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Abstract: This paper presents the design and experimental study of a voice coil motor 

(VCM)-based Stewart platform used for active vibration isolation. The high precision 

payloads carried on the satellites always require an extremely stable environment to work 

properly. Installing a vibration isolation device between the vibration sources and precision 

payloads is an efficient method for dissipating vibration energy. A Stewart platform with 

active damping is designed to isolate the vibration transferring from the satellite to  

the payloads in six degrees-of-freedom. First, the kinematics and dynamical equations of  

a Stewart platform with spherical joints at both the base and top of each leg are established 

with Newton-Euler Method in task space and joint space. Second, the H∞ Control Theory is 

employed to design a robust controller for the linearized system with parameter uncertainty, 

noise and sensor errors. Finally, an experimentation study on the vibration of the payload 

supported by a Stewart platform with VCM actuator is conducted. The feasibility  

and effectiveness of the vibration isolation system are verified by comparing  

the amplitude-frequency characteristics of the active control system with that of the passive 

control system and the system without damping. 

Keywords: vibration isolation; Stewart platform; VCM actuator; Newton-Euler Method;  

H∞ control; sinusoidal sweeping analysis 
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1. Introduction 

In aerospace engineering, an extremely stable environment is increasingly desired to ensure high 

precision payloads such as cameras, telescopes, interferometers and laser communicators etc. carried on 

satellites can work properly. Any small amount of undesirable disturbance may cause a deviation from 

the required state and significantly affect the accuracy of the payloads. For instance, a slight vibration 

of a satellite camera may seriously blur the image. Meanwhile, satellites always carry several vibration 

sources such as reaction wheels, solar array drives and cryo-coolers, etc. Under such conditions vibration 

isolation systems which are fixed between the vibration sources and precision payloads to prevent  

the transmission of vibrations have become critical components. 

Passive damping methods are widely used in the vibration isolation of structures due to the reliability 

and lower cost of a passive device. They consist of mass-spring-damper systems whose parameters are 

adjusted for the whole structure and do not need a power input. Traditional linear passive isolation 

performs well for high-frequency band attenuation, but may be limited in the low-frequency band 

because the stiffness of the isolation system cannot be unrestrainedly soft, that is to say the natural 

frequencies of the structure may coincide with some frequencies of disturbance which will lead to  

a vibration amplification. Employing a nonlinear passive isolator may be a practical way to overcome 

the vibration amplification problem in traditional linear passive isolation (see the study on the resonant 

responses of a nonlinear oscillator under harmonic excitations in [1,2]). 

As an effective way of reducing vibration transmission, active isolation has been studied and applied 

in practical engineering in recent years. Active vibration isolation provides significant performance 

enhancements over passive methods for the active actuators can provide suitable force which varies with 

the sensor’s feedback in real time to control the movement state of the system. With the development of 

sensor, actuator and microprocessor technology, active vibration isolation has become a more practical 

approach and has been widely used in ground to aerospace applications in the past decade. Fuller et al., 

discussed various control strategies including feedforward and feedback concepts for vibration isolation 

systems [3]. Preumont et al., analyzed the difference between force feedback and acceleration feedback 

of a skyhook damper by the root locus method [4]. 

As an important component of an active vibration control system, the actuator provides a control force 

to the structure. There are several types of actuators for active vibration control: piezoelectric actuator, 

pneumatic spring and electro-magnetic actuators etc., all of these actuators are commonly used in 

vibration isolation systems. The choice of actuator depends on the amount of control force or moment, 

displacement, frequency response, power supply, dimensional constraints and mounting requirements, etc. 

Although the piezoelectric actuator (PZT) can work over a wide bandwidth and with high resolution, its 

working displacement (several millimeters) is too small. Pneumatic springs can provide a very large 

control force, but the response speed is not fast enough, and its associated mass is a disadvantage which 

cannot be avoided. Voice coil motor (VCM) is a type of electro-magnetic actuator which converts 

electric energy into mechanical energy [5]. As a kind of linear motor, a voice coil actuator has many good 

features as it can generate force with high accuracy and acceleration over a sufficient range of  

movement [6]. Park et al., developed a four-mount active vibration isolation system using voice coil 

actuators and presented a comparative study between decentralized and centralized control methods [7]. 

