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Abstract: Biodiesel as a clean energy source could reduce environmental pollution 

compared to fossil fuel, so it is becoming increasingly important. In this study, we 

investigated the effects of different pilot injection timings from before top dead center 

(BTDC) and exhaust gas recirculation (EGR) on combustion, engine performance, and 

exhaust emission characteristics in a common rail diesel engine fueled with canola oil 

biodiesel-diesel (BD) blend. The pilot injection timing and EGR rate were changed at an 

engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel 

blend). As the injection timing advanced, the combustion pressure, brake specific fuel 

consumption (BSFC), and peak combustion pressure (Pmax) changed slightly. Carbon 

monoxide (CO) and particulate matter (PM) emissions clearly decreased at BTDC 20° 

compared with BTDC 5°, but nitrogen oxide (NOx) emissions increased slightly. With an 

increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP) 

decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax 

showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx 

emission decreased considerably. 
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1. Introduction 

Economic growth and a drastic increase in the number of motor vehicles are causing environmental 

pollution and an energy shortage. Global warming is also resulting from the intense increase in 

greenhouse gases (GHG) produced by the burning of fossil fuels. Excessive vehicle exhaust from fossil 

fuels leads to frequent haze all over the world [1–3]. Thus, environmental pollution and energy shortages 

are two main factors restricting the development of the diesel engine industry. Developing green energy 

is a trend to solve those problems. Biodiesel has been a hot topic because of its environment-friendly 

characteristics and renewability [4,5]. Biofuels such as alcohols and biodiesel have been proposed as 

alternatives to fossil fuels for internal combustion engines. Research on biodiesel stability was voted a 

top priority at the Annual Biodiesel Technical Workshop held in Chicago in January 2005. In particular, 

biodiesels derived from vegetable oils have received wide attention as a replacement for diesel fuel 

because they emit fewer GHG and other pollutant emissions [6–8]. 

Diesel engines are mostly used in industrial transportation, passenger cars, and agricultural 

applications because of their high thermal efficiency, large power output, and reliability, despite their 

disadvantages of noise and vibration. However, a diesel engine emits more particulate matter (PM) and 

nitrogen oxide (NOx) than a gasoline engine [9–11]. Furthermore, regulation of PM and NOx emissions 

from diesel engines has been strengthened because those emissions are an important environmental  

issue [12]. Therefore, many researchers have studied how to reduce exhaust emissions such as PM and 

NOx using diesel particulate filters, selective catalytic reduction [13,14], or alternative fuels [15,16]. 

Biodiesel can also be used to reduce exhaust emissions because the oxygen in biodiesel fuel promotes 

combustion [17]. It can be produced from various vegetable oils, waste cooking oils, and animal fats, 

and its fuel properties change with the different feed stocks [18–20]. It is well-known that diesel engines 

can run on biodiesel blended with conventional diesel without modification [21–23]. However, 

researchers investigating the use of raw vegetable oils in diesel engines found that they cause numerous 

engine-related problems [24,25]. Therefore, vegetable oils must be blended with pure diesel because the 

net calorific value of biodiesel is less than that of conventional diesel fuel, its viscosity, density, and 

iodine values are higher, and its volatility is poor. Those shortcomings lead to severe engine deposits, 

injector coking, and piston ring sticking [26–28] if vegetable oils are used on their own. Their high 

density, viscosity, and surface tension decrease the quality of atomization and combustion  

performance [29]. After transesterification, however, biodiesel can acquire properties closer to those of 

diesel [30]. Transesterification is clearly the best way to use vegetable oil as a fuel in existing diesel 

engines [31–33]. Choi and Rritz [34] reported that multi-stage injection and adjustment of the ignition 

timing when using a blended biodiesel fuel allowed soot and NOx emissions to decrease. Lee et al. [35] 

found that a higher biodiesel blending rate increased NOx emissions but decreased emissions of 

hydrocarbon (HC) and carbon monoxide (CO) in a common rail diesel engine. Grimaldi and Postrioti [36] 

reported on a method of injection using ultra low sulfur diesel (ULSD) and biodiesel in a common rail 
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diesel engine. Higher biodiesel blending rates require higher injection pressure because of the higher 

surface tension of biodiesel. They found that increasing the injection pressure increased the break 

thermal efficiency (BTE) and reduced the brake specific fuel consumption (BSFC). Tsolakis [37] 

reported that the use of biodiesel made a significant reduction in NOx emissions when the exhaust gas 

recirculation (EGR) rates were increased and reduced the mass and size of PM under all conditions. 

