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Abstract: This paper aims to present an improved version of a typical particle swarm 

optimization (PSO) algorithm, such that the global maximum power point (MPP) on a P-V 

characteristic curve with multiple peaks can be located in an efficient and precise manner 

for a photovoltaic module array. A series of instrumental measurements are conducted on 

variously configured arrays built with SANYO HIP2717 PV modules, either unshaded, 

partially shaded, or malfunctioning, as the building blocks. There appear two, triple and 

quadruple peaks on the corresponding P-V characteristic curves. Subsequently, the tracking 

performance comparisons, made by some practical experiments, indicate the superiority of 

this improved MPP tracking algorithm over the typical one. 

Keywords: particle swarm optimization (PSO) algorithm; maximum power point tracking 

(MPPT); photovoltaic module array; P-V characteristic curves 

 

1. Introduction 

A photovoltaic power generation system refers to a power system involving a photovoltaic array,  

a power conditioner(s) and a transmission and distribution system. The output power provided by a 

single PV module is found to vary nonlinearly with the change in solar irradiation and the ambient 

temperature. Hence, it becomes a significant research issue to develop maximum power point tracking 

(MPPT) techniques, through power electronics, which enable a PV power generation system to provide 

the maximum output power at all events. To date, the published MPPT algorithms include the voltage 

feedback [1], the constant voltage tracking (CVT) [2], the power feedback [3], the perturb and observe 

(P & O) [4], the incremental conductance (INC) methods [5], and so on. The voltage feedback method 
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is deemed as the simplest approach, while the output voltage corresponding to the MPP must be known 

in advance of the tracking operation. More importantly, MPP drifts due to the PV module 

deteriorations, meaning that the P-V characteristic curve must be updated frequently, and otherwise the 

MPP cannot be located successfully. As a simple tracking strategy, a CVT approach does not require a 

high computational complexity. Since there is little difference between the output voltage levels at 

MPP under various solar illuminance conditions, a PV module array operates at all events at the MPP 

voltage measured under standard test conditions (STC). Nonetheless, such difference rises at a low 

level of solar illuminance, or in the event of temperature drift of PV module, which deteriorates the 

tracking accuracy. Since MPP is a point at which dP/dV = 0 on a P-V characteristic curve, the MPP 

tracker is operated in such a way that dP/dV approaches zero. In comparison with a voltage feedback 

approach, a power feedback approach requires a higher computational complexity and exhibits a lower 

level of energy consumption, namely a higher overall efficiency, but there is an extremely low 

probability that the MPP can be exactly located due to the accuracy limit on sensors employed.  

With reference to a P & O approach, the operating voltage of a PV module array is perturbed 

periodically. In case of a rise in the output power, the voltage is further perturb toward the same 

direction. Otherwise, it is toward along the opposite direction. In simple terms, the operating point 

oscillates around, but cannot stay constantly and exactly at the MPP leading to a large amount of 

power loss during tracking process, i.e., a power efficiency reduction. When applied to an MPP 

tracking task on a P-V characteristic curve with multiple peaks, all the above-stated approaches tend to 

track the local, rather than the desired global, MPP. 

Over recent years, there has been a large volume of published studies on smart MPP trackers [6–12] 

in an attempt to precisely locate the MPP and improve the tracking performance, both dynamic and 

static. Yet, these tracking strategies fail to track the global MPP as intended in the case of any partially 

shaded PV modules in an array, simply due to the multiple peak problems commonly found in 

practical operations. For this sake, it becomes a critical issue to develop an algorithm to track the 

global, rather than the local, MPP on a complex nonlinear output curve. Researchers have recently 

proposed maximum power point tracking techniques [13–17] for photovoltaic module array based on 

the particle swarm optimization algorithm, to increase the dynamic responding speeds of tracking. 

However, the literature [13] did not take into account the characteristics of the module in partial shade 

and thus can be applicable to only the MPP tracking by modules all in the condition of the same 

sunshine. In the literature [14], the proposed method was able to effectively obtain the maximum 

power point, MPP, in the working condition in various shades, but it applies to only systems with 

multiple converters. The literature [15] features the tracking of global MPP with multi-peak 

characteristic curve, but such tracking lacks robustness as the learning factor and weight in the 

algorithm are of fixed value, which thus resulted in unlikely high success in obtaining global MPP with 

limited iterations, and, if the MPP is successfully obtained, insufficient dynamic responding speed. 