Kim et al., built a six-axis active vibration isolation system using a phase compensated velocity  
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sensor [8]. Kerber et al., used eight voice-coil actuators to build a six degree-of-freedom (DOF)  

anti-vibration system and compared the results of PI controller, velocity feedback, state feedback and 

output feedback [9]. Chi et al., analyzed the application of VCM actuator in active vibration isolation 

for whole-spacecraft [10]. All of these applications have shown the feasibility and significant 

effectiveness of VCMs used as the actuator of active vibration isolation systems. 

To fully isolate the rigid body from the vibration source in multiple DOF, many forms of smart 

structure with build-in actuators have been studied. In 1965, Stewart proposed a six DOF parallel 

mechanism as a flight simulator, which was later named the Stewart platform [11]. A general Stewart 

platform has six extensible legs connecting the base-platform and the payload-platform through joints at 

the ends of each leg as shown in Figure 1. One of the most widely used type of the Stewart platform is 

the 6-UPS platform of which the upper and under joints are universal joint and spherical joint, 

respectively. The Stewart platform has been studied widely in basic fields such as flight simulation, 

mechanical machining, precision positioning and vibration isolation. 

Base
 Platform

Payload 
Platform Joint

Extensible
 Leg

 

Figure 1. A classical Stewart structure. 

Fichter [12] and Bonev [13] presented methods for solving the kinematics problem of a general 

Stewart platform without considering the moment of inertia. Lebert et al., built dynamic formulations of 

a Stewart platform through a Lagrange approach [14]. Dasgupta et al., established the inverse dynamic  

and the closed-form dynamic equations of the general Stewart platform through the Newton-Euler 

approach [15,16]. McInroy et al., formulated a flexure jointed hexapod in which the vibrations of  

the base platform are considered to be one part of the whole dynamic system in the micro-motion case 

of the upper platform [17]. Mukherjee et al., proposed a dynamic stability index of a flexible manipulator 

illustrated by considering the 6-UPS Stewart platform as an example [18]. Preumont et al., reported  

a six-axis vibration isolator consists of VCM actuators for space applications using decentralized control 

on each leg [19]. Xu et al., developed a closed-form dynamic model of a Stewart platform considering 

the external excitations on the base platform and designed the PD control law [20]. 

In this paper, we will focus on an active Stewart platform based on the VCM for isolating the vibration 

in the range from 5 to 100 Hz in six DOF. First, the dynamical equations of the payload supported by 

the Stewart platform are established with Newton-Euler Method in task space and joint space, 

respectively, and transformed into a state space model for the design of active vibration controller. 

Second, based on the H∞ control theory, a robust control strategy is presented for the linearized system 

with parameter uncertainty, noise and sensor errors. Finally, a Stewart platform with six VCM-based 
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extensible legs is constructed with spherical joint connections, and an experimental device is set up for 

a payload supported by the Stewart platform. In the vibration test, the payload is vibrated by a shaker 

table located at the bottom of the Stewart platform. The active control force is determined by  

the proposed control law and performed by a Space real-time control system according to  

the acceleration response of the legs as feedback. The amplitude-frequency curves measured from  

the experiment on the active control system are utilized to verify the feasibility and effectiveness of  

the vibration isolator proposed here. 

2. Kinematics and Dynamics Analysis of the Stewart Platform 

A general Stewart platform has six extensible legs connecting the base platform and the payload 

platform through joints at the ends of each legs. One of the most widely used types of Stewart platform 

is the 6-UPS platform of which the upper and under joints are universal joints and spherical joints, 

respectively. In this section, the kinematics and dynamics equations of a Stewart platform are established 

with the Newton-Euler Method in task space for a Stewart platform with spherical joints at both the base 

and top of each leg for the purpose of fully isolating the payload (a rigid body) from the vibration source 

in multiple DOFs. 

2.1. Coordinate Transformation 

Define the inertial frame O and local frame B, P, D and U as shown in Figure 2. The coordinate 

frames B and P are attached to the base and the payload, whose origins are the mass center of the base 

and the payload, respectively. The coordinate frames U and D are attached to the upper and lower  

legs, respectively. 

O

B

P

U

Dtbi

tb bi

pi

tp

tpi

rdi

rui

li

 

Figure 2. Definition of coordinate frames and the model of one leg. 

