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Abstract: Availability of effective estimation of the power profiles of photovoltaic systems is
essential for studying how to increase the share of intermittent renewable sources in the electricity
mix of many countries. For this purpose, weather forecasts, together with historical data of the
meteorological quantities, provide fundamental information. The weak point of the forecasts
depends on variable sky conditions, when the clouds successively cover and uncover the solar disc.
This causes remarkable positive and negative variations in the irradiance pattern measured at the
photovoltaic (PV) site location. This paper starts from 1 to 3 days-ahead solar irradiance forecasts
available during one year, with a few points for each day. These forecasts are interpolated to obtain
more irradiance estimations per day. The estimated irradiance data are used to classify the sky
conditions into clear, variable or cloudy. The results are compared with the outcomes of the same
classification carried out with the irradiance measured in meteorological stations at two real PV
sites. The occurrence of irradiance spikes in “broken cloud” conditions is identified and discussed.
From the measured irradiance, the Alternating Current (AC) power injected into the grid at two PV
sites is estimated by using a PV energy conversion model. The AC power errors resulting from the
PV model with respect to on-site AC power measurements are shown and discussed.

Keywords: photovoltaic systems; weather forecasts; photovoltaic (PV) conversion model;
power profiles; error assessment; distributed generation; renewable energy; irradiance spike

1. Introduction

Photovoltaic (PV) generation strongly depends on weather conditions, in particular on solar
irradiance and temperature. As such, availability of accurate weather forecast data is very important
for PV system planning and operation. For grid-connected PV systems, the power injected into the
grid is concentrated during sunlight hours, in which typically the maximum peak load occurs.

In the power system, the task of the Transmission System Operator (TSO) is to ensure a
constant balance between supply and consumption within the grid. Actually, the presence of strong
fluctuations of the irradiance increases the uncertainty on the PV generation and requires additional
regulatory actions for the procurement of reserve services. This may cause an increase in the costs
for ancillary services. The irradiance forecast is then useful for grid management, to obtain more
accurate information on the expected weather conditions. This information may assist the operators
in undertaking decisions concerning the energy market and to reduce the costs of energy imbalance.
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The first research on solar irradiance forecasting was conducted more than twenty years ago [1],
using the Model Output Statistics (MOS) technique [2]. This technique allows the prediction of
a daily average value one or two days ahead. Concerning the forecasting on a short-time scale
(a few hours), the effectiveness of a statistical approach based on the prediction of the motion of the
clouds through images provided by satellites of the Meteosat constellation has been demonstrated
in [3]. However, this method requires a huge computational effort. A multi-resolution decomposition
technique applied to satellite images has been studied in [4], in order to obtain information on the
local mean value and on the gradient of solar irradiance at different spatial scales. Other studies on
short and very short time scales are available in the literature, taking into account the information
provided by satellites. Currently, the weather forecasting tools are based on numerical techniques,
which provide good results when applied to extended spatial scales. However, these tools are not
able to address local variability of the weather conditions.

The forecasting field is rapidly evolving according to the growth of the PV market. A model to
predict the power P produced by a PV plant can be written in the general form P “ f pX1, X2, ..., Xnq

where Xi (i = 1, 2, . . . , n) are n different physical quantities of influence. These quantities, including
the solar irradiance, the PV module’s temperature, the air temperature, the wind speed, the relative
humidity, etc., have to be provided by forecasting tools. The input of many models is the solar
irradiance [5], while different methods are based on the irradiance and on the temperature of the air
or of the PV module [6]. In general, as shown in [7] the models based on irradiance and temperature
perform better than the ones where only the irradiance is considered. Conversely, the adoption of the
models based on other working conditions does not necessarily improve the prediction accuracy.

Different techniques showing accurate results have been used to predict the power produced by
a PV plant. Some examples are Artificial Neural Networks (ANN)-based techniques [7–9], regression
model-based techniques [10], support vector machine [11], hybrid models [12] and PV system
models [13]. The prediction methods may change depending on the availability of local data coming
from a weather station specifically designed and installed to measure the operating conditions of the
PV system under study. Most residential PV plants (as well as many of the commercial/industrial
ones) are not equipped with any sensor of climate conditions. In this case, the usage of commercial
weather data allows the implementation of simpler models for the estimation of the power produced
by the PV plants [14].