Precedent reports have verified that the use of biodiesel generally minimizes the quantity and size of PM 

emissions but increases NOx emissions. Yoon et al. [38] found that BD20 (20 vol % canola oil and  

80 vol % diesel fuel blend) offered the best combustion efficiency at an engine speed of 2000 rpm.  

Our literature review found that the effects of BD20 on combustion characteristics and exhaust emissions 

in a direct injection (DI) diesel engine with high-pressure injections have not been clearly studied. 

Therefore, in the present study, we experimentally investigated the effects of pilot injection timing and 

EGR rate on the combustion and exhaust emissions characteristics from burning BD20 in a common rail 

diesel engine at an engine speed of 2000 rpm. 

2. Experimental Materials and Methods 

2.1. Test Fuel and Operating Conditions 

BD was blended with pure diesel at 20% volume. The fuel was characterized by determining its 

viscosity, density, pour point, distillation temperature, flash point, acid number, ester content, total free 

glycerin, and calculated index. In the United States, biodiesel must meet American Society of Testing 

and Materials (ASTM) specifications designated in ASTM D-6751; in Europe it must accord with  

EN-14214. To measure the fuel properties of BD20, we therefore used the ASTM-D6751 and  

EN-14214 standard test methods. The fuel properties of the pure diesel, neat biodiesel, and BD20 fuels 

are presented in Table 1. 

Table 1. Properties of pure diesel, neat biodiesel, and BD20 (20 vol % canola oil and  

80 vol % diesel fuel blend). 

Properties (units) Pure Diesel Neat BD BD 20 Test Method 

Density (kg/m3 at 15 °C) 836.8 880 846 ASTM D941 
Viscosity (mm2/s at 40 °C) 2.719 4.290 2.991 ASTM D445 

Calorific value (MJ/kg) 43.96 39.49 42.71 ASTM D4809 
Cetane index 55.8 61.5 - ASTM D4737 

Flash point (°C) 55 182 - ASTM D93 
Pour point (°C) −21 −8 - ASTM D97 

Oxidation stability (h/110 °C) 25 15 - EN 14112 
Ester content (%) - 98.9 - EN 14103 

Oxygen (%) 0 10.8 - - 

In this study, we used biodiesel-diesel (BD) and ULSD, which had a sulfur content of 0.005%,  

for comparison. To investigate the characteristics of combustion and exhaust emissions as the pilot 

injection timing and EGR rate changed, we carried out tests on the warming up condition of the engine 

under an engine speed of 2000 rpm. We held the coolant temperature at a constant 70 ± 3 °C and the 

intake air temperature at 20 ± 3 °C. A constant load of 30 Nm torque from the engine dynamometer was 
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applied to the test engine at each pilot injection timing to ensure consistent test conditions when the main 

injection timing was fixed at top dead center (TDC) 0°. The experimental and operating conditions are 

summarized in Table 2. 

Table 2. Experimental and operating conditions. 

Test Parameters Unit Operating Conditions 

Engine speed rpm 2000 
Torque Nm 30 

Test fuel - BD blended rate with diesel (vol %) 
BD20 - Diesel 80% + biodiesel 20% 

Cooling water temp. °C 70 ± 3 
Intake air temp. °C 20 ± 3 

Gas recirculation (EGR) rate % 0, 10, 20, 30 
Injection pressure MPa/rpm 45/2000 

Pilot injection timing Degree(°) BTDC 5, 10, 15, 20 
Main injection timing Degree(°) TDC 0 

2.2. Test Engine and Experimental Procedure 

In this study, the experimental apparatus consisted of the components shown in Figure 1.  

We used this apparatus to investigate the combustion and exhaust emission characteristics of various 

pilot injection timings and EGR rates in a four-cylinder common rail diesel engine. The experimental 

equipment consisted of a four-cylinder electronic common rail diesel engine equipped with a 

turbocharger, a fuel consumption rate tester with a fuel pump driven by an electrical voltage of 220 V,  

a control unit connected to an electronic control unit (ECU) to control the injection timing, and an eddy 

current type EC dynamometer (DY-230 kW, Hwanwoong, Korea) to control the engine speed.  