The rotation of the payload is described with Cardan angles in sequence of rotation axes x-y-z by 
angles ψ ,β  , . The rotation matrix from the local frames B and P to the inertial frame can be given by: 

(x,ψ) ( ,β) ( , )

βc cβ β

ψ β ψc γ ψ β ψ β

ψ β ψ β ψ ψ β

O O
B P Rot Rot y Rot z

c s s

c s s s c c s s s s c

s s c s c c s s s c c c

 

 
     
   

R R 
 

   
    

 (1)
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where  cosc  ,  sins  . 

The transformation matrix from the local frame U and D to the inertial frame O is: 

 O O
Ui Di i i i T T x y z

 (2)

where i ix τ  is the unit vector in the direction of the leg, and i iy z are defined in terms of a unit vector 

ik  as  and /i i i i i i i i    y x k z y x y x , respectively. The relationships between the vector in  

the inertial frame and the local vector can be expressed as: 

O O P
i P i
O O B
i B i
O O P
i P i

 
 
 

p R p

b R b

r R r

 (3)

where P
ip and O

ip  are the vectors of upper joint of ith leg in frame P and the inertial frame, respectively; 
B
ib  and O

iB  are the vectors of lower joint of ith leg in in frame B and the inertial frame, respectively;  
P

ir  and O
ir  are the vectors of center of mass of payload in frame P and the inertial frame, respectively. 

The relationships between the moment of inertia in the inertial frame and local moment of inertia can be 

expressed as: 

T

T

T

O O P O
P P P P
O O D O
di Di di Di
O O U O
ui Ui ui Ui

 
 
 

I R I R

I T I T

I T I T

 (4)

where P
PI  and O

PI  are the moment of inertia of payload in frame P and the inertial frame, respectively; 
D
diI  and O

diI  are the moment of inertia of ith lower leg in frame D and the inertial frame, respectively;  
D
uiI  and O

uiI  are the moment of inertia of ith upper leg in frame D and the inertial frame, respectively. 

2.2. Kinematics and Dynamics of a Leg 

As illustrated in Figure 2, the positions of frame P and B are described by position vectors pt  and bt , 

respectively. The position vectors of upper and lower ends of a leg in the inertial frame O are: 

pi p i t t p  (5)

bi b i t t b  (6)

The vector of the leg line can be derived from the subtraction of pit  and bit  as: 

   i pi bi p i b i     l t t t p t b  (7)

and the acceleration of the upper and lower ends of the leg can be expressed as: 

 
 

pi p p p i p i

bi b b b i b i

      


     

t t ω ω p α p

t t ω ω b α b

 

 
 (8)

where pα , bα  are the acceleration vectors of the payload and the base, pω  and bω  are the angular 

velocity of payload and the base, respectively. Then the velocity and acceleration of the leg are: 
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   T TT Tp b
i i i i i i

p b
il

                 


t t
τ p τ τ b τ

ω ω


 

 (9)

   T TT T
1i i

p b
i i i i i i

p b
il

                  
 

t t
τ p τ τ ηb τ

α α
τ

   (10)

where 1iη   is a higher order indefinite small variable which could be omitted. The force vector F  

between the upper and the lower legs, including the elastic restoring force and viscous damping from 

the spring-damper system and the active control force, can be written as: 

0( ) a    F K l l Cl F  (11)

where  T1 6F FF  ,  T1 6l ll  .  T1 6a a aF FF   is the active control force vector, 

 1 6diag k kK  , 1 6p pdiag c c   C   are the stiffness and damping matrices, respectively. 

From Equation (9), we have: 

T Tp

p
p

b

b
b

   
   

 




r r

ω
l H

ω
H

   (12)

where: 

1 6 1 6

1 1 6 6 1 1 6 6

,p b

   
          

τ τ τ τ
H H

p τ p τ b τ b τ

 
 

 

Taking the variation of the length of the ith leg as δ il , then we have from Equation (12) that: 

T T
0

δ δ
δ

δ δp
b

p b
b

p   
     

  
l l l

r

θ
H

r
H

θ
 

Thus, we can obtain from Equation (11) that: 

T T T T
δ δ

( )
δ δp b p b

p pb b

p p b
a

b

 
      

       
     




F K H H CH C
r rr r

θ ωθ
H F

ω

 
 (13)

2.3. Dynamical Equations of the Payload 

The forces and torques acting on the payload are shown in Figure 3 where pM  is the mass of the top 

platform, and the vectors wF  and wM  are total external force and torque, respectively. 

