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Abstract: Estimation of state of charge (SOC) is of great importance for lithium-ion  

(Li-ion) batteries used in electric vehicles. This paper presents a state of charge estimation 

method using nonlinear predictive filter (NPF) and evaluates the proposed method on the 

lithium-ion batteries with different chemistries. Contrary to most conventional filters which 

usually assume a zero mean white Gaussian process noise, the advantage of NPF is that the 

process noise in NPF is treated as an unknown model error and determined as a part of the 

solution without any prior assumption, and it can take any statistical distribution form, which 

improves the estimation accuracy. In consideration of the model accuracy and computational 

complexity, a first-order equivalent circuit model is applied to characterize the battery 

behavior. The experimental test is conducted on the LiCoO2 and LiFePO4 battery cells to 

validate the proposed method. The results show that the NPF method is able to accurately 

estimate the battery SOC and has good robust performance to the different initial states for 

both cells. Furthermore, the comparison study between NPF and well-established extended 

Kalman filter for battery SOC estimation indicates that the proposed NPF method has better 

estimation accuracy and converges faster. 
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1. Introduction 

Global warming, the petroleum crisis, and legislation pushing for higher fuel economy and lower 

emissions, are leading to the development of electric vehicles (EVs) [1,2]. As the key component of any 

electric vehicle, the energy storage system attracts more and more attention. A variety of electrochemical 

energy storage devices are currently used in EV applications, such as lithium-ion (Li-ion) battery, nickel 

metal hydride (NiMH) battery, lead acid (LA) battery, and ultracapacitor (UC). Among them,  

Li-ion batteries are viewed as the most promising energy storage units for EVs, for its high energy density, 

high power density, low self-discharging rate, and long lifespan [3,4]. 

However, strict requirements should be satisfied when using Li-ion batteries, and a battery 

management system (BMS) is required to provide the functions of monitoring, estimation, and protection 

to ensure the safe operations of Li-ion batteries. The state of charge (SOC), acting the similar role as the 

fuel meter for the internal combustion engine system, is the most important factor for batteries which 

should be accurately estimated by the BMS. The battery SOC indicates the residual capacity of the 

battery system and has significant importance in predicting the remaining driving range of EVs. Besides, 

accurate SOC estimation can also prevent the batteries from over-charging and over-discharging 

conditions and thus can extend the battery cycle life [5]. However, since the battery SOC cannot be 

directly measured and it is affected by many factors, such as current, temperature and battery age, 

estimation of the battery SOC is still a challenging problem that needs to be solved. 

A number of SOC estimation methods have been proposed. Each method has its own advantages and 

limitations. Generally, these methods can be mainly classified into two kinds: (1) direct measurement 

based estimation and (2) model based estimation. The first kind of method directly uses the 

measurements from battery system to calculate the SOC, such as current integration method [6],  

open circuit voltage (OCV) based method [7]. The current integration method is easy to implement with 

low computation, but it suffers from the low estimation accuracy due to the accumulative errors caused 

by current sensor noises. In addition, it is also difficult to obtain the initial SOC when using the current 

integration method. Therefore, the open circuit voltage method is usually used complementarily with the 

current integration method to recalibrate the SOC and to provide the initial SOC. However, a long rest 

time of the tested battery is required to reach the open circuit voltage, which is usually unrealistic for 

real world applications. 

In the second kind of method, the battery model is utilized when estimating the battery SOC. One of 

the model based methods for SOC estimation is based on the black-box battery models, such as neural 

networks (NN) [8], fuzzy logic (FL) [9], and support vector machine (SVM) [10]. Eddahech et al. [8] 

developed a recurrent neural network as a SOC predictor that takes into account operational conditions, 

the results show that the predictor allows very precise SOC estimation. Salkind et al. [9] utilized the 

fuzzy logic to estimate the battery SOC by using the training datasets obtained by impedance 

spectroscopy and coulomb counting techniques. Anton et al. introduced a support vector machine based 

SOC estimator for a high-capacity lithium iron manganese phosphate (LiFeMnPO4) battery cell, using 

cell current, cell voltage, and cell temperature as independent variables. The results show that the SVM 

SOC estimator maintains a high level of accuracy. According to the literatures, the black-box model 

based methods can be quite accurate if sufficient experimental data is used to train the model. However, 

their performance highly depends on the quantity and quality of the training data set, a large amount of 
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offline battery tests are necessary to obtain a good model which can be very time-consuming. Optimum 

state filtering method is another kind of model based method for battery SOC estimation. This method 

usually performs SOC estimation based on an equivalent circuit battery model [11,12]. Many different 

state filtering methods have been investigated, such as extended Kalman filter (EKF) [13–15], sigma 

point Kalman filter (SPKF) [16–18], adaptive extended Kalman filter (AEKF) [19], adaptive unscented 

Kalman filter (AUKF) [20], particle filter (PF) [21] and others [22–26]. Plett [13–17] established the 