Though the literature [16,17] proposed improved particle swarm optimization, [16] lacked the factors 

of consideration in the guidelines for system design and in actual design, while [17] improved on 

conventional PSO algorithms and made them applicable to photovoltaic module arrays in the shade, 

but its selection of parameters for PSO algorithm was in a linear decremented manner that disqualified 

as optimization for photovoltaic module arrays with non-linear characteristics, in particular those in  

the shade. 
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In view of this, this work is proposed as an improved version of typical tracking algorithms when 

dealing with the global MPP tracking issue experienced in an array involved partially shaded or even 

malfunctioning PV modules. The superior tracking performance of this proposal is demonstrated by 

experimental results in various test cases. 

2. Connection Characteristics of Photovoltaic Module Arrays 

A SANYO HIP2717 photovoltaic module [18] is employed as a building block of PV module 

arrays in this work, and the electric specifications thereof are tabulated in Table 1 under standard test 

conditions (STC): Irradiation of 1000 W/m2, airmass AM 1.5, and module temperature of 25 °C. 

Table 1. Electrical specifications of the SANYO HIP 2717 PV modules. 

Electrical parameters Specifications 

Maximum output power (Pmp) 27.8 W 

Maximum power point current (Imp) 1.63 A 

Maximum power point voltage (Vmp) 17.1 V 

Short-circuit current (Isc) 1.82 A 

Open-circuit voltage (Voc) 21.6 V 

Module length and width specifications 496 mm × 524 mm 

In a unshaded case, an M-series N-parallel module array provides an output voltage M × Vmp,  

an output current N × Imp and an output power M × N × Pmp at the maximum power point (MPP), under 

an assumption that each single photovoltaic module provides an output voltage Vmp, an output current 

Imp and an output power Pmp at the MPP. Yet, should there be variously shaded PV modules in a PV 

array, as illustrated in Figure 1, the total amount of output power provided falls accordingly. 

Furthermore, an overshaded case gives rise to a multiple peak value problem, which disables a 

maximum power point tracker as intended to locate the MPP. 

 

Figure 1. Schematic diagram of a PV array composed of unshaded and partially shaded  

PV modules. 

If any modules in a PV array are in the shade, the output power of the PV array decreases. Again,  

if any module in a PV array is faulty, such module can form a circuit with a bypass diode to maintain 

the power generated by the PV array at a certain level. This bypass diode improves on the situation of 



Energies 2015, 8 6844 

 

 

reduced output power in the case of part of the modules in a PV array, however, it is unable to resolve 

the problem with decreased output voltage and current when the modules are in the shade. Also, if the 

proportion of the PV modules in the shade is too large, an output power with double peaks or multiple 

peaks may appear, which would further lead to the failure of MPP tracking device to control the work 

of the PV array at the real maximum power point. 

Given the characteristics of PV module arrays as above mentioned, this paper sets the developed 

SANYO HIP 2717 module simulator [19] at different rates of shade and the condition of defect, also 

forms PV module arrays of various configurations in series and in parallel to conduct MPP tracking 

tests. Figures 2 and 3 show the characteristic curves for I-V and P-V output which were obtained by 

simulation with PSpice software [20] on the four in series and one in parallel array of SANYO HIP 

2717 PV modules which were set in the condition of each module in 30% shade alike.  
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Figure 2. Comparison of I-V characteristic curves in a 4-series 1-parallel case with various 

number of 30% shaded modules. 

With no shadow

Three modules with 30% shadow

 

Four modules with 30% shadow

One module with 30% shadow

Two modules with 30% shadow

W

(

(

Ppv

Vpv (V)

0 

20 

40 

60 

80 

100 

120 

0 20 40 60 80 100 

a b

c d

e

e

a

b

c

d

 

Figure 3. Comparison of P-V characteristic curves in a 4-series 1-parallel case with 

various number of 30% shaded modules. 

It can be observed from the figures that when part of the modules in the array are in partial shade, 

the I-V and P-V characteristic curves both displayed multiple peaks. Whereas when the PV module 
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array is faulty, the one single faulty module would not function and produced no current to the loads, 

but the other normal modules send current through the bypass diode of the faulty module, allowing 

these normal modules to keep on working. Figures 4 and 5 show the I-V and P-V output characteristic 

curves derived with PSpice software for different numbers of faulty modules, which reveal that when 

part of the modules in a same array in series are faulty, their I-V and P-V characteristic curves do not 

display multiple peaks. 

