
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In Equation (4), xi is state variable of each dynamic element; ui is the terminal voltages of each 

dynamic element; ii is the current injected into the network. 

Collecting all of these equations of dynamic elements we obtain a set of differential algebraic 

equations of an interconnected power system with large-scale wind power: 
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where x is the state variable vector of the power system; u is the vector of the bus terminal voltage; i is 

the current vector injected into the bus; f and g are nonlinear differential equations composing of fi, gi. 

In Equation (5), the current i and voltage u follow the basic principle of the circuit:  

ni Y u  (6)

where Yn is the network admittance matrix. Equations (5) and (6) together form the model of an 

interconnected power system with large-scale wind power. 

3. Traditional Analysis Method of Small Signal Stability Region Boundary and Its Disadvantage 

In the traditional analysis method, we establish a state matrix to acquire the small signal stability 

region boundary based on the model of the power system. Concrete steps are as follows: 

Equation (5) can be linearized as Equation (7) at the equilibrium point:  

i
D D

D D

x A x B u

C x Y u

    
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
 (7)

where AD = ∂f/∂x, BD = ∂f/∂u, CD = ∂g/∂x, YD = ∂g/∂u; Δx is the micro-increment of x; Δu is the  

micro-increment of u and Δi is the micro-increment of i. 

From Equation (6) we obtain: 

ni Y u    (8)

Substituting Equation (8) into Equation (7) we can reach Equation (9) after rearranging: 
1[ ( - ) ]D D N D Dx A B Y Y C x A x       (9)

The eigenvalues of the system state matrix A will decide whether the system reaches the small signal 

stability region boundary under some critical conditions: (1) SNB occurs when a pair of real eigenvalues 

cross the imaginary axis; (2) HB occurs when a pair of complex conjugate eigenvalues cross the 

imaginary axis; (3) SIB occurs when (YN − YD) is singular. These three kinds of bifurcation form the 
small signal stability region boundary sssr : 

{SNBs}U{HBs}U{SIBs}sssr   (10)

where SNBs is the point set of SNB, HBs is the point set of HB, SIBs is the point set of SIB. 

The key to analyzing the small signal stability region boundary is figuring out when the parameters  

of the power system reach a critical condition. Conventional methods acquire the boundary by 

continuous adjustment of the system parameters and calculating the eigenvalues of the system state 

matrix. Because of the huge order and complex coupling properties of the power system model, 

conventional methods are trapped in complicated calculations and lack enough information to directly 

reveal the topological properties of the small signal stability region boundary on the whole. 

In contrast, based on catastrophe theory, we can directly establish a function between control 

variables and state variables without contacting any special inner mechanism, thus avoiding solving the 



Energies 2015, 8 2319 

 

 

differential equations of the whole system and making it very applicable to the analysis of systems with 

an unknown or difficult to obtain inner mechanism. Nevertheless, catastrophe theory itself has inherent 

drawbacks. On one hand, in a practical complex system, it’s difficult to establish its potential function 

through derivation. On the other hand, catastrophe theory is mainly applied to systems with no more 

than five control variables. However, this does not affect the application of catastrophe theory in this 

paper. Thus we adopt catastrophe theory to discuss the model of the small signal stability region 

boundary of interconnected power systems with large-scale wind power. 

4. Catastrophe Theory 

Catastrophe theory was first proposed in 1972 by Thom, a French mathematician. This theory held 

that system dynamics can be derived through a smooth potential and critical points can be classified 

according to potential function [27]. 

The form of the system potential function is as follows:  

f: V(X × C) (11)

where X is the state variable vector (x1, x2, …, xn); C is the control variable vector (c1, c2, …, cr) which 

represents r independent control variables. The equilibrium surface M, which is a subset of Rn × Rr space, 

represents the system’s stable operating points, defined as Equation (12): 

( ) 0V x   (12)

where superscript “′” represents the derivation of x for V. The definition of singularity set S is a subset 

of M consisting of all degenerate critical points of V, namely:  

( ) 0V x   (13)

Mapping S to the control space C, then we obtain the bifurcation set B which is the control parameter 

set when catastrophe happens to the system’s operating state. The bifurcation set B can be obtained by 

combing Equations (12) and (13) to eliminate the state variable vector X. Appendix A shows a typical 

catastrophe mechanism explaining the principle of catastrophe theory.  