EKF and UKF based SOC estimation methods using different orders of equivalent circuit battery models 

for simultaneous state and parameters estimation of LiPB packs. Both of them obtained very good 

results, and the methods were robust to different initial states. Han et al. adopt the AEKF method for 

SOC estimation by adaptively updating the process and measurement noise covariance which improved 

the estimation accuracy. Similarly, Hu et al. applied the AUKF for SOC estimation. All of the Kalman 

filter (KF) based methods achieve very good estimation performance because of online state error 

correction capability. However, there are some shortcomings for KF based methods. For instance, the 

statistic distribution of the process noise is assumed to be the zero mean white Gaussian process and 

prior knowledge of the noise covariance should be known before estimating the battery SOC. In fact,  

it is difficult to obtain the accurate information of the process noises for real world applications,  

and the filter performance will decrease or even diverge with inaccurate noise information. Besides,  

the assumption of the zero-mean Gaussian process noises usually cannot be met in practice which can 

decrease the estimation accuracy [27]. PF is another optimum state filtering methodology for SOC 

estimation [21]. It is able to represent any probability density function for the state by using Monte Carlo 

sampling methods which improves the estimation accuracy. However, the computational effort is high 

for PF due to the large amount of particles which makes it difficult to apply for real-world applications. 

In this paper, the nonlinear predictive filter (NPF) is proposed to estimate the SOC of Li-ion batteries 

and the proposed method is evaluated on the battery cells with different chemistries. The NPF method 

was firstly proposed by Crassidis et al., for spacecraft attitude estimation and obtained satisfactory 

results [28]. It is a nonlinear optimum state estimation method implemented on continuous-discrete time 

systems, which is particularly suitable for battery systems [29]. In the NPF method, the nonlinear 

dynamic system is treated as a preliminary model with a to-be-determined model error part, where the 

preliminary model describes the system dynamic and the model error mainly represents the system 

process noise. The significant advantage of NPF method is that the process noise is treated as an 

unknown model error determined as a part of the solution, and it is able to represent any distribution 

form. Compared to the aforementioned direct measurement based estimation method, the NPF method 

can provide more accurate results with better robust performance of initial values due to its capability of 

correcting the state error online. In comparison with black-box model based method, the large amount 

of training data sets is not required for NPF method which saves the computational effort. The KF based 

method usually assumes a zero mean white Gaussian process noise and requires the prior knowledge.  

In contrary, the process noise in NPF can be any type without any restricting pre-assumptions. Therefore, 

the NPF based SOC estimation method has better estimation performance and is more practical for  

real-world applications. Compared to the PF method, the NPF method has lower computation, since a 

large number of particles needs to be used and numerous matrix operations are required for PF method 

which greatly increase the requirements for hardware system. Additionally, the aforementioned 

literatures mainly perform their methods on one type of batteries; the robustness performance of different 
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battery types is not discussed. In this study, the NPF method is performed on LiCoO2 (LCO) and 

LiFePO4 (LFP) battery cells, the experimental results show that the NPF based method can accurately 

estimate the battery SOC with good robustness to different initial values. Meanwhile, the estimation 

result of LFP battery suffers from a lower accuracy than that of LCO battery due to the characteristics 

of the flat open circuit voltage. Furthermore, the comparison study between NPF and EKF with the same 

experimental conditions indicates that the proposed NPF method has better estimation accuracy and 

faster convergence rate. 

The rest of the paper is organized as follows. In Section 2, a first-order equivalent circuit battery 

model is introduced. The description for SOC estimation of the Li-ion battery cell using NPF is presented 

in Section 3. In Section 4, the estimation results are analyzed and discussed to verify the proposed 

method. Finally, the conclusion is provided in Section 5. 

2. Battery Model 

2.1. Model Structure 

In order to apply NPF for SOC estimation, a suitable battery model is required to characterize the 

electrochemical properties of Li-ion batteries, including: ohmic resistance, charge transfer and diffusion. 

Different types of battery models have been proposed in the literature. Among them, the equivalent 

circuit models (ECMs) are the most commonly used ones for battery state estimation. The ECMs capture 

the battery input-output dynamics through electrical circuit elements, such as resistor, capacitor and 

voltage source, and can be easily used for model based estimation. Hu et al. introduced a comprehensive 

study for different types of ECMs, and their results indicate that the first-order ECM achieves an 

excellent compromise between accuracy and complexity [30]. Therefore, as shown in Figure 1,  

a first-order ECM composed of an open circuit voltage (OCV) source, a resistor, and an RC network,  

is used in this study. The resistor represents the electrical resistance of battery components with the 

accumulation and dissipation of charge in the electrical double-layer. The RC network describes the 

charge transfer and diffusion effect, and the voltage source indicates the battery’s open circuit voltage 

which is a function of the battery SOC. 

 

Figure 1. Schematic diagram of the first-order battery model. 