No failed module

Three failed modules

 

One failed module

Two failed modules

A

(

(

Ipv

Vpv (V)

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

1.40 

1.60 

1.80 

2.00 

0 20 40 60 80 100 

a b

c d

abd c

 

Figure 4. Comparison of I-V characteristic curves in a 4-series 1-parallel case with various 

number of malfunctioning modules. 
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Figure 5. Comparison of P-V characteristic curves in a 4-series 1-parallel case with 

various number of malfunctioning modules. 

3. MPPT Method Based on PSO Algorithm 

Proposed in 1995 by Kennedy and Eberhart [21], particle swarm optimization (PSO) algorithm 

refers to an optimization approach for the public interest in a society. It is inspired by the flocking 

behavior of birds or fish that individuals communicate in such a way that the entire population 

migrates toward the same target along the same direction. 
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3.1. Conventional PSO Algorithm 

A flowchart of the conventional PSO algorithm is shown in Figure 6, and the steps are  

described below: 

Step 1: Specify the value of the number of particles, P, and the number of iterations, N. 

Step 2: For each particle, initialize its value, namely the duty cycle of a boost converter in this 

study, its value of the velocity Vi
j, the individual optimized D value, i.e., Pbest, (the initial 

value of D), and the optimized D value of the entire particle swarm, Gbest. 

Step 3: Given the cognition-only factor C1, the social-only learning factor C2 and the inertial  

weight W, the substitution of the initial value of D into the fitness function gives the 

updated particle velocity, expressed as: 
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Step 4: Either Pi
j+1 or Pi

j is saved as Pbest,i for such D value, whichever is larger. 

Step 5: Either Pbest,i or Gbest is saved as Gbesi for such D value, whichever is larger. 

Step 6: Repeat Steps 3–5 until the specified number of iterations is reached. 
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Figure 6. Flowchart for conventional PSO algorithm. 

The nomenclature of typical PSO parameters is given below: 

The number of particles P: The number of particles being tracked for a given initial duty cycle D, 

The number of iterations N: Times of travels of each particle, 
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The cognition-only learning factor C1: The learning factor in relation to the particle itself, 

The social-only learning factor C2: The learning factor in relation to other particles, 

The inertia weight W: The relation to the distance traveled last time of a particle, 
j

iV : The velocity of particle i in iteration j, 

j

iP : The duty cycle D of particle i in iteration j, 

Rand1 ( ): The first random number between 0 and 1, 

Rand2 ( ): The second random number between 0 and 1, 

ibestP , : The individual optimal value of the duty cycle D of particle i, and 

bestG : The global optimal value of the duty cycle D among the whole particles. 

Typically, the cognition-only and social-only learning factors C1, C2 and the inertia weight W are 

constants, and are related by W = (10 − C1 − C2)/10. 

3.2. Proposed PSO Algorithm with Automatic Parameter Tuning 

Though conventional PSO algorithms stated in Section 3.1. feature the tracking of global MPP with 

curves of multi-peak characteristics, the learning factors and weights in them are fixed value. 

Therefore, their tracking performance is not so robust, and, as a result, the rate of success in tracking 

the global MPP within limited iterations is low and, if MPP sought, the dynamic responding speeds are 

not so high. In this view, this paper will address the situation with part of the modules of a PV module 

array in the shade or being faulty and adjust, by non-linear method, the parameters for PSO algorithms 

with memory to shorten the tracking time in the algorithm. This paper will further develop an MPPT 

method that excels existed methods such that better tracking of MPP can be achieved when the PV 

module arrays display P-V characteristic curves with multiple peaks. Therefore, this paper presents an 

improved version of PSO [17], where the parameters C1, C2 and W are modified into variables in each 

iteration, as opposed to those stated in Step 3 of the preceding section, given by: 
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The new parameters added in this work are stated as follows: 

The slope of P-V characteristic m: It is defined as m L P V   ; 

The slope coefficient L: The value set in this paper is 0.8; 

The upper bound of slope of P-V characteristic y: The maximum slope of P-V characteristic set 

in this paper is 25; 

The power variation value of particle i in iteration j ΔP: It defined as 1 jj PPP ; 
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The power variation value of particle i in iteration j ΔV: It define as 1 jj VVV ; 

The upper bound of the cognition-only learning factor C1,max: The maximum value of the learning 

factor in relation to the particle itself; 

The lower bound of the cognition-only learning factor C1,min: The minimum value of the learning 

factor in relation to the particle itself; 

The upper bound of the social-only learning factor C2,max: The maximum value of the learning 

factor in relation to other particles; 

The lower bound of the social-only learning factor C2,min: The minimum value of the learning 

factor in relation to other particles; 

The upper bound of the inertia weight Wmax: The maximum value of the relation to the distance 

traveled last time of a particle; and 

The lower bound of the inertia weight Wmin: The minimum value of the relation to the distance 

traveled last time of a particle. 