Fw -Mpap

Mw

Fui

O
Mpg

r

 

Figure 3. The force analysis of the top platform. 
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The position vector of the mass center is: 

0= pr R r  (14)

The dynamical evolution of the payload is governed by the Newton’s dynamical law as: 
6

1
p w ui p p

i

M M


  g F F a  (15)

where the acceleration of the mass center is: 

 = +p p p p p   a t α r ω ω r  (16)

According to the Euler equation, the moment balance equation of control force and inertia force is: 
6 6

* *

1 1
i ui i w p p p p p p

i i

M
 

         p F f M r g I α ω I ω  (17)

where *
pI  is the moment of translating pI  to mass center of figure which has a relationship with  

the moment of inertia to mass center pI  as: 

 *
3

T T
p p pM E  I I r r rr  (18)

Equations (11), (15) and (17) can be combined into the dynamical equation of system in task-space as: 

ext
p b

p
p

p exb

b

t

     
        

   

t Ft
J J H F η

α Mα

 
 (19)

where: 

6

*
1

3 p pi pi i

p
ip i pi i

p

pi i

MM

 
    

    
   


r Q Q p

J
0 I p Q p Q p

E  
   , 

6

1

pi pi i
b

i i pi i pi i

 
  

  


Q Q b
J

p Q p Q b


 

, 

7

6 6
*

6
1 1

p p p i i i
i i 

 
    
  

 

η

η
ω I ω f p η

, 
w pext

w pext

M

M

  
         

F gF

M r gM
. 

     
T

3 1i i

pi di di ui i ui i di ui i
i i i i

m l m l
l l


 


   

E τ τ
Q τ I I τ   

As shown in Equation (19), the motion of the payload is mainly determined by the motion of the base, 

force from legs and external disturbing force. Substitute Equation (13) into Equation (19), and let: 

,p b
p b

p b

   
    

  

t t
x x

θ θ
 (20)

The dynamical equation in task-space is: 

T T T Tδ δ ext
p p p p p p b b p b p b p

ex
p p b a

t
b

 
         

 
CH KH KH

F
J x H x H x J x H x H x HCH F η

M
     (21)

The dynamical equation in joint-space can finally obtained from the Equations (12), (20) and (21) as: 
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 1 T 1 T T 1 1δ δ δ ext
p p p p b p p b b p p

ext

       
       

 

F
H J H l K l C l H J J H H x H η H

M
    (22)

3. Control Strategy of the Vibration Isolation System 

3.1. The State Space Model and the H∞ Control Law 

The purpose for the design of the active control is to determine the force or torque required of  

the actuators which could balance the forces on the payload according to the dynamics equations.  

The control target of the vibration isolation system is to minimize the H∞ norm of the transfer function 

from external disturbance to the system output. 

Define the state variable: 
T

ψ β ω ω ωp p p p p p px py pzx y z x y z   x     (23)

Without loss of generality, it is assumed that the initial position is 0. Then Equation (21) can be 

written in state-space form as: 

1 2  x Ax B w B u  (24)

where au F  is the control input, and: 

6 6 6
1 T 1 T

pppp p p


 

 
    J H J CHH

0 E
A

KH
, 

6 6 6 6
11

6 6p

 




 
  
 

0 0
B

J 0
, 

6 6
12

p p




 
  
 

B
J H

0
, b 

  
 

w
w

n
 

in which bw  is the external excitation vector and n  is a noise signal vector. 

The system output can be expressed as: 

1

2

 
  
 

z
z

z
 (25)

where 1z  is the acceleration of top platform, 2z  is the control force. Then: 

1

2

   
    

  

z y
z

z u
 (26)

Let  6 6 6 6  0 E V , the measured output is: 

     1 2
T T T T
p p p p     y H 0 E x 0 E w H VAx H VB V w H VB u  (27)

From former equations, the state-space equations is obtained as: 

1 2

1 11 12

2 21 22

  
   
   

x Ax B w B u

z C x D w D u

y C x D w D u


 (28)

Let   1
s

 Q I A , the Laplace transformation of Equation (24) is: 