Thom’s proof [25,36] indicated that the property of the potential function was not decided by state 

variables but the number of control variables. Generally, when the number was no more than four, there 

were only seven different kinds of catastrophe. Table 1 shows different potential functions of these seven 

basic kinds of catastrophe, where x, y are state variables and v, μ, w, t are control variables. 

Table 1. Elementary catastrophe models and their potential functions. 

Catastrophe model Potential functions 

Fold V(x) = x3 + vx 
Cusp V(x) = x4 + μx2 + vx 

Swallowtail V(x) = x5 + μx3 + vx2 + ωx 
Butterfly V(x) = x6 + tx4 + μx3 + vx2 + ωx 
Elliptic V(x, y) = x3 − xy2 + w(x2 + y2) + μx + υy 

Hyperbolic V(x, y) = x3 + y3 + ωxy + μx + υy 
Parabolic V(x, y) = y4 + x2y + wx2 + ty2 + μx + υy 
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5. Eigenvalue Catastrophe Indications 

Catastrophe theory is often used in systems with obvious catastrophe indications. The catastrophe 

indications [26,27,36] are certain obvious characteristics of a catastrophe system including catastrophe, 

multi-modes and divergence, etc. Among them catastrophe is the most basic and obvious catastrophe 

indication, indicating some sudden change of the system state; multi-modes means that the number of 

the system states may be more than one; divergence shows the instability of the path perturbation of 

control parameters. Usually, a small perturbation of control parameters usually only causes small 

changes of the state variables except the perturbation near the degenerate critical point, which may 

causes huge changes in the final value of state variables. 

Small signal stability is decided by the eigenvalues of the system. From the perspective of the change 

of eigenvalues, under some certain conditions, a pair of complex eigenvalues may turn into real 

eigenvalues or from the opposite direction, which is a typical kind of catastrophe phenomenon 

remarkably similar to changes of the equations’ roots in Appendix A. This process also shows  

multi-mode characteristics. In addition, a small perturbation of parameters near the critical point would 

cause huge changes in the properties of the eigenvalues, thus showing the typical characteristics of 

divergence. Therefore, a change of eigenvalues indicates obvious catastrophe indications and shows that 

the use of catastrophe theory is both feasible and reasonable. 

There are two kinds of application of catastrophe theory to specific problems, which are the analysis 

method and the empirical method. The analysis method is deducing where the equilibrium position of 

dynamical system is, while the empirical method establishes a system catastrophe model according to 

system external characteristics with mathematical descriptions of the unknown bifurcation set. It builds 

equilibrium surface equations of the system by data fitting or qualitative fitting [26,27] and chooses an 

appropriate catastrophe model according to the number of control variables and state variables. 

6. Small Signal Stability Region Boundary Model of the Interconnected Power System with 

Large-Scale Wind Power 

Hopf bifurcation is related to the system oscillatory instability and this paper mainly focuses on the 

stability region boundary consisting of Hopf bifurcations. Here, we established the small signal  

stability region boundary model of the interconnected power system with large-scale wind power in  

two-dimensional power injection space and extend the 2D model to multiple dimensions to obtain the 

small signal stability region boundary model in multidimensional power injection space. 

6.1. Small Signal Stability Region Boundary Model in Two-Dimensional Power Injection Space 

In this paper, we assumed power sources 1 and 2 were any two power sources, which can influence 

the dominant oscillation mode and their type were wind power or conventional power units. We choose 

a large unit which is far from and unrelated to the dominant oscillation mode as the system balancing 

machine. Keeping the structure and parameters of the system unchanged and at the same time keeping 

the node power injected unchanged except for the balancing machine, then active power injected by 

source 1 and 2 forms a two-dimensional small signal stability region boundary. 
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Essentially, this boundary is decided by the system eigenvalues. Because the analysis method 

involves complex nonlinear differential equations, this paper adopts the empirical method to establish 

the catastrophe model. We choose P1, the active power of source 1 and P2, the active power of source 2 

as control variables and the eigenvalues of the dominant oscillation mode as state variable x. There are 

two control variables and one state variable in total, corresponding to the cusp catastrophe model in 

Table 1. 