Recently, a growing interest in using spatio-temporal forecasting methods has emerged, due to
the availability of time series data over a large number of meteorological stations. Interesting results
incorporating spatial-temporal forecasting method based on the vector autoregression framework
have been presented in [15]. This framework combines observations collected by smart meters
and distribution transformer controllers, to obtain 6 h-ahead forecasts at the residential PV and
medium-voltage/low-voltage substation levels. Spatio-temporal information from satellite images
has been used in [16] through an autoregressive approach to forecast the global horizontal irradiance
at ground level.

This paper presents a procedure to assess the errors occurring in the 1 day-ahead solar irradiance
estimation and in the model-based estimation of the Alternating Current (AC) power delivered to the
grid by the PV system. This procedure is based on:

(1) The use of solar irradiance weather forecasts updated every a few hours from a provider. These
data are interpolated with polynomial splines to obtain a higher number of estimated values
during the day. The results are compared with the measurements gathered at 1-min intervals
during a period of one year in order to calculate the estimation error.

(2) The application of a PV conversion model from solar irradiance to AC power, determining 1-min
AC power estimates. From these values, 15-min averaged data are calculated and compared
with the energy meter readings at 15-min intervals in order to calculate the error on AC
power estimates.



Energies 2016, 9, 8 3 of 27

The strengths of this paper are that:

(a) The procedure presented can be used to select the best forecasting model or the best
provider of weather forecasts in the location of interest.

(b) The irradiance error estimation is particularly accurate, because the meteorological stations
are equipped with pyranometers (secondary standards used as reference instruments)
installed in the same sites of two operating PV plants. Moreover, the AC power error
estimation is relevant because (i) the PV plants analyzed are located in the Italian region
(Puglia) with the highest PV power density; and (ii) the measurements referring to the PV
plants are taken from calibrated energy meters.

The results of the proposed procedure are presented in the form of duration curves of the
positive and negative errors between estimated and measured values, determined during a period of
one year. The evaluation of the estimation errors is helpful for the grid operator to estimate to what
extent the estimation of the PV contribution as grid-connected local generation, calculated starting
from 1 day-ahead forecast data, can be trustable. The occurrence of irradiance spikes due to the
phenomenon of “broken clouds” is also presented and discussed as a source of possible irradiance
peaks, in some cases exceeding the rated value of the AC power injected into the grid.

The next sections of this paper are organized as follows: the second section presents an overview
of solar irradiance models and the PV conversion model. The third section introduces the proposed
model for hourly classification in clear, variable and cloudy sky conditions, according to the clearness
index values. Section 4 discusses the error calculation of the estimated irradiance with respect to
the measured irradiance. The fifth section addresses the errors between the AC power estimates
and the AC power values measured on two PV systems in operation. The last section contains
the conclusions.

2. Solar Irradiance Models and PV System Description

2.1. Models for Extraterrestrial and Ground Level Irradiance

Solar irradiance, which is received by the Earth’s surface, is the result of complex interactions
between the irradiance from the Sun, the atmosphere and the Earth’s surface. In general terms,
it is subject to changes determined by the geometry of the Earth, its daily rotation and its annual
revolution around the Sun. On a local scale, the main factor is the topography, especially the altitude,
the slope, the exposure, and the shading caused by mountains or other natural obstacles. It is possible
to determine, by means of appropriate geometric relationships, the amount of irradiance that reaches
locally a plane parallel to the ground [17]. The first step is to determine the position of the Sun
relative to an observer on the ground, by using a suitable reference system represented by the celestial
coordinates. In this case, it is convenient to make use of local coordinates:

‚ latitude ξ, in radians or degrees, with respect to the equator (>0 toward North);
‚ longitude ζ, in radians or degrees, referred to the Greenwich line (>0 toward East);
‚ solar declination δ, the angle between the Sun-Earth line and the equator plane (>0 North);
‚ hour angle ψ, between the meridian plane passing through the observer and the meridian plane

passing through the Sun (>0 West);
‚ azimuth angle φ between the projection of the Sun-Earth line and the plane at the horizon with

South direction (>0 West);
‚ zenith angle z between the Sun-Earth line and the zenith direction;
‚ solar height α, that is, the angle between the Sun-Earth line and the horizon plane.