1 2 X QB W QB U  (29)
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Substitute Equation (29) into Equation (27) results in: 

T
2 1 2

T T T T T
p w b w p p b p      Y H G V W G V N H G U VW H G W H G U N  (30)

where T
w G V 0  

Considering weighting functions 1W , uW , nW , dW , the generalized matrix can be written as: 

1 1 1 2

1 2

d n

aug u
T T T
p d p n p u

 
   
  

W G W W W G

G 0 0 W

H G W H W H G W

 (31)

The relation between input and output can be derived as: 

1

2

b

aug

   
      
      

z w

z G n

y u

 (32)

The standard model of H∞ robust control is shown in Figure 4. The generalized matrix is expressed 

in the dashed box. 

Wn

Wd

W2

B1 D21

C1 W1

A

D22

K

B2

n

d

u

y

z2

z1

 

Figure 4. Block diagram of the control strategy. 

3.2. Selection of Weighting Functions 

Weighting functions in H∞ control theory can reflect the performance requirements such as 

robustness, anti-disturbance and saturation of control force, etc. Selection of weighting functions should 

give consideration to both the expected characteristics and the capacity of the actuators. 
In the generalized matrix, 1W  is the relative weighting of 1z . The magnitude of 1W  should be high 

enough to ensure the control effect in operating frequency while be lower in non-operating frequency. 

uW  is the weighting function of active control force. The magnitude of uW  should be properly low in 

operating frequency to provide control force and high enough while not to overload for the actuator.  

nW  is the noise weighting. The frequency characteristic of nW  should reflect the characteristic of  
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the noise from the measuring system. 1W , uW  and nW  are chosen as following with the Bode diagrams 

shown in Figure 5 would meet the expected frequency characteristic. dW  is the weighting function of 

disturbance. For the purpose of suppressing the effect from disturbance with unknown characteristic, 

dW  is chosen as 6 6I . 

(a) 

(b) 

(c) 

Figure 5. Bode diagrams of (a) relative weighting 1W ; (b) control weighting uW ; and  

(c) noise weighting nW , where  
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3.3. Simulation Results 

Substituting the weighting functions into the generalized matrix Equation (31), the minimum value 
γ  of aug 

G  can be easily obtained. With a set of actual parameters for the payload and the Stewart 

platform prototype as shown in Table 1, the result of iteration is γ 0.9158 . The obtained control 

matrix K is a high-ordered complex transfer function and an order reduction based on Hankel singular 

value method is conducted to the controller. 

Table 1. Parameters and specifications of the platform. 

Parameters Values 

Top Platform Radius 0.165 m 
Height 0.079 m 

Length of legs 0.162 m 
Mass of top platform 3.29 kg 

Moment of Inertia of top platform   2 2diag 4.1 4.4 8 10  kg m   

Moment of Inertia of upper leg   5 2diag 1.895 103 103 10  kg m   

Moment of Inertia of lower leg   4 2diag 9.63 154 154 10  kg m   

Mass of each upper leg 0.0793 kg 
Mass of each lower leg 1.16 kg 

Stiffness of diaphragm spring 44.8 10  N/m  

Natural Frequency 14.5 Hz 
Mass of payload 4.85 kg 

Leg extension range ±5 mm 

The control force is determined by p   u Ky Kx . Frequency response from the disturbance of  

the base platform in vertical direction to the movement of the payload in 3 DOF is shown as Figure 6. 

(a) (b) 

Figure 6. The frequency response from the base to the payload (a) open-loop (b) closed-loop. 

It is shown that there are two resonance peaks in the x-axis and y-axis around 10 Hz and  

the open-loop amplitude could reach above 50 dB in each axis. The amplification at resonant frequency 
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is reduced to below 30 dB for the case of active control and the second peak in x-axis and y-axis of  

open-loop response disappear in response under H∞ control. The effect of vibration isolation is verified 

in experimental studies. 