The SOC definition for the Li-ion battery is formulated as: 

0

η ( )
( ) (0)

t
L

n

I t dt
SOC t SOC

C
    (1)
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where (0)SOC  is the initial SOC value, ( )SOC t  is the battery SOC at time t, η is the Coulombic efficiency 

(in this paper η is assumed as 1), LI  is the input current (positive for charge, negative for discharge) and 

nC  is the nominal capacity. 

Equations (2) and (3) describe the electrical behavior of the Li-ion battery: 
1 1( ) ( ) ( ) ( )p p p p p LU t R C U t C I t     (2)

( ) ( ( )) ( )t oc p sLU t U SOC t U I t R   (3)

where pU  is the polarization voltage, pR  and pC  are the polarization resistance and capacitance, 

respectively, tU  is the battery terminal voltage, and sR  is the ohmic resistance. 

A spline function is employed to describe the relationship between the battery open circuit voltage 

ocU  and battery SOC, given by Equation (4): 

( ) ( ( ))ocU t Spline SOC t  (4)

2.2. Model Parameter Identification 

2.2.1. Experimental Setup 

In this work, two different types of battery cells, LiCoO2 (LCO) and LiFePO4 (LFP), are tested.  

The standard specifications of the tested cells are listed in Tables 1 and 2. The schematic diagram of the 

battery test bench is shown in Figure 2. It consists of a Takasago ZX-800LA electric power, a Kikusui 

PLZ150U electric load, a NI cDAQ-9174 data acquisition system, a host PC, and a thermal chamber. 

The ZX-800LA electric power can charge the battery cell with the maximum current of 80A at the 

maximum voltage of 84V, while the PLZ150U electric load is able to provide the maximum discharge 

current of 30A with the maximum voltage of 150V. The electric power and load are remotely controlled 

by the host PC to determine the charge/discharge power load of the tested battery cell. The data 

acquisition system with a sampling rate of 10 Hz is used to capture the current, voltage, and temperature 

of the tested battery and to transfer the obtained data to the host PC. 

 

Figure 2. Schematic of battery test bench. 
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Table 1. Battery cell (LCO) specification. 

Item Specification 

Cell Dimensions (mm) Ø 18 × 69 
Cell Weight (g) 48.2 

Cell Capacity (nominal, Ah) 2.6 
Cell Voltage (nominal, V) 3.7 

Gravimetric Energy Density (nominal, Wh/kg) 180 
Volumetric Energy Density (nominal, Wh/L) 464 

Operating Temperature −20 °C to 60 °C 

Table 2. Battery cell (LFP) specification. 

Item Specification 

Cell Dimensions (mm) Ø 32 × 113 
Cell Weight (g) 205 

Cell Capacity (nominal, Ah) 4.5 
Cell Voltage (nominal, V) 3.3 

Gravimetric Energy Density (nominal, Wh/kg) 71 
Volumetric Energy Density (nominal, Wh/L) 161 

Operating Temperature −30 °C to 55 °C 

2.2.2. Parameter Identification 

For the first-order battery model, the values of the model parameters as well as the SOC-OCV 

relationship need to be identified. A series of battery tests, including: capacity test, pulse current test, 

and open circuit voltage test, are conducted to extract these parameters. The content of these tests are 

described as follows: 

(1) Capacity test: The capacity test discharges the battery cell from the fully charged state  

(upper-limit voltage) to the fully discharged state (lower-limit voltage) with 0.5 C rate, and the 

cell capacity is referred as the total Ampere-hours drained out of the battery during the test.  

The cut-off voltages used during the test for LCO battery are Vmax = 4.2 V, Vmin = 2.8 V, and the  

cut-off voltages for LFP battery are Vmax = 3.6 V, Vmin = 2 V. The experimental results of the 

capacities for the tested LCO and LFP cells are 2.62 Ah and 4.29 Ah, respectively. 

(2) Pulse current test: To identify the values of the electrical circuit elements in the first-order ECM, 

a pulse current test is conducted on the battery cells at 10% SOC intervals starting from 0.9 to 

0.3. During the test, the environment temperature is controlled at 25 °C. The detailed test 

procedure can be found in [31]. In this study, the time period between two current pluses, when 

no current is applied, is used for parameters identification. The current and voltage profiles during 
this time period are shown in Figure 3. The ohmic resistance sR  can be expressed as: 

s
s

L

U
R

I
  (5)

where sU  is the instantaneous voltage response within one second, and LI  is the current before the rest 

time period. The polarization voltage tU  at time t  can be expressed by: 
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(1 e ) ,p p

t

R C

t p p p LU U U R I


    (6)

where pU  is the maximum polarization voltage during the rest time period. The polarization resistance 

and capacitance can be identified by minimizing the difference between the model output and voltage 
measurement using the nonlinear least square method. The identification results of , ,s p pR R C  for LCO 

and LFP cells are shown in Figure 4. It can be seen that the parameters vary at different battery SOC 
points. However, to reduce the complexity of the battery model, , ,s p pR R C  at different SOC points are 

averaged to obtain the final model parameters and the results are shown in Table 3. 