A flowchart of the proposed PSO algorithm is shown in Figure 7.  
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Figure 7. Flowchart for improved PSO algorithm. 
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Presented in Figure 8 is an illustration where the PSO parameters C1, C2 and W are plotted against 

the number of iterations on the conditions C1,max = 4, C1,min = 1, C2,max = 4, C2,min = 1, Wmax = 0.8,  

Wmin = 0.1, N = 10. It is revealed that C2 as well as W increases with the number of iteration in this 

improved PSO version, meaning that the probability that the location of an global particle is the 

optimal position rises as the number of iterations rises, while C1 decreases with the number of 

iterations instead, meaning that the significance of referencing the individual optimal particle falls with 

the number of iterations. 
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Figure 8. Respective PSO parameter trend curves of this proposal for (a) C1; (b) C2; and (c) W. 

A typical PSO algorithm and the counterpart thereof are exactly the same, except for the key 

difference as stated in Steps 3–5. 

3.3. Implementation of MPPT Using PSO Algorithm 

As presented in Figure 9, this proposed improved PV tracking system mainly involves two 

subsystems, i.e., (1) a DC-DC boost converter [22]; and (2) an improved PSO-based maximum power 

point tracker. In this manner, the PV array is operated at the MPP even in case of any malfunction or 

partially shaded event in a PV module(s) through a skillful manipulation of the duty cycle in the boost 

converter. Where the voltage across Cin is the output voltage by the PV array, its fluctuation is mainly 

subject to the control by the maximum power point tracker, MPPT, constructed for PSO method, 

further to track the array’s MPP. In this paper, the MPPT constructed for PSO method was 

implemented by combining the PIC16F684 micro-controller made by Microchip Corp. and a DC-DC 

Boost converter. 

 

Figure 9. System framework of this presented PSO-based MPP tracker. 



Energies 2015, 8 6850 

 

 

Tabulated in Table 2 are the component choices and the parameter setting of the DC-DC boost 

converter employed in this study [22], while the PSO parameters for a typical and this improved 

version are tabulated respectively in Tables 3 and 4 for comparison purposes. Practical experiments are 

conducted on five test cases, as listed in Table 5, following the steps as stated in Section 3.1. 

Table 2. Component choices and parameter setting for a DC-DC boost converter. 

Part Name Types and Specifications 

Inductor (L) 1 mH 

Capacitor ( inC ) 470 μF/450 V 

Capacitor ( outC ) 470 μF/450 V 

Switching frequency (f) 20 kHz 

Transistor IRF460 (500 V/20 A) 

Diode DSEP30-12A (1200 V/30 A) 

Table 3. Parameter setting for a typical PSO algorithm. 

Parameter Name Setting Value 

Particle number (P) 3 

Iterations (N) 30 

Cognition-only learning factor (C1) 3 

Social-only learning factor (C2) 3 

Inertia weight (W) 0.4 

Table 4. Parameter setting for this proposed PSO algorithm. 

Parameter Name Setting Value 

Particle number (P) 3 

Iterations (N) 30 

Upper bound of the cognition-only learning factor (C1,max) 4 

Lower bound of the cognition-only learning factor (C1,min) 1 

Upper bound of the social-only learning factor (C2,max) 4 

Lower bound of the social-only learning factor (C2,min) 1 

Upper bound of the inertia weight (Wmax) 0.8 

Lower bound of the inertia weight (Wmin) 0.1 

Table 5. Test case descriptions. 

Case Partial Shadow or Fault Conditions Number of P-V Curve Peaks 

1 2-series 1-parallel: 0% shadow+70% shadow 2 

2 3-series 1-parallel: 0% shadow + 50% shadow + 70% shadow 3 

3 4-series 1-parallel: 0% shadow + 30% shadow + 50% shadow + 70% shadow 4 

4 4-series 1-parallel: 50% shadow + fault + 30% shadow + 0% shadow 3 

5 2-series 2-parallel: (0% shadow +0% shadow)//(fault +0% shadow) 2 

Note: “+” and “//” denote the series and parallel connection, respectively. 
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4. Experimental Results 

The experimental devices in this paper included power supply, PV module simulators,  

an oscilloscope and MPPT controllers. The setting with the equipment is shown in Figure 10. 

 

Figure 10. Overview of the experiment setting and devices. 