4. System Implementation and Experimental Results 

4.1. Experimental Setup 

For verification of the proposed design, sinusoidal sweeping-frequency vibration tests and  

fixed- frequency vibration tests were carried out on the experimental device, respectively. The experimental 

device consists of the physical isolation system, the vibration source, the measuring system, the control 

system and the power amplifier. The STI shaking table is used as the vibration source while a cylindrical 

mass is used as the static payload. The measuring system is made up of six charge accelerometer 

transducers which are attached to the upper legs for output feedback and three mutually perpendicular 

accelerometers attached to the payload for effect evaluation. The sensors are connected to the I/O port 

of a dSpace RTI-1104 real-time control system (dSpace, Paderborn, Germany). After the real-time 

operation and D/A transformation, the analog control signal is put into the power amplifier and drives 

the actuators to produce a certain control force. Figure 7 shows the control block diagram of  

the experiment. 

Payload

Vibration 
source

Actuator

Sensors A/D

Power 
amplifier

D/A

Disturbance  

Figure 7. Schematic diagram of the experimental system. 

A Stewart platform with six VCM based extensible legs connecting the base and the payload platform 

through spherical joints at the ends of each legs is constructed, and the base of the Stewart platform is 

attached to the shaking table. The experimental device and the associated equipment are shown in  

Figure 8. The parameters of the Stewart platform are chosen to meet the requirements on the line 

spectrum vibration property of the payload, the limitations on the vibration amplitude and input control 

forces. The main geometrical parameters and other specifications of the developed Stewart platform are 

listed in Table 1. 

Each leg of the Stewart platform consists of a VCM actuator proposed in [21], as shown in Figure 9. 

The main part of the actuator is composed of a cylindrical permanent magnet and the iron yoke, which 

provides a radially-oriented magnetic field in the air gap. The moving portion of the actuator is made up 

of wire winding and a plastic bobbin, which provide an Ampere force in the vertical direction 

perpendicular to the current flow and the magnetic flux when the current flows in the coil [22].  

The moving portion is connected with the iron yoke by a piece of diaphragm spring which is made of 
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phosphor bronze alloy, a non-magnetic material with high elasticity. The diaphragm spring is used to 

produce much bigger lateral stiffness than vertical stiffness, and the lateral stiffness is approximately 

linear in the range of movement. A linear bearing is installed at the center of the top iron yoke. Under 

the constraint of the diaphragm spring and the linear bearing, the voice coil is ensured to move in the 

vertical direction without friction on the iron yoke. 

 

Figure 8. Hardware set of the experimental device. 

diaphragm spring

permanent magnet

iron yoke

plastic bobbin

linear bearing

voice coil
 

Figure 9. Cross-sectional diagram of the voice-coil actuator. 

The real-time control is implemented by a dSpace control system which is a hardware-in-the-loop 

simulation system with high-speed computational processor and provides abundant I/O interface. 

According to the definition of output feedback, the control input u can be calculated from u Ky  where 

K is a 6 × 6 matrix and y is a six-dimensional vector which is captured from the A/D ports of the dSpace. 

The modules connected in Simulink are shown in Figure 10, in which feedback matrix K6×6 is packaged 

in the subsystem with six input ports and six output ports, and saturation modules are used to ensure  

the electrical equipment will not damage by overloading. After the Simulink model is compiled into  

the codes and run by dSpace processor, the output value is exported as analog voltage signals and 

transferred to the power amplifier to drive the actuators whose Ampere force can be calculated in  

the condition of coils moving in the uniform magnetic field and is expressed as: 

M

L

F id Bl i k i    l B  (33)
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Figure 10. Modules connected in Simulink. 

4.2. Experimental Results 

4.2.1. Sinusoidal Sweeping-Frequency Vibration Tests 

In the sinusoidal sweeping-frequency vibration tests, the STI vibration controller generates a sinusoidal 

sweeping acceleration signal from 5 to 100 Hz, which amplitude is 0.5 m/s2, corresponding to  

the practical micro-vibration working conditions on the spacecraft. Dynamical responses without 

damping, with passive damping and under H∞ active control are tested, respectively, to analyze 

quantitatively the effect to the nature frequencies and amplitudes of the vibration response.  

The acceleration signals of the payload in three mutually perpendicular directions are captured by  

the STI controller. 

Three vibration experiments for the system without damping, with passive damper, and with H∞ 

active control are respectively tested. The acceleration amplitude-frequency curves measured from tests 

are shown in Figure 11, where the blue curve represents the acceleration amplitude of disturbance while 

the blue, purple and red curves represent the response acceleration amplitudes in three directions.  