A piezoelectric pressure sensor (6056a, Kistler, Switzerland) was mounted onto the position of the glow 

plug to measure the combustion pressure. Data were acquired using a data acquisition board (PCI6040E, 

National Instrument, Austin, TX, USA). The combustion pressure in the cylinder was analyzed using a 

combustion analyzer. The main specifications of the four-cylinder common rail diesel engine used in 

this study are summarized in Table 3. The EGR rate (%) is defined as the difference between the quantity 

of fresh air induced without EGR (Q0) and that of air with EGR (QEGR) divided by the quantity of fresh 

air induced without EGR (Q0), as shown below:  

ሺ%ሻܴܩܧ ൌ
ܳ଴ െ ܳாீோ

ܳ଴
ൈ 100  (1)

The exhaust gas was delivered to the intake manifold through a water-cooled unit by an EGR valve, 

and the gas flow rate was regulated by controlling the EGR duty ratio using a computer. The NOx 

emissions were monitored in real-time using an exhaust analyzer. Exhaust measuring equipment was 

used for the exhaust component analysis. A multi-gas analyzer (MK2, Eurotron, Italy) was used to 

measure the O2, CO, CO2, NO, NO2, and HC content of the exhaust gases. To detect PM, we used an 

opacity smoke meter (OPA-102, Qurotech, Korea) using the partial flow sampling method. The gas 

analyzer specifications, including the resolution, range, and accuracy, are summarized in Table 4. In this 
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work, we calculated the heat release rate (HRR) of BD combustion in the engine using the following 

formula [39]: 

݀ܳ
ߠ݀

ൌ
݇

݇ െ 1
ܲ
ܸ݀
ߠ݀

൅
1

݇ െ 1
ܸ
݀ܲ
ߠ݀

 (2)

where dQ/dθ is the HRR, k is the specific heat ratio (assumed to be 1.35), dP/dθ is the rate of pressure 

change, and dV/dθ is the rate of change in the cylinder volume. The BSFC is defined as the ratio of the 

fuel consumption rate to the brake power of the engine. The value was calculated based on the fuel 

consumption, engine torque, and speed data using the following formula: 

௙ܾ ൌ
݉௙ሶ

ܰߨ2 ௘ܶ
 (3)

where bf is the brake specific fuel consumption rate, 	݉୤ሶ  is the fuel consumption flow rate into the 

cylinder, N is the engine speed, and Te is the brake torque, which was directly measured using an engine 

dynamometer. The brake specific energy consumption (BSEC) is the ratio of the energy consumption 

rate to the brake power of the engine, which is calculated from the fuel consumption and low heating 

calorific value using the following formula: 

ܾ௘ ൌ
ܳ௅ு௏ܤ௙
ܰߨ2 ௘ܶ

 (4)

where be is the brake specific energy consumption rate, Bf is the fuel consumption mass per hour, and 

QLHV	is the low heating calorific value, which we measured directly with an engine dynamometer. 

 

Figure 1. Schematic diagram of the experimental apparatus. 
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Table 3. Specifications of the test engine. 

Test Model Parameter (units) Specification 

Engine type 

Engine type 4-cylinder 
Bore (mm) 81 

Stroke (mm) 96 
Displacement (cm3) 1979 

Combustion type Direct injection 
Injection procedure 1-3-4-2 
Compression ratio 17.7:1 

Maximum power (kW/rpm) 82/at 4000 
Maximum torque (Nm/rpm) 260/at 2000 

Maximum engine speed (rpm) 4500 

Fuel injection system 

Fuel control ECU control 
Injection system Common-rail 

Maximum fuel pressure (MPa) 145 
Number of injector nozzle holes 5 

Injector spray angle (degree) 150 
Injector hole diameter (mm) 0.17 

Table 4. Specifications of the exhaust gas analyzer. 

Method of Detection Species Unit Range Resolution Accuracy 

Electrochemical O2 % 0%–30% 0.1% ±0.57% 
Electrochemical CO ppm 0–4000 ppm 1 ppm ±0.62% 

Pellistor HC % 0%–5% 0.01% ±0.8% 
Electrochemical NO ppm 0–5000 ppm 1 ppm ±0.25% 
Electrochemical NO2 ppm 0–1000 ppm 1 ppm ±0.25% 
Smoke opacity PM % 0%–100% 0.1% ±1% 

3. Results and Discussion 

3.1. Combustion Characteristics 

In order to investigate the improvement of combustion stability, the experiment was performed under 

an engine speed of 2000 rpm and an engine load of 30 Nm and the main injection timing was fixed at 

TDC 0°. Figure 2 shows the effects of various pilot injection timings without EGR rate on the 

combustion pressure and HRR. It can be seen that the combustion was started faster as the pilot injection 

timing retarded. In addition, the ignition delay and the duration of combustion during was shorter when 

the pilot injection timing was closer to the main injection timing, because the pre-combustion of pilot 

injection can increase in cylinder temperature to promote combustion. 