In catastrophe theory, the potential function is expanded according to a Taylor series abandoning 

high-order terms and simplifies the model by differentiable homeomorphism. The simplest model is called 

a canonical form [25] such as the potential functions in Table 1. The differentiable homeomorphism of 

the cusp catastrophe model only involves linear transformation [25], so the differences between each 

parameter and the canonical form of the cusp catastrophe model are no more than a coefficient and a 

constant, that is: 

V(x) = a(x − x0)4 + b(P1 + c)(x − x0)2 + (P2 + d)(x − x0) (14)

where a, x0, b, c, d are unknown constants. The formulation of equilibrium surface is as follows: 

V'(x) = 4a(x − x0)3 + b(P1 + c)(x − x0) + P2 + d = 0 (15)

Hopf bifurcation is the operating point of the equilibrium surface and the state variable in accord to 

the Hopf bifurcation point is x = 0 ± jn. Substitute x = 0 ± jn into Equation (15) and we obtain: 

3 2 2 2
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By eliminating variable n we get:  

e12P1 + e21P2 = f12 (18)

where:  

12 0

21

3
12 0 0

4

=1

( 4 32 )

e x b

e

f d bcx ax

 


    

 (19)

Here e12 and f12 are both constants. According to Equation (18), P1 and P2 show a linear change 

relationship on the small signal stability region boundary. Equation (18) is the small signal stability region 

boundary model of the interconnected power system with large-scale wind power in two-dimensional 

power injection space. We can determine the small signal stability region boundary according to e12 and 

f12 acquired by data fitting. 

It needs to be indicated that Hopf bifurcations is not the bifurcation set B of catastrophe theory.  

The bifurcation set B corresponds to catastrophe points of the catastrophe model. However, the catastrophe 
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point of the catastrophe theory in fact represents a sudden jump of the properties of eigenvalues, 

including complex eigenvalues turning into real eigenvalues or real eigenvalues turning into complex 

eigenvalues while Hopf bifurcation represents eigenvalues crossing the imaginary axis. The comparison 

sketch between Hopf bifurcation and catastrophe point is shown in Figure 4. 

 

Figure 4. The comparison sketch between Hopf bifurcation and catastrophe point. 

This difference should not discourage the application of catastrophe theory. The potential function of 

catastrophe theory is expanded according to a Taylor series and abandons unnecessary high-order terms, 

which is a standard technique in catastrophe theory. Catastrophe theory provides a rigorous proof [25] 

and truncation to make this approach has a reliable foundation. Thus, the potential function obtained  

in this way still has enough accuracy for all the operating points of the system. The equilibrium surface 

equation consists of the derived functions is also widely valid and applicable. That is to say,  

the equilibrium surface equations are still reasonable for Hopf bifurcation. 

6.2. Small Signal Stability Region Boundary Model in Multidimensional Power Injection Space 

Based on the two-dimensional boundary model, this section deduced the small signal stability region 

boundary model in multidimensional power injection space. Assume power source 1, 2, …, n, which 

can influence the dominant oscillation mode and their type are wind power or conventional power units. 

These n power sources can form these two-dimensional boundaries as Equation (20) shows: 
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Arrange Equation (20) and make the coefficient of 1P  to be 1and we get:  

21 12
1 2 3 4

12 12

31 13
1 3 2 4

13 13

1 1
1 2 3 -1

1 1

+ = { , , constant}

+ = { , , constant}

+ = { , , constant}

n

n

n n
n n

n n

e f
P P P P P

e e

e f
P P P P P

e e

e f
P P P P P

e e





















 

 

 

 (21)

When their outputs change synchronously, these n sources form an n-dimensional boundary as 