 

Figure 3. Voltage profile during the rest time period. 

Figure 4. Parameters identification results: (a) Rs results of LiCoO2 (LCO) cell;  

(b) Rp results of LCO cell; (c) Cp results of LCO cells; (d) Rs results of LiFePO4 (LFP) cell; 

(e) Rp results of LFP cell; (f) Cp results of LFP cells. 
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(3) Open circuit voltage test: To calibrate the nonlinear SOC-OCV relationship, an open circuit 

voltage test is conducted as follows. The battery cell is discharged using 0.5 C constant current 

at 5% SOC interval from 100% SOC to 15% SOC. After each discharge period, the battery cell 

is rested for 3 hours to reach the close-to-equilibrium open-circuit potential for each SOC point. 

A similar procedure is conducted to get the SOC-OCV curve under the battery charge condition. 

Since the possible hysteresis voltage is neglected in this paper, the SOC-OCV relationship for 

the battery model is defined as the average of the equilibrium potentials of charging and 

discharging. The experimental results of the SOC-OCV curves for LCO and LFP battery cells 

are shown in Figure 5. 

Figure 5. SOC-OCV curves: (a) LCO battery cell; (b) LFP battery cell. 

Table 3. Model parameters. 

LCO Battery Cell 

Model parameters ( )sR   ( )pR  ( )pC F  ( )nC Ah  

Values 0.187 0.046 1969 2.62 

LFP battery cell 

Model parameters ( )sR   ( )pR  ( )pC F  ( )nC Ah  

Values 0.0048 0.0029 1186 4.29 

2.3. Model Validation 

In order to validate the battery models with identified parameters for LCO and LFP battery cells, the 

experimental test using Urban Dynamometer Driving Schedule (UDDS) driving cycle is conducted. 

UDDS is usually used for light duty vehicle testing under the city driving condition [32]. Therefore, the 

UDDS driving cycle is adopted in this study to simulate the battery dynamics under a realistic EV 

scenario. The model validation results for LCO and LFP battery cells are shown in Figures 6 and 7. 

Figure 6a,b shows the comparison profiles of the estimated terminal voltage and measured terminal 

voltage for LCO battery cell. Figure 6c shows the corresponding voltage error and it can be seen that the 

maximum model error is around 0.02 V. Figure 6d shows the root mean squared error (RMSE) of the 

terminal voltage, which is less than 0.007 V. Similar results for LFP battery cell are shown in Figure 7. 

The maximum model error is within 0.01 V for LFP battery cell, while the RMSE is less than 0.004 V. 

According to the results, it can be concluded that the first order battery model is able to accurately capture 

the dynamic behavior of both Li-ion battery cells. 
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Figure 6. Model validation results of LCO cell: (a) Comparison of model output voltage and 

measured voltage; (b) Zoom plot; (c) Voltage error; (d) RMSE of voltage error. 

Figure 7. Model validation results of LFP cell: (a) Comparison of model output voltage and 

measured voltage; (b) Zoom plot; (c) Voltage error; (d) RMSE of voltage error. 
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3. Nonlinear Predictive Filter for SOC Estimation 

In this section, the description of nonlinear predictive filter (NPF) is firstly introduced. Then, the NPF 

based SOC estimation using the first-order battery model is presented. 

3.1. Nonlinear Predictive Filter 

Nonlinear predictive filter (NPF) is a model based state estimation method implemented with 

nonlinear continuous-discrete time system. The state and measurement equations in NPF are given by 

Equations (7) and (8): 

x(t)  f [x(t),t] g(t)d(t)  (7)

( ) [ ( ), ] ( )k k k ky t h x t t v t   (8)

where ( )x t  is the state vector which needs to be estimated, f  is system dynamic function, ( )d t  is the 

model error which mainly represents the process noise and ( )g t  is the model error distribution matrix. 

( )ky t  is the system output sampled at time step tk, h  is the system measurement function, v  is the 

measurement noise which is assumed to be an independent zero mean Gaussian white noise with: 

' '[ ( )] 0, [ ( ) ( ) ] δT
k k k kkE v t E v t v t R   (9)

where R  is a positive-definite covariance matrix. 
In order to estimate the system states, the model error ( )d t  needs be obtained at every time step.  