Figure 3 shows a comparison of combustion pressure for BD20 at various injection timings and EGR 

rates. As shown in Figure 3a,b, the combustion pressure gradually decreased slightly as the EGR rates 

increased. The oxygen concentration of the intake air is reduced because of the EGR, which causes a 

significant negative effect on combustion. 
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(a) (b) 

Figure 2. Effects of various pilot injection timings without EGR rate on the (a) combustion 

pressure, and (b) HRR. 

Figure 4 shows the HRR for BD20 at various injection timings and EGR rates. The whole combustion 

process is composed of pilot heat release and main heat release, and the HRR changed slightly with the 

different pilot injection timings and EGR rates. As shown in Figure 4a, the HRR decreased gradually 

and the ignition delay was longer as the EGR rates increased at before top dead center (BTDC) 5°, 

because the oxygen concentration decreased as the EGR rates increased, which is a limiting factor for 

the pilot combustion. At other pilot injection timings, however, the HRR changed slightly as the EGR 

rate increased. Increasing the EGR rate slightly does not affect the pilot combustion because the biodiesel 

contains enough oxygen. These results demonstrate that if the rotational degree of the crankshaft between 

the pilot injection timing and the main injection timing was long, combustion activation in the main 

injection deteriorated because the effect of the pilot injection was lost. 

(a) (b) 

Figure 3. Comparison of combustion pressure at various pilot injection timings and EGR 

rates. (a) BTDC 5°; (b) BTDC 15°. 
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(a) (b) 

(c) (d) 

Figure 4. Comparison of HRR at various pilot injection timings and EGR rates. (a) BTDC 5; 

(b) BTDC 5; (c) BTDC 5; (d) BTDC 5. 

3.2. Engine Performance 

3.2.1. Pmax and IMEP 

Figure 5 shows the peak combustion pressure variation and indicated mean effective pressure (IMEP) 

with the different pilot injection timings and EGR rates at an engine speed of 2000 rpm. As shown in 

Figure 5a, as the pilot injection timing was advanced, the Pmax increased slightly, and it decreased as the 

timing was retarded at all EGR rates. However, when we increased the EGR rate, the Pmax showed a 

remarkable decrease: by 8.7% at 10% EGR, 12.4% at 20% EGR, and 13.6% at 30% EGR, compared to 

the 0% EGR rate at BTDC 15°. When maintaining the main injection timing at TDC 0° and advancing 

the pilot injection timing, the decrease ratio was the largest at BTDC 15°. 

As shown in Figure 5b, the IMEP increased before BTDC 10° with the advance of pilot injection 

timing, and as the timing was retarded it decreased. On the other hand, with the increasing of EGR rate, 

the IMEP decreased slightly. Its highest value at each EGR rate occurred at BTDC 10°. 
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(a) (b) 

Figure 5. Effects of various pilot injection timings and EGR rates on the (a) Pmax and  

(b) IMEP. 

3.2.2. BSFC and BSEC 

Figure 6 shows the variation of BSFC with pilot injection timing changes under EGR rates at an 

engine speed of 2000 rpm. The BSFC of a diesel engine depends on the relationship between the fuel 

injection system and fuel properties such as specific gravity, viscosity, and heating value. The BSFC 

decreased as the EGR rate was increased by 1.9%, 2.7%, 3.6% and 2.2% at BTDC 10° compared with 

that at BTDC 5°, 0.5%, 1.6%, 3.6% and 2.2% at BTDC 15°, and 3.2%, 3.7%, 4.2% and 3.5% at  

BTDC 20°. Thus, as the pilot injection timing advanced, the BSFC decreased. The lower BSFC at BTDC 

20° means that a smaller amount of fuel was required to produce the same amount of power. This is 

expected because canola fuel has a higher density than pure diesel, so it can be fully burned through 

early injection and heating. 

 

Figure 6. Effects of EGR ratio and pilot injection timing on the BSFC. 
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Another important performance parameter is the BSEC. It is often used to compare fuel performance 

with different pilot injection timings. The BSEC is defined as the product of the BSFC and the heating 

calorific value of the fuel. It measures the amount of energy consumed to develop a unit of output power. 