Equation (22) shows: 

k1P1 + k2P2 + ·· + kiPi ·· + knPn = r (22)

where k1, ··, ki, ··, kn, and r can be constants as well as functions. Then make the coefficient of 1P  to be 1 

and we get:  

2
1 2

1 1 1 1

+ i n
i n

k kk r
P P P P

k k k k
       (23)

For P1 and Pi (i   {2, ··, n}), keep the other power injection in Equation (23) fixed to obtain  

Equation (24):  

-1 +12
1 20 ( 1)0 ( 1)0 0

1 1 1 1 1 1

+ i i i n
i i i n

k k k kkr
P P P P P P

k k k k k k          (24)

Subscript 0 represents fixed value. According to Equation (21), the relationship between P1 and Pi is 

linear, with a slope of ei1/e1i. To make Equation (24) satisfy the relationship in Equation (21), we kept 

ki/k1 = ei1/e1i. 

Because i represents any number of {2, ··, n}, we obtain k2/k1 = e21/e12, ··, kn/k1 = en1/e1n. All of the 

coefficients above are constants. For Equation (24), r/k1 must be constant, or else the right side of 

Equation (24) will be variable and fail to satisfy the linear relationship in Equation (21). 

Therefore, coefficients in Equation (22) are determined:  

P1 + e2P2 + ·· + eiPi ·· + enPn = f (25)

where, e2 = e21/e12, ··, en = en1/e1n. e2, ··, en; f are all constants. 

Equation (25) is the small signal stability region boundary model in multidimensional power injection 

space. We can determine the small signal stability region boundary according to the coefficients of 

variables acquired by data fitting. 

Sun and Yu [18] proposed a method to fit the small signal stability region boundary using a  

hyper-plane but lacked theories to support their arguments. However, the research in this paper provides 

theoretical support for their proposal. 

In the analysis above, this paper never limits the type of power source, so large-scale wind power 

injection doesn’t change the form of the small signal stability region boundary model but only changes 

the dimensions of the hyper-plane and the values of the parameters. When wind power is injected into 

system instead of common units, both the number of power sources and the dimensions of the  
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hyper-plane will remain unchanged. However, values of the parameters will change because the 

difference between properties of wind power and common units is very big. Wind power injection into 

a certain node in the power system makes the number of power sources increase, leading to changes of 

the parameters as well as the dimension of hyper-plane. 

7. Simulation Verification 

To verify the validity of the small signal stability region boundary model proposed in this paper,  

we tested two examples below. 

7.1. Example 1 

We built the simulation system shown in Figure 5 using DIgSILENT/PowerFactory software, where 

bus D is an infinite bus, buses A, B, C are respectively connected to normal generators G1 with excitation 

system, DFIG wind farm 1 and DFIG wind farm 2. The capacity of wind farm 1 and wind farm 2 are  

210 MVA and 300 MVA, respectively. Both of these wind farms consist of several sets of DFIG with 

the same parameters and operation conditions in parallel. In the analysis, each wind farm is equivalent 

to a wind turbine. We chose the 2 MW wind turbine built into the DIgSILENT/PowerFactory software 

as the wind turbine model and Hansen et al. [39] introduced the model in detail. Appendix B shows the 

parameters of each element in the system(Table B1 shows the parameters of one single DFIG; Table B2 

shows the parameters of generator G1; Table B3 shows the parameters of the excitation system equipped 

on G1; Appendix B4 shows the parameters of the transmission lines.). 

 

Figure 5. The wire map of the power system. 

7.1.1. Test of the Two-Dimensional Boundary Model 

Assume that P1 is the active power of G1, P2 is the active power of wind farm 1 and P3 is the active 

power of wind farm 2. Every power source operates with unity power factor. Keep P3 = 200 MW and 

adjust the values of P1 and P2. When Hopf bifurcation occurs, take a sample of the data. Table C1 of 

Appendix C shows the sampling points. 