Practical measurements are conducted using EKO MP-170 I-V Checker [23] on five test cases for 

respective P-V as well as I-V characteristic curves, and the comparisons of dynamic tracking 

performance between a typical PSO-based MPP tracker and this proposed approach are made by 

experimental results. The tests in five cases in this paper were all conducted in standard test condition, 

STC, with the experimental steps described below. In the actual measurement of the output 

characteristic curves of the PV module simulator, the input terminal of the MPPT controller is 

connected to the PV module simulator and the output terminal to the electronic load, followed by 

setting value of open voltage Voc and short current Isc required by different rates of shade for the 

SANYO HIP 2711 PV module simulator in STC and in the configurations of five different shades or 

defect. With the rate of shade properly set, an MP170 I-V checker [23] is used to scan and make direct 

measurement of the P-V and I-V output characteristic curves in each case of test in STC. Then,  

a PIC16F684 microcontroller by Microchip Corp. is used to implement the both PSO algorithms and 

test on the MPP tracking, while an oscilloscope is used to measure the output voltage and current 

waveform of the PV module array, after using such voltage and current to determine the output power. 

The setting of test is as Figure 10 shows and the steps of test as below shows: 

Step 1: Adjust Voc and Isc for the PV module simulator to arrange the rate of shade needed for 

each test configuration. If to simulate a PV module defect, adjust the output current of the 

PV module simulator at zero, such that the current from the rest of the modules flows 

through the bypass diode of the faulty simulator. 

Step 2: Scan the P-V and I-V output characteristic curves of the PV module simulator using the 

MP170 I-V checker to verify the condition where multiple peaks appear, the positions 

and the power. 

Step 3: Perform the modified PSO MPPT algorithm and the PSO MPPT algorithm with fixed 

parameters, respectively, on a same hardware circuit, and compare the tracking speeds 

and the steady-state performances. 
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For the purpose of stressing the superiority of the proposed improved PSO MPPT in the 

performance of tracking to conventional PSO MPPT, comparisons were made of the waveforms of 

actual tracking responses by the length of the responding time.  

As tabulated in Table 1, Case 1 refers to a 2-series 1-parallel case where there are an unshaded 

module and a 70% shaded one, and the I-V and P-V characteristic curves are plotted in Figure 11a, 

while the performance comparison between both tracking algorithms is presented in Figure 11b.  

As can be found in Figures 11a,b, there appear two peaks in the characteristic curve, and the typical PSO 

algorithm fails to track the global MPP following a limited number of iterations, for the reason that the 

tracking response provided is not fast enough to perform the intended tracking task. In Case 1, it was 

observed from Figure 11b that conventional PSO MPPT tracked the real MPP at about 96.2 ms (tb), 

while the proposed improved PSO MPPT spent only 35.9 ms (tb′) to achieve the same.  
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Figure 11. (a) I-V and P-V characteristic curves in Case 1; and (b) the tracking 

performance comparison between a typical PSO-based (upper) tacking algorithm and this 

proposal (lower). 

Case 2 refers to a 3-series 1-parallel case where there is an unshaded module, a 50% shaded module 

and a 70% shaded module. This case leads to a three peaks in the P-V characteristic curve in Figure 

12a, and the tracking performance comparison is made in Figure 12b. In Case 2, it was observed from 

Figure 12b that conventional PSO MPPT tracked the real MPP at about 37.9 ms (tb), while the 

proposed improved PSO MPPT spent only 16.3 ms (tb′). As in Case 1, this proposed tracking algorithm 

is demonstrated as a more efficient way such that the MPP tracker does not get trapped at the first 

peak, and then successfully locates the global MPP.  
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Figure 12. (a) I-V and P-V characteristic curves in Case 2; and (b) the tracking  

performance comparison between a typical PSO-based (upper) tacking algorithm and this 

proposal (lower). 

Case 3 refers to a 4-series 1-parallel case where there is an unshaded module, and the remaining PV 

modules are 30%, 50% and 70% shaded with four peaks on the P-V and I-V characteristic curves 

plotted in Figure 13a. As compared in Figure 13b, it indicated that the typical PSO algorithm was 

consistently trapped at local MPP within 30 iterations. However, the proposed algorithm  

approached the global MPP within 23.3 ms (tb′). That indicated that the more peaks the P-V 

characteristic curve of PV module array displayed, the more the proposed improved PSO MPPT stood 

out in tracking performance.  