Generally, the BSEC decreases as energy consumption increases. Figure 7 represents the variation of the 

BSEC under different EGR rates and pilot injection timings. It can be seen that the BSEC is slightly 

increased with EGR rate increasing. The exhaust gas increased in the combustion chamber that will lead 

to decrease the oxygen concentration when EGR rate increased, so more fuel is needed to produce the 

same power output. However, the BSEC changed slightly as pilot injection timing increased. It indicates 

that there is slight effect of pilot injection timing on the BSEC. This is because the combustion is mainly 

promoted by the oxygen in biodiesel. 

 

Figure 7. Effects of EGR ratio and pilot injection timing on the BSEC. 

3.3. Exhaust Emissions Characteristics 

Figure 8 presents the CO, CO2, NOx, and PM emissions of BD20 at an engine speed of 2000 rpm for 

the different pilot injection timings and EGR ratios. As seen in Figure 8a, CO emissions increased 

considerably as the pilot injection timing was advanced to BTDC 10° and BTDC 15° compared to  

BTDC 5°. The fuel burned incompletely because advancing the pilot injection timing by holding the 

main injection timing increases the rotational time between the two, which caused CO emissions to 

increase. In general, because the biodiesel has higher viscosity, density, and iodine value compared with 

diesel oil, biodiesel is difficult to burn. However, the minimum value of CO at BTDC 20° occurs. It is 

seen that the BD20 does burn fully due to pre-mixed of air-fuel because the pilot injection timing is long 

enough. On the other hand, as the EGR rate increases, CO emissions also increase. 

As shown in Figure 8b, CO2 emissions did not vary significantly with the advancing of the pilot 

injection timing, but they did increase with the EGR rate at the same injection timings. The increased 

EGR rate caused increased CO2 emissions because of the unbound CO content in the recirculated exhaust 

gases, which increased in proportion to the EGR rate. That inhaled CO combined with the oxygen in 

fresh air and the biodiesel itself. 
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(a) (b) 

(c) (d) 

Figure 8. Effects of various pilot injection timings and EGR rates on the (a) BSCO;  

(b) BSCO2; (c) BSNOx; and (d) BSPM emissions. 

As shown in Figure 8c, NOx emissions tended to decrease as the EGR rate increased and showed a 

slight increase as the pilot injection timing was advanced while the EGR rate was held steady. The NOx 

emission at an EGR rate of 30% decreased by 19.2% at BTDC 5°, 20.07% at BTDC 10°, 20.03% at 

BTDC 15°, and 19.29% at BTDC 20° on average compared to that at an EGR rate of 0%. If exhaust gases 

are recirculated, they play an important role in activating combustion by disturbing the newly inhaled gases. 

As shown in Figure 8d, PM emissions decreased with the advancing of pilot injection timing and 

increased with the EGR rate when injection timing was held steady. When advancing the pilot injection 

timing, the PM emissions decreased by 16.35% at BTDC 10°, 11.03% at BTDC 15°, and 30.13% at 

BTDC 20° compared to PM emissions at each condition at BTDC 5°. In the case of advancing the pilot 

injection timing and keeping the main injection timing at TDC 0°, the PM emissions decreased because 

the advanced pilot injection timing was sufficient to oxidize the carbon in the cylinders and reduce the 

time available to produce PM. 

4. Conclusions 

In this study, we investigated the effects of pilot injection timing and EGR rate on the combustion, 

performance, and emissions from BD20 in a common rail diesel engine. From the current study, we draw 

the following conclusions: 
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 On the effects on combustion stability: the combustion was delayed as the pilot injection timing 

retarded. In addition, the ignition delay was shorter when the pilot injection timing was closer to 

the main injection timing. 

 On the effects on engine combustion: as the pilot injection timing was advanced, the combustion 

pressure and HRR changed slightly. As the EGR rate was increased, the combustion pressure and 

HRR decreased slightly. 

 On the effects on engine performance: as the pilot injection timing was advanced, the Pmax, BSEC, 

IMEP and BSFC changed slightly. As the EGR rate was increased, the Pmax and IMEP decreased 

slightly, and the BSFC and BSEC increased slightly. 

 On the effects on exhaust emissions: as the pilot injection timing was advanced, CO and PM 

emissions decreased considerably, with a minimum value at BTDC 20°; NOx emissions increased 

slightly; and CO2 emissions decreased slightly. As the EGR rate was increased, NOx emissions 

decreased considerably, and CO, CO2, and PM emissions increased. 
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