Substitute the data in Table C1 into Equation (18) and obtain e12 = 1.3616, f12 = 413.1675, that is:  

1.3616P1 + P2 = 413.1675 (26)

L1
G1

 Infinity L3

L4

L2

DFIG wind farm 1

L5

DFIG wind farm 2
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Figure 6 shows the comparison between sampling points and the fitting boundary, where P1 is the 

abscissa and P2 is the ordinate. According to Figure 6, they have good consistency. In order to accurately 

express the error between the sampling points and the fitting boundary, define the error σ as follows:  

2 2
1 2

d

P P
 


 (27)

where d is the distance from sampling points to the fitting boundary. After calculation, we obtained that 

the average error was 0.319% and the biggest was 0.645%, which had good accuracy and showed that 

the model was reasonable and feasible. Detailed errors are shown in Table C2 of Appendix C. 

 

Figure 6. The two-dimensional stability region boundary contrast figure. 

7.1.2. Verification of the Multidimensional Boundary Model 

Every power source operates with unity power factor and we adjusted P1, P2 and P3. When Hopf 

bifurcation occurs, take a sample of the data. Table C3 in Appendix C shows the sampling points. 

Substitute the data in Table C3 into Equation (25) and obtain e2 = 0.7339, e3 = 0.5871, f = 421.2902, 

that is:  

P1 + 0.7339P2 + 0.5871P3 = 421.2902 (28)

Figure 7 shows the contrast between sampling points and the fitting plane, where P1, P2, P3 are three 

axes. According to Figure 7, they have good consistency. 

In order to accurately express the error between sampling points and the fitting boundary, define the 

error σ as follows:  

2 2 2
1 2 3

d

P P P
 

 
 (29)

where d is the distance from sampling points to the fitting plane. After calculation, we obtained that the 

average error was 0.088% and the biggest was 0.18%, which had good accuracy and showed that the 

model was reasonable and feasible. Detailed errors are shown in Table C4 of Appendix C. 
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Figure 7. The three-dimension stability boundary contrast figure. 

To make further analysis of the boundary, assume P3 = 200 MW and turn Equation (28) into:  

1.3626P1 + P2 = 414.0485 (30)

This is the boundary equation degenerating into two dimensions. The difference between  

Equations (26) and (30) is very small, showing that the theory is reasonable and feasible. 

7.1.3. Time-Domain Simulation Verification 

To further test the accuracy of the boundary, we choose two operating points near the boundary:  

point 1 (210, 139, 180) and point 2 (210, 150, 180) and observe the stability of the system affected under 

a small disturbance by adopting time-domain simulation. Operating point 1 was in the boundary while 

point 2 was out of the boundary. The small disturbance was set as the mechanical torque’s increasing  

0.01 p.u of generator G1 at 1 s, then restoring to the original level at 2 s. The simulation time was set at 

50 s. Under the above disturbance, the power angle swing curves of generator G1 at operating point 1 

and point 2 were shown in Figure 8. 

As can be seen from Figure 8, the swing amplitude of the angle at operation point 2 becomes larger 

and larger and the system would finally lose stability; while at operation point 1, the swing amplitude of 

the angle showed a decreasing trend and finally was stable. Thus, the time-domain simulation results 

also verified the validity of our theory on the stability boundary. 
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Figure 8. The angle swing curves of generator G1 at operation point 1 and point 2. 

7.2. Example 2 

The second simulation test uses the improved three generators and nine buses system. The length of 

each line in the IEEE three generators and nine buses system [40] is extended to 220% of the original 

value. Active power of load A (Figure 9) is set at 200 MW, load B at 250 MW, and load C at 200 MW. 

The remaining values stay unchanged. The DFIG wind farm 1 and wind farm 2 are connected to BUS7 

and BUS9, respectively, through transformers. The system with the wind farm connected to it is shown  

in Figure 9. 

 

Figure 9. The improved model diagram of the three generators and nine buses system. 

New equipment in this system include DFIG wind farm 1, DFIG wind farms 2, transformer Tw1, 

transformer Tw2, bus BUS W1, and bus BUS W2. Among them, DFIG wind farm 1 and 2 are both 

equivalent wind farms with a capacity of 150 MVA. Each single wind turbine still uses the 2 MW wind 
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turbine model in the DIgSILENT/PowerFactory in the equivalence. The parameters of the transformers 

Tw1 and Tw2 are shown in Table 2. The system was modeled by DIgSILENT/PowerFactory software. 