The results show that the acceleration amplitude at first-order resonant frequency for the system with 

passive damping is reduced by 6.8 dB, 9.8 dB and 9.0 dB in three directions, respectively, in comparison 

with those for the system without damping, while the reductions rise to the level of 17.9 dB, 15.2 dB 

and 12.8 dB, respectively, for the case of active damping. The resonance frequency has a small drift for 

the system with passive damping or active control. This means the vibration isolation system does not 

significantly change the inherent characteristic of the structure. The results are shown in Tables 2–4. 
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(a) 

 
(b) 

 
(c) 

Figure 11. The acceleration amplitude-frequency curves of the payload: (a) without damping; 

(b) with passive damping; (c) with H∞ active control. 

Table 2. Test results along x-axis. 

Damping Resonance Frequency (Hz) Vibration Amplitude (m/s2) Magnification (dB) 

Without damping 14.524 2.000 12.041 
Passive damping 14.117 0.916 5.259 

H∞ control 15.375 0.253 −5.917 
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Table 3. Test results along y-axis. 

Damping Resonance Frequency (Hz) Vibration Amplitude (m/s2) Magnification (dB) 

Without damping 14.524 2.539 14.114 
Passive damping 14.905 0.815 4.244 

H∞ control 11.650 0.442 −1.071 

Table 4. Test results along z-axis. 

Damping Resonance Frequency (Hz) Vibration Amplitude (m/s2) Magnification (dB) 

Without damping 14.562 10.878 26.752 
Passive damping 14.905 3.854 17.739 

H∞ control 15.576 2.502 13.986 

4.2.2. Fixed-Frequency Vibration Tests 

In the fixed-frequency vibration tests, the acceleration amplitude of excitation is given as 0.5 m/s2 at 

the first-order resonance frequency, applied by the shaking table. The real-time control force obtained 

from the H∞ control law are captured and compared to monitor if the signals reach saturation. 

 

Figure 12. Time-domain control force on each leg. 
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Figure 12 shows the time-domain control force applied on each leg at 15 Hz which is around  

the resonance frequency. Unbalanced control force among legs is observed from Figure 12, which 

reveals the coupling vibration of the x axis, y axis and rotation for the reason of the asymmetry of  

the machining and assembling. With properly selections of the weighting function of 2W  in Section 3.2, 

the peak value of the control force reach to maximum value at resonance frequency, which is driven by 

a current of 0.42 A according to the current-force constant of the actuators. The energy consumption is 

limited to the realizable range of the real equipment for a spacecraft without overloading. 

5. Conclusions 

A VCM-based Stewart platform used for active vibration isolation of the payload carried on 

spacecraft has been studied in several aspects. The kinematics and dynamical equations of the Stewart 

platform with spherical joints at both the base and top of each leg have been established with  

the Newton-Euler Method in task space for the purpose of fully isolating the payload from the vibration 

source in multiple DOF. The equations are transformed into state space for the purpose of controller 

design. A robust controller according to the H∞ Control Theory is proposed for the corresponding 

linearized system with the constant parameter uncertainty, noise and sensor error. Finally, a Stewart platform 

with six VCM based extensible legs is constructed with spherical joints connections, and the vibration 

test on the payload supported by the Stewart platform has been taken. Sinusoidal sweeping-frequency 

and fixed-frequency vibration source is applied to the bottom of the structure and the active control force 

is determined by the dSpace real-time control system according to the output acceleration at the top of 

the legs. Measured data from the test have been used to verify the feasibility and effectiveness of  

the vibration isolation system by comparing the amplitude-frequency characteristics of the active control 

system with that of the passive control system and the system without control. The results of physical 

experiments indicate that the VCM-based Stewart platform with the proposed controllers is feasible  

in practical applications, which enhances the damping and stability of the structure effectively for 

vibration isolation. 
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Nomenclature 

t  position of platform 

ip  position of upper end of ith leg 

ib  position of lower end of ith leg 

r  position of center of mass of payload 

il  vector of the ith leg 

T  transformation matrix 

R  rotation matrix 

I  moment of inertia 
θ  rotation angle 
α  acceleration 
ω  angular velocity 

F  force vector between the upper and the lower legs 

aF  active control force 

wF  external force on the top platform 

wM  external torque on the top platform 

pM  the mass of the top platform 

K  stiffness matrix of the legs 
C  damping matrix of the legs 
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