The latitude ξ and the longitude ζ are the only parameters that do not require calculations,
because they are known as the geographical coordinates of the place of observation.
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The hour angle ψ of the Sun is a more complex parameter, because it depends on the position of
the observer (longitude effect) and on the measurement of the local time. During the year, the time
indicated from a meridian deviates periodically a few minutes with respect to the time indicated by a
clock, which in Italy is normally referred to the Central European Time (CET). This difference is called
“equation of time” τ, defined as the East or West component of the analemma, a curve representing
the angular offset of the Sun from its mean position on the celestial sphere as viewed from the Earth.
At any point in time, the solar irradiance incident on a horizontal plane outside the atmosphere is the
normal solar irradiance G0, given by ([18], pp. 37–41):

G0 “ Gsc

ˆ

1` 0.033cos
360d
365

˙

cosz (1)

where Gsc is the solar constant, d is the day of the year, and cosz “ cosξ cosδ cosψ` sinξ sinδ.
By integrating this equation for an interval between the hour angles ψ1 and ψ2, which define an

hour (where ψ2 is the larger), the irradiation H0 (in MJ/m2) is obtained as:

H0 “
12ˆ 3600

π
Gsc

ˆ

1` 0.033cos
360d
365

˙

rcosξ cosδ psinψ2 ´ sinψ1q ` pψ2 ´ψ1q sinξ sinδs (2)

The solar irradiance, in the path through the atmosphere towards the Earth surface, is subject to
scatter, absorption, reflection, diffusion, meteorological conditions and air mass [19]. It is useful to
define a standard “clear” sky and calculate the hourly and daily irradiance that would be received on
a horizontal surface under these standard conditions ([18], pp. 85–95). In order to calculate the clear
sky irradiance, several methods have been developed [20]. Among these methods, the Moon-Spencer
model [21] provides the theoretical instantaneous values of the irradiance at clear sky on a surface
orientated in any direction. The irradiance values obtained from the Moon-Spencer model refer to
free view with respect to the horizon. The results may differ in case of obstacles hiding the visual
landscape, for some parts of the day, in the directions in which the Sun should impact on the surface
(e.g., presence of mountains or adjacent buildings). In these cases, the results of the Moon-Spencer
model have to be adjusted to take into account the actual skyline seen from the surface.

The Moon-Spencer model was developed for the atmospheric conditions in the United States,
but sometimes it over-estimates or under-estimates the global irradiance in case of geographical
locations different from the United States. Therefore, this clear sky model cannot be considered as
an ideal profile with minimum turbidity of the sky, but it represents an indicative daily evolution for
the comparison with the weather forecasts. In order to take into account the information provided
by the clear-sky model, a dedicated variable space has been created in [22], in which the time axis
is normalized in such a way to map the time interval between the sunrise and the sunset in the
(0, 1) interval; the irradiance values are normalized so that the unity value corresponds to the peak
conditions at clear-sky from the Moon-Spencer model.

Another clear-sky model has been implemented in the online software PVGIS [23]. In [24] a
comparison between the irradiance measured by the pyranometer and the simulated PVGIS clear-sky
irradiance has been discussed for a particular day of July. Examining other days during the whole
year, owing to higher air turbidity the measured values are, many times, lower than the ones obtained
from the clear-sky model.

In this paper, the data are elaborated in order to create a partitioning into three types of sky
conditions: variable, clear, and cloudy. Classifications with more types of sky conditions have been
used in various references for different purposes [25,26].

2.2. Description of the Two Meteorological Stations and PV Systems

For our investigation, measurements have been collected by two meteorological stations, named
for the sake of simplicity “Gi” and “Ma”, near two grid-connected PV systems at latitude 40˝ North
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(Puglia region, Figure 1). The distance between the two meteorological stations is 61 km. As discussed
in [27], each meteorological station is provided with:

‚ A pyranometer (Secondary Standard according to ISO 9060 [28]) for measuring the horizontal
global irradiance Gpyr;

‚ Two reference solar cells in polycrystalline silicon (p-Si) with South orientation for measuring
the 30˝ tilted global irradiance Gtcell ;

‚ One thermo-hygrometer for measuring the ambient temperature Tamb, relative humidity and
wind speed ws.

Energies 2016, 9, page–page 

5 

 Two reference solar cells in polycrystalline silicon (p-Si) with South orientation for measuring 

the 30° tilted global irradiance Gtcell; 

 One thermo-hygrometer for measuring the ambient temperature Tamb, relative humidity and 

wind speed ws. 

 

Figure 1. Location of the two grid-connected PV systems and satellite photo of the “Gi” site. 