Table 2. New transformer parameters. 

Transformer 
Rated voltage 

(kV) 
Rated power 

(MVA) 
Short-Circuit 

voltage Uk (%) 
No-Load 

current I0 (%) 
Connection 

type 

Tw1, Tw2 20/0.69 166.65 5 3 YN/yn0 

There are two oscillation modes in the improved system. The frequency of one mode is around  

1.15 HZ and the other is around 0.2 HZ. The 0.2 HZ mode has a strong damping in any case and the 

corresponding eigenvalues are far away from HB. Thus the paper does not consider this situation and 

mainly focuses on the 1.15 HZ mode. 

Mark the active output of conventional unit G2 as P1, the active output of DFGI wind farm 1 as P2,  

the active output of conventional unit G3 as P3 and the active output of DFGI wind farm 2 as P4.  

The new wind farms adopt the unity power factor operation mode. Set G1 as the balance unit and G2,  

G3 as PV nodes. Adjust the value of P1, P2, P3, P4 and sample data when HB occurs. Table D1 in 

Appendix D shows the sampling points. 

Substitute the data in Table D1 into Equation (25) and obtain e2 = 1.0542, e3 = 0.8195, e4 = 0.878,  

f = 489.563. That is  

P1 + 1.0542P2 + 0.8195P3 + 0.878P4 = 489.563 (31)

Similarly, define the error as follows:  

2 2 2 2
1 2 3 4

d

P P P P
 

  
 (32)

In Equation (32), d is the distance between the sampling points and the plane. The average value of 

the error was calculated to be 0.0384% and the maximum error was 0.0843%, which was of high 

accuracy. Detailed errors are shown in Table D2 of Appendix D. The results of time domain simulation 

were similar to Figure 8 and it was unnecessary to go into detail. The simulation above also verified the 

multi-dimensional boundary model. 

From the above analysis, the stability region boundary provides a critical stable operating range of  

the system. The shorter the distance between current operating point and stability region boundary is,  

the more likely it is the system will lose stability. Thus, when the operation point is close to the stability 

region boundary, we need to adjust the output of each power supply timely and make the system away 

from the boundary, in order to avoid oscillation and instability of the system. 

8. Conclusions 

This paper provides a new method of analysis of the small signal stability region boundary for an 

interconnected power system with large-scale wind power. Compared with conventional analysis 

methods, based on the external characteristic modeling method of the running track, catastrophe theory 

directly established a function between control variables and state variables without contacting any 
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special inner mechanism. Applying catastrophe theory, this paper established a small signal stability 

region boundary model consisting of Hopf bifurcations and drawn the following conclusions:  

(1) The small signal stability region boundary model in two-dimensional power injection space is a 

straight line. When the other injected power doesn’t change, the power from the two power 

sources influencing the dominant oscillation mode shows a linear relation between them. 

(2) The small signal stability region boundary model in multidimensional power injection space is a 

hyper-plane. When the other injected power doesn’t change, the power from sources influencing the 

dominant oscillation mode forms a hyper-plane. 

(3) Compared with the conventional system, large-scale wind power integration doesn’t change the 

form of the small signal stability region boundary model but only the dimensions of the  

hyper-plane and the values of the parameters. 

This paper developed a deeper understanding of the small signal stability region boundary of the 

interconnected power system with large-scale wind power and also presented new ideas and methods 

for its study. 
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Appendices 

Appendix A: A typical catastrophe mechanism explaining the basic principle of catastrophe theory, 

(Figure A1) 

The process of this mechanism is very simple. Firstly, pick two nearly identical rubber bands and cut 

from thin cardboard a disk whose diameter is one unit. Push a drawing pin through the disc at a point Q 

near the circumference with the point of this pin upwards. Mount the disc on a suitable base by pushing 

a second pin through the center, O. Loop the two rubber bands over the pin at Q, and use a third drawing 

pin to fasten the other end of one of the rubber bands to a point R on the base, two units from O.  