A cost function consisting of the weighted sum square of the measurement-minus-estimate residuals plus 

the weighted sum square of the model correction term is established in order to get the mathematical 
expression of ( )d t , as defined in Equaton (10): 

1ˆ ˆ[ ( )] 0.5[ ( ) ( )] [ ( ) ( )] 0.5 ( ) ( )T TJ d t y t t y t t R y t t y t t d t Wd t         (10)

where 1( ) ( ), ( ) ( )k ky t y t y t t y t     , ∆t is the sampling interval, W is a positive semi-definite weighting 

matrix. A first-order Taylor expansion is used to approximate ˆ( )y t t  , given in Equation (11): 

2ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 0.5 ( ) ( ) ( ( ), ) ( ) ( ( )) ( )y t t y t ty t t y t y t Z x t t t S x t d t                 (11)

The solution of ( )d t  is derived by minimizing the cost function [ ( )]J d t , given in Equation (12): 

1 1

1

ˆ ˆ( ) {[ ( ) ( ( ))] ( ) ( ( )) }

ˆ ˆ ˆ[ ( ) ( ( ))] [ ( ( ), ) ( ) ( )]

T

T

d t t S x t R t S x t W

t S x t R Z x t t y t y t t

 



      

       
 (12)

where ˆ ˆ( ( )), ( ( ), ), ( )k kS x t Z x t t t   are intermediate matrices, given as follows: 

1 1

1

1

1 1
1 1

1 1

ˆ ˆ( ( )) ( ( ))

ˆ( ( ))

ˆ ˆ( ( )) ( ( ))

l

m m

l

r r
g f g f

r r
g f m g f m

L L h x t L L h x t

S x t

L L h x t L L h x t

 

 

 
 

  
 
  



  


 (13)

11λ 0

( ) λ ,λ , 1,2,
!

0 λ

ir

ii ii
i

mm

t
t i m

r

 
      

  


  


 (14)

1

ˆ ˆ( ( ), ) ( ( )), 1, 2, ,
!

ir a
a

i f i
a

t
Z x t t L h x t i m

a


     (15)
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Here, 1 ˆ( ( ))i

j

r
g f iL L h x t  is the Lie derivation, defined as: 

0 ˆ ˆ( ( )) ( ( ))f i iL h x t h x t  (16)
1 ˆ( ( ))

ˆ ˆ( ( )) [ ( ), ]
ˆ

n
f in

f i

L h x t
L h x t f x t t

x





 (17)

ˆ( ( ))
ˆ( ( )) ( )

ˆj

n
f in

g f i j

L h x t
L L h x t g t

x





 (18)

The index ri is the relative degree, which satisfies the following two constrained equations: 

ˆ( ( )) 0( 1, 2, ; 1, 2, , , 1)i

j

n
g f i i iL L h x t i m j l n r       (19)

1 ˆ( ( )) 0( 1, 2, ; 1, 2, , )i

j

r
g f iL L h x t i m j l      (20)

Therefore, based on the measurement processed at time 1kt  , the new ( )d t  in +1[ : ]k kt t can be found. 

After that, the state estimates are propagated to time +1kt . 

The weighting matrix W in Equation (10) is derived as the inverse of the model error’s covariance 

matrix D , given as follows:  

-1 -1 -1[ ( )] [( ( ) [ ( )])( ( ) [ ( )]) ]TW = D Cov d t E d t E d t d t E d t     (21)

Assume that ( )d t  is a stationary ergodic random process, then the covariance matrix D  of the  

model error can be iteratively derived with a certain time interval; the steps of calculating W are listed 

as follows: 

Step.1: Initialization: -1
0 0 0 0[( ( ) [ ( )])( ( ) [ ( )]) ]TW E d t E d t d t E d t   , for the total time length L , the time 

interval for updating W  is defined as l = L/r, where r is the total iterations. 

Step.2: For ( 1) 1[ : ]k l klt t t  : estimate the model error ( )d t for ( 1) 1[ : ]k l klt t  , and obtain the sequence of 

model error ( 1) 1[ ( ), , ( )]k l kld t d t   . 

Step.3: For klt t , update weighting matrix: 1
kW D  , kD  is the covariance for ( 1) 1[ ( ), , ( )]k l kld t d t   . 

Step.4: If /k L l , return to step.2. 

Based on the definitions and descriptions above, the workflow of NPF can be summarized as follows: 

Step.1: Initialization: for 0k  : 

(a) Set initial values: 0 0ˆ( ) [ ( )]x t E x t , -1
0 0 0 0[( ( ) [ ( )])( ( ) [ ( )]) ]TW E d t E d t d t E d t   ; 

(b) Set weighting matrix update time interval: l = L/r. 

Step.2: For every time step 1, 2, ,k    doing the following: 

(a) Estimate system output: ˆ ˆ( ) [ ( )]k ky t h x t ; 

(b) Calculate the intermediate parameter matrices ˆ ˆ( ( )), ( ( ), ), ( )k kS x t Z x t t t   ; 

(c) Estimate model error: 
1 1

1
1

ˆ ˆ( ) {[ ( ) ( ( ))] ( ) ( ( )) }

ˆ ˆ ˆ[ ( ) ( ( ))] [ ( ( ), ) ( ) ( )]

T
k k k

T
k k k k

d t t S x t R t S x t W

t S x t R Z x t t y t y t

 




      

     
; 

(d) Update state estimation from ˆ( )kx t  to +1ˆ( )kx t  using discretized state equation: 

ˆ ˆ( ) [ ( ), ] ( ) ( )x t f x t t g t d t  . 
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Step.3: For ,1k nl n r    

(a) Calculate covariance for ( 1) 1[ ( ), , ( )]k l kld t d t   : ( 1) 1[ ( )] [ : ]k k l klD Cov d t t t t  ，  

(b) Update weighting matrix: 1
kW D   

It can be seen that the process noise is determined online as a part of the solution without any prior 

assumption. As a result, the NPF method is robust to the process noise with any statistic distribution. 