To obtain a correctly integrated value for the solar irradiance over the day, small time steps are 

recommended for data sampling. However, due to the response time of the pyranometer, the time 

step cannot be lower than 5 s. The sampling time steps may be chosen depending on the data 

collection system and on the calculation and update speed of the algorithms used. In our case, the 

pyranometer is connected to the meteorological station. Therefore, a time step of 10 s and an 

averaging time for the integrated values of 1 min are used. This averaging time is suitable for 

obtaining a sufficient number of data to be further averaged within longer time steps, such as the 

ones used in the electricity markets (e.g., 10, 15 min, 30 min, or 1 h). The global irradiance data  

from solar cells on the tilted plane are validated through the comparison with the pyranometer 

uncertainty [24], showing the possible effect of the measurement accuracy. The expanded 

uncertainty of a pyranometer having the same characteristics of the pyranometers used in the two 

sites is about 30 W/m2 with confidence level 95% (coverage factor k = 2) [29]. This value is valid when 

the irradiance reaches its peaks up to 1200 W/m2. A confidence level 99.7% (coverage factor k = 3) 

corresponds to an expanded uncertainty of about 45 W/m2. At mid-level of irradiance (e.g., around 

500 W/m2) the expanded uncertainty for k = 2 is about 15 W/m2. 

The real grid-connected PV system has a power rating Ppeak = 993.6 kWp for the site “Gi” and  

Ppeak = 997.3 kWp for the site “Ma” at Standard Test Conditions (STC) with global irradiance  

GSTC = 1 kW/m2, cell temperature TSTC = 25 °C and standard spectrum AM 1.5. The PV system in the 

site “Gi” is equipped with polycrystalline silicon modules of 230 Wp each, tilted at 30° with South 

orientation. On the contrary, the PV system in the site “Ma” is equipped with mono-crystalline 

silicon modules of 230 Wp, 235 Wp and 240 Wp and with polycrystalline silicon modules of 230 Wp, 

235 Wp and 240 Wp, tilted at 30° with South orientation. The PV arrays of each site, placed on a 

metallic structure that permits the natural air circulation, feed two centralized inverters with high 

efficiency (transformerless option). These power conditioning units are slightly undersized, given 

that the 500-kVA inverter is supplied by a 552.0 kWp array for the site “Gi” and by a 542.0 kWp array 

for the site “Ma”; the 400-kVA inverter is supplied by a 441.6 kWp array for the site “Gi” and by a 

455.3 kWp array for the site “Ma”. 

2.3. Definition of the PV Conversion Model 

In the definition of the PV conversion model, it is important to take into account the efficiencies 

referring to the main loss factors affecting the PV system behavior. As mentioned in [30], the main 

loss factors are summarized in the efficiencies defined as follows: 

 Efficiency dirt, due to losses for soiling and dirt (environmental pollution). To estimate the 

impact of dirt/soiling accumulation, a 10-day summer period without rain is considered.  

Figure 1. Location of the two grid-connected PV systems and satellite photo of the “Gi” site.

To obtain a correctly integrated value for the solar irradiance over the day, small time steps
are recommended for data sampling. However, due to the response time of the pyranometer, the
time step cannot be lower than 5 s. The sampling time steps may be chosen depending on the data
collection system and on the calculation and update speed of the algorithms used. In our case,
the pyranometer is connected to the meteorological station. Therefore, a time step of 10 s and an
averaging time for the integrated values of 1 min are used. This averaging time is suitable for
obtaining a sufficient number of data to be further averaged within longer time steps, such as the ones
used in the electricity markets (e.g., 10, 15 min, 30 min, or 1 h). The global irradiance data from solar
cells on the tilted plane are validated through the comparison with the pyranometer uncertainty [24],
showing the possible effect of the measurement accuracy. The expanded uncertainty of a pyranometer
having the same characteristics of the pyranometers used in the two sites is about 30 W/m2 with
confidence level 95% (coverage factor k = 2) [29]. This value is valid when the irradiance reaches its
peaks up to 1200 W/m2. A confidence level 99.7% (coverage factor k = 3) corresponds to an expanded
uncertainty of about 45 W/m2. At mid-level of irradiance (e.g., around 500 W/m2) the expanded
uncertainty for k = 2 is about 15 W/m2.