The remaining end, P, is left free. 
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Figure A1. A typical catastrophe mechanism. 

We operate the machine by moving P slowly in the plane of the machine. If we experiment for some 

time, we discover some curious features. The most obvious of these is that while the machine almost 

always responds smoothly to small changes in the position of P, is occasionally jumps suddenly. If we 

mark on the base the positions of P at which these jumps occur, we find that they form the perimeter of 

a curved diamond. 

Saunders [25] made a detailed analysis of this sudden jump and turned the potential function of the 

mechanism into the following form:  

V(x) = x4 + μx2 + vx (A1)

That was the simplest model of the cusp catastrophe and the equilibrium surface was:  

V′(x) = 4x3 + 2ux + v = 0 (A2)

Equation (A2) is a cubic equation, which has three real roots or just one real root. The literature [25] 

reveals that the mathematical essence of the sudden jump is changes in the real roots’ number, namely 

a pair of complex roots turning into real roots or real roots turning into complex roots. The number of 

real roots was decided by the discriminant:  

Δ = 8u3 + 27v2 (A3)

When Δ < 0, there were three real roots; when Δ > 0, there was only one real root, while Δ = 0 was 

the critical condition of the changes of the number of real roots. It was easy to verify that V′(x) = Δ = 0  

was totally equivalent to V′(x) = V″(x) = 0, which was the bifurcation set B of the catastrophe system. 

Figure A2 shows the Equilibrium surface and bifurcation set of the cusp catastrophe model. 

The equilibrium surface was divided into an upper lobe, middle lobe, and lower lobe. The bifurcation 

set B was the projection of two creases of the equilibrium surface on the u–v surface. If control variables 

changed to the bifurcation set B, there must be sudden jumps of equilibrium points (upper lobe jumped 

to lower lobe or lower lobe jumped to upper lobe). Obviously, the outline in Figure A1 is composed of 

the bifurcation set B in Figure A2. 
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Figure A2. The Equilibrium surface and the bifurcation set of the cusp catastrophe model. 

Appendix B 

Appendix B1: DFIG Parameters 

Table B1. DFIG parameters. 

Pn (MW) Us (V) Rs (p.u) Xs (p.u) Xm (p.u) Rr (p.u) Xr (p.u) Hw (s) Hg (s) K 

2 690 0.01 0.1 3.5 0.01 0.1 4.02 0.47 80.27 

Appendix B2: Generator Parameters 

Table B2. Generator parameters. 

Generator Capacity (WVA) Voltage (KV) xd (p.u) 
' (p.u)dx  xq (p.u) 

' (p.u)qx  '
0 (s)dT  

'
0 (s)qT  

G1 300 18 1.72 1.66 0.23 0.378 0.8 0.12 

The voltage and power reference values are this machine’s rated voltage and capacity. 

Appendix B3: Excitation Parameters 

Details of the excitation system model refer to the A type exciter in Appendix B2 of reference [40]. 

The specific parameters are as follows: 

Table B3. Excitation parameters. 

τR τA1 KA τA2 VRmax VRmin τE KE KF τF E1 Se1 E2 Se2 

0.001 0.05 400 0.01 3 −3 0.95 −0.17 0.04 1 3.66 0.03 4.89 0.1 

Appendix B4: Line Parameters  

Line type is LGJ-400, L1 of 60 km in length, L2 of 30 km in length, L3 of 30 km in length, L4 of  

30 km in length and L5 of 100 km in length. 
  

v

u

v

u
x
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Appendix C 

Table C1. The two-dimension boundary sampling points of small-signal stability region. 

P1 (MW) P2 (MW) Real part Imaginary part 

160 192.95 −0.00002 7.371781 
170 180.84 0.00001 7.42214 
180 168.34 −0.00004 7.473076 
190 155.49 0.00001 7.518541 
200 142.43 −0.00003 7.544407 
210 128.98 0 7.568171 
220 115.07 0 7.593426 
230 100.64 −0.00004 7.62154 
240 85.64 0.00001 7.65214 
250 69.94 0.00002 7.689427 

Table C2. The errors of the two-dimension sampling points. 