3.2. NPF Based SOC Estimation 

In order to apply the NPF method to estimate the battery SOC, a continuous-discrete time model for 

the battery system is needed. According to the description of the equivalent circuit battery model in 

Section 2.1, the battery model in the continuous-discrete time form is formulated as: 

1

1 1 2

( )
0 ( ) ( )( )

( )
( )( )

( ) ( ) ( )

L

n

p
p p p p L

I t
SOC t d tSOC t

Cx t g
d tU t

R C U t C I t 

                     


   (22)

( ) [ ( )] ( ) ( ) ( )t k oc k p k L k s kU t U SOC t U t I t R v t     (23)

where the state vector ( )x t  consists the components of ( )SOC t and ( )pU t , the model error vector ( )d t  

consists the components of 1( )d t  and 2 ( )d t  representing the errors of ( )SOC t  and ( )pU t  respectively, and 

the battery’s terminal voltage ( )t kU t  is the system output sampled at kt . An identity matrix 2 2I   is 

assigned to the model error distribution matrix g. In addition, the input current ( )LI t  is treated as a known 

system parameter since we can sample the input current in every time step by the current sensor. 
The expressions of the intermediate parameter matrices ˆ ˆ( ( )), ( ( ), ), ( )k kS x t Z x t t t    for the nonlinear 

battery system are given in Equations (24)–(26), which are derived according to Equations (13)–(15). 

The relative order r is 1 which can be obtained following the definitions in Equations (19)–(20). 

1 2

[ ( )]
ˆ ˆ ˆ( ( )) [ ( ( )), ( ( ))]= ,1

( )
oc k

g gk k k
k

U SOC t
S x t L h x t L h x t

SOC t

 
 
  





 (24)

1 1( ) [ ( )]
ˆ( ( ), ) ( ( )) ( ) ( ) ( )

( )
L k oc k

k f k p p p k p L k
n k

I t U SOC t
Z x t t t L h x t t R C U t C I t

C SOC t
  

           
 (25)

( )t t     (26)

The schematic diagram of the NPF based SOC estimation is shown in Figure 8. The 1( )d t  and 2 ( )d t  
will be estimated at every iterative loop to predict the model errors of ( )SOC t  and ( )pU t  in the next time 

step, then the battery state estimation of the next time step can be obtained based on the predicted model 

errors and battery dynamics. 
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 Figure 8. Schematic diagram of NPF based SOC estimation. 

4. Results and Discussion 

4.1. Part A: Evaluate the SOC Estimation of LCO Battery Cell 

In this part, the experimental data is used to validate the performance of the NPF based estimation 

method for LCO battery cell. The model parameters in Table 3 are used in the estimation. The JC08 

(Japanese Cycle 2008) driving cycle is applied as the loading profile to evaluate the proposed method. 

Figure 9 shows the SOC estimation results with the accurate initial SOC value, and Figure 10 shows the 

SOC estimation results with inaccurate initial SOC values. 

Figure 9a shows the comparison profiles of the reference SOC and estimated SOC with the accurate 

initial SOC. Since the initial SOC is accurate and the integration time is not long, the SOC result obtained 

from coulomb counting is treated as an accurate estimation and thus taken as a reference. Figure 9b 

shows the estimation error between the reference SOC and estimated SOC and it can be seen that the 

maximum error is around 1%. Figure 9c,d shows the mean absolute error (MAE) and root mean squared 

error (RMSE) of SOC estimation, respectively. The results indicate that both of the MAE and RMSE are 

less than 0.4% at the end of estimation. Based on the discussion above, it can be concluded that the NPF 

method is able to accurately estimate the SOC of LCO battery cell. 

Figure 10a shows the estimation results with inaccurate initial SOC values, while Figure 10b shows 

the corresponding errors. Two different initial SOC values (0.5 and 0.3) are used. It can be seen that the 

SOC estimates can quickly converge to the true solutions within several sampling steps for both initial 

SOC values. Therefore, the proposed NPF based SOC estimation method is robust to inaccurate initial 

values for LCO battery cell. 
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Figure 9. SOC estimation results with accurate initial SOC for LCO battery cell:  

(a) Comparative profiles of reference and estimated SOC; (b) Error of SOC estimation;  

(c) MAE of SOC estimation; (d) RMAE of SOC estimation. 