The real grid-connected PV system has a power rating Ppeak = 993.6 kWp for the site “Gi”
and Ppeak = 997.3 kWp for the site “Ma” at Standard Test Conditions (STC) with global irradiance
GSTC = 1 kW/m2, cell temperature TSTC = 25 ˝C and standard spectrum AM 1.5. The PV system
in the site “Gi” is equipped with polycrystalline silicon modules of 230 Wp each, tilted at 30˝ with
South orientation. On the contrary, the PV system in the site “Ma” is equipped with mono-crystalline
silicon modules of 230 Wp, 235 Wp and 240 Wp and with polycrystalline silicon modules of 230 Wp,
235 Wp and 240 Wp, tilted at 30˝ with South orientation. The PV arrays of each site, placed on a
metallic structure that permits the natural air circulation, feed two centralized inverters with high
efficiency (transformerless option). These power conditioning units are slightly undersized, given
that the 500-kVA inverter is supplied by a 552.0 kWp array for the site “Gi” and by a 542.0 kWp array
for the site “Ma”; the 400-kVA inverter is supplied by a 441.6 kWp array for the site “Gi” and by a
455.3 kWp array for the site “Ma”.
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2.3. Definition of the PV Conversion Model

In the definition of the PV conversion model, it is important to take into account the efficiencies
referring to the main loss factors affecting the PV system behavior. As mentioned in [30], the main
loss factors are summarized in the efficiencies defined as follows:

‚ Efficiency ηdirt, due to losses for soiling and dirt (environmental pollution). To estimate the
impact of dirt/soiling accumulation, a 10-day summer period without rain is considered. At the
end of this period (10th day), the horizontal solar irradiation is calculated from the pyranometer
and the solar cell. At the 11th day, the rain appears and naturally cleans the sensors. Finally,
at the 12th day (clear-sky day), the solar irradiation is calculated in such a way as to practically
have the same astronomical conditions of the 10th day. Therefore, the corresponding value of
ηdirt for the PV plant, located in a relatively clean environment (i.e., away from mines, landfills,
etc.), is determined according to the following formula:

ηdirt “ 100
pHa_rain ´ Hb_rainq

Ha_rain
(3)

where Ha_rain and Hb_rain are the values of the daily irradiation in two clear-sky days, one after
rain (12th day) and the other before rain (10th day), respectively. The corresponding value of
ηdirt is generally in the range 0.97–0.98.

‚ Efficiency ηre f l , due to reflection of the PV module glass; the value used is 0.971, taken from the
PVGIS website [23].

‚ Efficiency ηth, due to the thermal losses lth with respect to the STC, calculated as:

ηth “ 1´ lth “ 1´ γth pTC ´ TSTCq (4)

where γth is the thermal coefficient of maximum power of the PV modules, depending on the PV
technology (for crystalline silicon γth = 0.5%/˝C); TC is the cell temperature (mean temperature
in outdoor operation at GNOCT = 800 W/m2 and Tamb,NOCT = 20 ˝C), which can be calculated as
a function of the ambient temperature Tamb, the cell irradiance on the tilted plane Gtcell and the
Normal Operating Cell Temperature (NOCT) of 42–50 ˝C [31,32]:

TC “ Tamb `
`

NOCT´ Tamb,NOCT
˘ Gtcell

GNOCT
(5)

‚ Efficiency ηmism, taking into account the current-voltage (I-V) mismatch losses, assuming that
the bottleneck effect globally leads to 97% of the power rating declared by the manufacturer for
all the modules in the PV array. This loss is a consequence of the weakest modules in the series
connection inside the strings, and of the weakest strings in the parallel connection inside the PV
array [33].

‚ Efficiency ηcable, including the DC cable losses, with the value 0.99 considered according to good
design criteria [34].

Considering these efficiencies, the available power at the maximum power point is expressed as:

Pmpp “ Prated pGtcell ´ Glimqηdirtηre f lηthηmismηcable (6)

where Glim = 17.7 W/m2 is the irradiance limit below which the output is vanishing, calculated
by linear interpolation of the irradiance and power values declared by the manufacturer of the
silicon modules installed in the PV array.

Finally, considering the efficiency ηMPPT of the maximum power point tracker, and thanks to
the model of the power conditioning unit for grid connection, the AC power injected into the grid is
calculated by solving the second-order equation [35]:
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cQP2
AC ` p1` cLq PAC ` P0 ´ PDC “ 0 (7)

with:
PDC “ ηMPPT Pmpp (8)

where P0 is the no-load power losses along the operation, while cL and cQ are the linear and quadratic
loss coefficients, respectively.