P1 (MW) P2 (MW) Error (%) 

160 192.95 0.557664 
170 180.84 0.204026 
180 168.34 0.062567 
190 155.49 0.247486 
200 142.43 0.381506 
210 128.98 0.419963 
220 115.07 0.346774 
230 100.64 0.151014 
240 85.64 0.172708 
250 69.94 0.644714 

Table C3. The three-dimension boundary sampling points of small-signal stability region. 

P1 (MW) P2 (MW) P3 (MW) Real part Imaginary part 
190 170.76 180 0.0001 7.536991 
200 157.61 180 0 7.585456 
210 144.3 180 −0.00002 7.610067 
220 130.58 180 −0.00002 7.63315 
230 116.39 180 −0.00001 7.656929 
190 163.21 190 0 7.52991 
200 150.12 190 −0.00002 7.565746 
210 136.74 190 −0.00004 7.590114 
220 122.94 190 0.00001 7.613221 
230 108.64 190 0.00001 7.638675 
190 147.67 210 0.00002 7.49535 
200 134.54 210 0 7.520848 
210 121 210 0.00003 7.545433 
220 106.98 210 0.00003 7.572346 
230 92.41 210 −0.00002 7.603393 
190 139.64 220 0.00002 7.470371 
200 126.43 220 0 7.496321 
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Table C4. The errors of the three-dimension sampling points. 

P1 (MW) P2 (MW) P3 (MW) Error (%) 

190 170.76 180 0.067958 
200 157.61 180 0.013502 
210 144.3 180 0.067639 
220 130.58 180 0.051357 
230 116.39 180 0.044867 
190 163.21 190 0.008951 
200 150.12 190 0.100204 
210 136.74 190 0.141877 
220 122.94 190 0.111855 
230 108.64 190 0.002365 
190 147.67 210 0.085745 
200 134.54 210 0.16861 
210 121 210 0.182398 
220 106.98 210 0.116044 
230 92.41 210 0.040263 
190 139.64 220 0.079899 
200 126.43 220 0.148584 
210 112.78 220 0.144009 
220 98.64 220 0.058873 
230 83.92 220 0.119396 

Appendix D 

Table D1. The four-dimension boundary sampling points of small-signal stability region. 

P1 (MW) P2 (MW) P3 (MW) P4 (MW) Real part Imaginary part 

164.25 130 90 130 0.00002 6.182942 
162 130.11 93 130 −0.00005 6.135284 
160 132 95 128.23 −0.00002 6.130719 
155 135 92 133.33 −0.00009 6.108222 
155 135 89 136.1 −0.00006 6.11538 
150 139.94 90 135 −0.00012 6.123751 

153.94 140 90 130 0.00003 6.195451 
156.63 130 100 130 0 6.015732 
155.96 130 90 140 0 6.026069 

151 135 108 123.01 0.00001 5.995063 
154.24 140 95 125 0.00001 6.186703 
142.92 145 103 125 0.00005 6.069223 
143.43 150 90 130 0.00003 6.213094 

147 135 100 134.51 −0.00008 5.94512 
152.053 130 105 130 0 5.92228 

136 148.31 80 150 0.00013 6.061767 
130.98 150 105 130 −0.00007 5.96777 
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Table D2. The errors of the four-dimension sampling points. 

P1 (MW) P2 (MW) P3 (MW) P4 (MW) Error (%) 

164.25 130 90 130 0.084283 
162 130.11 93 130 0.019028 
160 132 95 128.23 0.003579 
155 135 92 133.33 0.033593 
155 135 89 136.1 0.028496 
150 139.94 90 135 0.040916 

153.94 140 90 130 0.03755 
156.63 130 100 130 0.031047 
155.96 130 90 140 0.01475 

151 135 108 123.01 0.042525 
154.24 140 95 125 0.036604 
142.92 145 103 125 0.065856 
143.43 150 90 130 0.031106 

147 135 100 134.51 0.050112 
152.053 130 105 130 0.066951 

136 148.31 80 150 0.001088 
130.98 150 105 130 0.064887 
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