Figure 10. Estimation results with inaccurate initial SOCs for LCO cell: (a) Comparative 

profiles of reference and estimated SOC; (b) Error of SOC estimation. 

4.2. Part B: Evaluate the SOC Estimation of LFP Battery Cell 

In this section, the SOC estimation using NPF for LFP battery cell is conducted. Similarly, the JC08 

driving cycle is applied as the loading profile. Figure 11 shows the SOC estimation results with the 

accurate initial SOC value. Figure 11a shows the comparison profiles of the estimated SOC and reference 

SOC, and Figure 11b shows the estimation error. It can be seen that the maximum estimation error is 

within 2%. Figure 11c,d shows the MAE and RMSE of SOC estimation, both of which are less than 

0.9% at the end of estimation. Figure 12 shows the SOC estimation with inaccurate initial SOC values, 

where Figure 12a shows the comparison of the reference SOC and estimated SOC, and Figure 12b shows 
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the estimation error. Similar to the LCO battery cell, two different initial SOC values are used. It can be 

seen from those results that the SOC estimation can also converge to the true solution within several 

sampling steps for both inaccurate initial values. 

Figure 11. SOC estimation results with accurate initial SOC for LFP battery cell:  

(a) Comparative profiles of reference and estimated SOC; (b) Error of SOC estimation;  

(c) MAE of SOC estimation; (d) RMAE of SOC estimation. 

Figure 12. Estimation results with inaccurate initial SOC for LFP cell: (a) Comparative 

profiles of reference and estimated SOC; (b) Error of SOC estimation. 

Based on the estimation results of LCO and LFP battery cells, a comparison study of SOC estimation 

for LCO and LFP cells is conducted. The comparison results are listed in Table 4. Compared to LFP 

battery cell, the SOC estimation of the LCO battery cell is benefited by a 0.91% improvement in terms 

of the maximum error, and by 0.31% and 0.42% improvements in terms of MAE and RMSE. With 

respect to the convergence rate, the SOC estimation of the LCO battery cell converges much faster than 

that of the LFP battery cell with inaccurate initial SOC values. It seems that the estimation performance 
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of the LCO battery cell is better than that of the LFP battery cell. The difference in the estimation 

performance can be mainly explained by the difference of the SOC-OCV relationships between these 

two cells, as shown in Figure 13. The comparison results of SOC-OCV curves are shown in  

Figure 13a,b. It is obvious that, compared to the LCO battery cell, the LFP battery cell has a much flatter 

SOC-OCV curve with smaller derivation. In other words, for the same OCV difference OCV , the 
corresponding SOC difference LFPSOC  of LFP battery cell will be much larger than the corresponding 

SOC difference LCOSOC  of LCO battery cell. Therefore, the observability of the LFP battery cell is 

weaker than that of the LCO battery cell. As a result, for similar model error, the SOC error of the LFP 

battery cell will be larger than the SOC error of the LCO battery cell. Thus, the performance of NPF 

based SOC estimation method for LFP battery cells is worse than that for LCO battery cells due to 

weaker observability. 

Figure 13. SOC-OCV curves for two cells: (a) Comparison of SOC-OCV; (b) Comparison 

of the derivation of SOC-OCV. 

Table 4. Comparison of LCO and LFP battery cells. 

Estimation accuracy Maximum error MAE RMSE 

LCO battery cell 1.01% 0.33% 0.39% 
LFP battery cell 1.92% 0.64% 0.81% 

Difference 0.91% 0.31% 0.42% 

Convergence rate 
Convergence time 
(Initial SOC = 0.5) 

Convergence time 
(Initial SOC = 0.3) 

LCO battery cell 302 s 427 s 
LFP battery cell 392 s 556 s 

Difference 29.8% 30.2% 

4.3. Part C: Comparison with Extended Kalman Filter 

In order to further evaluate the performance of proposed method, a comparison study is conducted 

between the NPF method and the well-established extended Kalman filter (EKF) method based on the 

same experimental conditions. The details of EKF for SOC estimation can be found in [15]. To facilitate 

the understanding of the SOC estimation using EKF, a summary of EKF is provided as follows: 

Nonlinear sate-space model: 1 ( , )

( , )
k k k k

k k k k

x f x u w

y h x u v
  

  
 (27)
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Definitions :
ˆ ˆ

( , ) ( , )ˆ ˆ,
k k k k

k k k k
k k

k kx x x x

f x u h x u
A C

x x  

 
 

 
 (28)

Step.1: Initialization: For k = 0, set: 0 0ˆ [ ]x E x  , 0 0 0 0 0ˆ ˆ[( )( ) ]Tp E x x x x      

Step.2: For k = 1,2, . . . n, do the following: 

(a) State estimation time update: 1 1ˆ ˆ( , )k k kx f x u 
    

(b) Error covariance time update: 1 1 1
ˆ ˆT

k k k k wp A p A R 
      

(c) Calculate the Kalman gain: 
1ˆ ˆ ˆT T

k k k k k k vL p C C p C Q


       

(d) State estimation measurement update: ˆ ˆ ˆ[ ( , )]k k k k k kx x L y h x u       

(e) Error covariance measurement update: ˆ( )k k k kp I L C p     

where kw and kv  are independent, zero-mean, Gaussian noise processes with covariance matrices wR   

and vQ . 