Case 4 refers to another 4-series 1-parallel case where there is a malfunctioning PV module, a 30% 

shaded module and a 50% shaded one. This case gives rise to three peaks on the P-V characteristic 

curve, as illustrated in Figure 14a. In Case 4, it was observed from Figure 14b that conventional PSO 

MPPT tracked the real MPP at about 52.5 ms (tb), while the proposed improved PSO MPPT spent only 

13.1 ms (tb′). As compared in Figure 14b, though both algorithms can successfully locate the global 

MPP, this improved version demonstrates a superior dynamic tracking response relative to the 

counterpart, as in Case 3. 

In the event, Case 5 refers to a 2-series 2-parallel case where all the P-V modules, but the only 

malfunctioning one, are all unshaded. This case leads to two peaks on the P-V characteristic curve as 

illustrated in Figure 15a, and the tracking performances are compared in Figure 15b. In Case 5, it was 

observed from Figure 15b that conventional PSO MPPT tracked the real MPP at about 91.9 ms (tb), 
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while the proposed improved PSO MPPT spent only 88.7 ms (tb′). Just as in Cases 3 and 4, this 

improved version again demonstrates a superior dynamic tracking response relative to the counterpart, 

though both can reach the goal of the global MPP tracking. Therefore, it was observed from the test 

results that when the P-V characteristic curve displayed only two peaks which differed not much and 

were near to each other, the two PSO MPPT methods performed without much difference. 

In the waveform of the response at the tests, the output voltage, Vpv, is the open-circuit voltage on 

the PV module array, with small current, before t1 when MPP tracking has not begun. Again, as a 

boost converter adopts fixed duty cycles, its voltage, current and power are all constants. Where MPP 

tracking commences at t1, since which moment the value of voltage, current and power is found 

varying with the duty cycle, in which it takes the power only (ta − t1) to rise rapidly from P1 to Pa and 

the time interval of the power rising from Pa to Pb is (tb − ta). After tb, the power curve develops toward 

steadiness, till the iteration time ends. 
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Figure 13. (a) I-V and P-V characteristic curves in Case 3; and (b) the tracking  

performance comparison between a typical PSO-based (upper) tacking algorithm and this 

proposal (lower). 
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Figure 14. (a) I-V and P-V characteristic curves in Case 4; and (b) the tracking performance 

comparison between a typical PSO-based (upper) tacking algorithm and this proposal (lower). 
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Figure 15. (a) I-V and P-V characteristic curves in Case 5; and (b) the tracking  

performance comparison between a typical PSO-based (upper) tacking algorithm and this 

proposal (lower). 
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Therefore, a small (ta − t1) means fast tracking of power from P1 to Pa; if the value of power at tb 

approaches stability, it means from this point of time on, MPP is already obtained. It is observed from 

the above, with comparison that shows the difference in the performance between conventional PSO 

and improved PSO algorithms. 

5. Conclusions 

This paper proposes an improved PSO algorithm to perform maximum power point tracking of 

photovoltaic module arrays. In order to enhance the efficiency and performance of PSO tracking, the 

parameters of cognition-only learning factor, C1, social-only learning factor, C2, and the weights, W, 

were increased or decreased exponentially with the increase of the iterations to lessen iterations and 

upgrade the rate of successful tracking. Also, the MPPT controller with improved PSO algorithm 

based on tuning of slope of the curve of P-V characteristics that this paper proposes did locate the real 

MPP of multi-peak characteristics when tested in various shades, which thus was able to overcome the 

deficiency of conventional MPPT algorithm. Compared with conventional PSO algorithms, the proposed 

improved PSO algorithm features apparently excellent tracking speeds and stability as well as better 

tracking performance when there are multiple peaks that have similar maximums. In addition,  

the improved PSO algorithm with slope tuning that this paper proposed combines inertia weights and 

the Power Feedback method to render the former directionality, thus able to increase the speed of 

tracking. Given the above stated characteristics, the improved PSO algorithm that this paper proposed 

highlights the adaption of weights and employs non-linear increment of weights in combination with 

the value of the slopes of the characteristic curves to determine the distance from the location of the 

particles to the maximum power point; the proposed method further adjusts the value of the weights, 

increasing the robustness of PSO algorithm, to enhance the rate of success in tracking the real 

maximum power point and the convergent rate. Practical experiments are conducted on five test cases 

involving various combinations of partially shared, unshaded and even malfunctioning PV modules.  

In the end, this presented tracking algorithm is validated as a considerably more reliable approach to 

locating the global MPP than a typical PSO algorithm, particularly in the event of any malfunctioning 

or shaded PV modules. 
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