In comparison with the NPF based method which uses a continuous-discrete time model, the battery 

system in EKF is modeled in a discrete time form, given as follows: 

State equations: 
1 , 1,

1
, 1 , , 2,

η

(1 ( ) )

k k L k k
n

p k p p p k L k k
p

t
SOC SOC I w

C

t
U R C t U I w

C






   

      


 (29)

Measurement equations: , , ,( )t k oc k p k L k s kU U SOC U I R v     (30)

In this paper, two main aspects, estimation accuracy and convergence rate, are studied to show the 

advantages of the NPF based method. 

To compare the estimation accuracy of these two methods, the SOC estimation with the accurate 

initial SOC is evaluated. Figure 14 shows the comparison of SOC estimation for LCO battery cell.  

Figure 14a shows the comparison of the reference SOC and estimated SOCs by NPF and EKF, while 

Figure 14b shows the corresponding errors. It can be seen that the NPF based method has better 

estimation accuracy than the EKF based method. The MAE and RMSE of SOC estimation also indicate 

that the NPF based method has better accuracy (shown in Figure 14c,d). Similarly, an improvement of 

estimation accuracy by the NPF based method can also be found for LFP battery cells, as shown in 

Figure 15. A summary of the estimation accuracy for these two methods is listed in Table 5. 

Figure 14. Cont. 
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Figure 14. Comparison results of SOC estimation for LCO battery cell with accurate initial 

SOC: (a) SOC estimation; (b) Error of SOC estimation; (c) MAE of SOC estimation;  

(d) RMSE of SOC estimation. 

Figure 15. Comparison results of SOC estimation for LFP battery cell with accurate initial 

SOC: (a) SOC estimation; (b) Error of SOC estimation; (c) MAE of SOC estimation;  

(d) RMSE of SOC estimation. 

Table 5. Comparison results of estimation accuracy. 

Estimation Accuracy Maximum Error MAE RMSE 

LCO battery cell 

EKF 1.64% 0.43% 0.54% 
NPF 1.01% 0.33% 0.39% 

Improvement 38.4% 17.9% 27.8% 

LFP battery cell 

EKF 4.66% 0.78% 1.01% 
NPF 1.92% 0.64% 0.81% 

Improvement 58.8% 17.9% 20.8% 
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To compare the convergence rate of these two methods, the SOC estimation with the inaccurate initial 

SOC is conducted. For convenience, the initial SOC value used in this study is set as 0.5 for both NPF 

and EKF. The results are shown in Figure 16 where Figure 16a,b shows the comparison for the LCO 

battery cell, and Figure 16c,d shows the comparison for the LFP battery cell. It can be seen that the NPF 

based method converges faster than the EKF based method for both cells. A summary of the convergence 

rate for these two methods is given in Table 6. 

Figure 16. Comparison results of SOC estimation with inaccurate initial SOC:  

(a) SOC estimation of LCO battery cell; (b) SOC estimation error of LCO battery cell;  

(c) SOC estimation of LFP battery cell; (d) SOC estimation error of LFP battery cell. 

Table 6. Comparison results of convergence rate. 

Convergence Rate Time 

LCO battery cell 

EKF 439 s 
NPF 302 s 

Improvement 31.2% 

LFP battery cell 

EKF 586 s 
NPF 392 s 

Improvement 33.1% 

5. Conclusions 

In this paper, the nonlinear predictive filter is developed to estimate the SOC of Li-ion batteries with 

two different chemistries. First, in consideration of the model accuracy and computational complexity, 
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the first-order equivalent circuit battery model is adopted to characterize the dynamic performance of 

Li-ion battery cells. Second, a series of battery tests are conducted using two cells with different 

chemistries (LCO and LFP) to identify the model parameters. The model validation results based on 

UDDS driving cycle indicate that the battery models with identified parameters are able to accurately 

represent the behavior of LCO and LFP battery cells. Third, the nonlinear predictive filter is introduced 

and developed to estimate the battery SOC using the first-order battery model. The JC08 driving cycle 

is applied for these two cells to evaluate the proposed method. According to the results, the NPF based 

method is able to estimate the battery SOC accurately. Besides, the proposed SOC estimation method 

has good robust performance to inaccurate initial values (quickly converging to the true solution within 

several sampling steps). Finally, the comparison of EKF and NPF based methods indicates that the 

proposed method has better estimation accuracy and faster convergence rate than the EKF based method 

for both cells. 
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