Therefore, if the reference-cell data Gtcell , averaged on 15-min basis, are used as inputs of the
above-described model, the power PAC delivered to the grid can be compared with the power Pmeas

indicated by the energy meter of the PV plant.
For the error calculation of the AC power profiles compared to the experimental results of each PV

plant in the two sites, the estimation error ∆P is defined as the difference between the estimated power
to be delivered to the grid PAC and the AC power Pmeas measured by the energy meter of each PV plant:

∆P “ PAC ´ Pmeas (9)

3. Clear, Variable and Cloudy Sky Classification

3.1. Determination of the Diffuse Contribution in the Global Irradiance

The amount of solar irradiance that reaches the ground, besides the daily and yearly apparent
motion of the Sun, depends on the geographical location (latitude and longitude) and on the climatic
conditions (e.g., cloud coverage). Many studies have proved that cloudiness is the main factor
affecting the difference between the values of irradiance measured outside the atmosphere and on
the Earth surface [36].

Let us define the global irradiance on a horizontal surface Gth (kW/m2), composed of the
diffuse component Gdh and beam component Gbh. Let us further consider the hourly clearness index
kt = Gth/G0, calculated as the ratio of Gth (measured by the pyranometer) to the extra-atmospheric
total irradiance G0 (kW/m2) defined in Equation (1). The ratio kd = Gdh/Gth can be expressed as
a function of the clearness index, and permits to distinguish the sky conditions into clear, variable
and cloudy. For this purpose, several correlations have been proposed to establish a relationship
between the diffuse and the global horizontal irradiances. As explained in [37], some of the existing
models [38,39] have been developed for Northern latitudes with high albedos and air masses.
This is the reason for differences in diffuse irradiance values and an error source in modeling diffuse
irradiance [40]. Only in recent years models to calculate the diffuse irradiance with respect to
the global irradiance have been developed for the European Mediterranean area [41]. The hourly
correlations considered in this context are represented by these expressions:

kd “

$

’

&

’

%

0.995´ 0.081kt for kt ď 0.21
0.724` 2.738kt ´ 8.32kt

2
` 4.967kt

3 for 0.21 ă kt ď 0.76
0.180 for kt ą 0.76

(10)

The above-mentioned correlations permit the hourly classification of the sky conditions.
In particular:

‚ for kt ď 0.21 a total cloudy sky condition occurs, and a linear expression of kd is assumed;
‚ in the range 0.21 < kt ď 0.76, a variable (i.e., partially cloudy) sky condition occurs, in which

the Sun is partially obscured by clouds, and the correlation is represented by a cubic
polynomial expression;

‚ for kt > 0.76 a clear-sky condition occurs, in which that the sunlight is not reduced by clouds,
and the fraction of diffuse irradiance is assumed to be 18% of the global one.

The weather forecasts considered in this paper are provided by the meteorological service of
Catalonia [42]. The available data are based on the Weather Research and Forecasting (WRF) [43]
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model: a next-generation mesoscale numerical weather forecast system designed to serve both
atmospheric research and operational forecasting needs. It features two dynamical cores, a data
assimilation system, and a software architecture allowing for parallel computation and system
extensibility. The model serves a wide range of meteorological applications across scales ranging
from meters to thousands of kilometers. As shown in Table 1, the coordinates of the points of the
WRF model (WRF latitude and WRF longitude) are close to the real points (real latitude and real
longitude) for the two sites under analysis.

Table 1. Real and WRF coordinates for the two sites (degrees).

Site Real Latitude Real Longitude WRF Latitude WRF Longitude

Ma 40.35 17.52 40.44 17.65
Gi 40.55 16.84 40.62 16.93

The data set taken from the meteorological provider consists of solar irradiance forecasts for the
two meteorological stations during the whole year 2012 [44]. The forecast values are given in W/m2 at
four points in time (hours 7 a.m., 10 a.m., 1 p.m. and 4 p.m.). There is no indication on the uncertainty
of these data. The maximum timespan is 72 h. The forecast data have been first interpolated by using
polynomial splines [45], obtaining an estimated irradiance pattern that can be represented with a
number of points per day higher than the four points available from the forecast data.

On the basis of the hourly correlations from Equation (10), each hour of a day has been classified
belonging to clear, cloudy or variable sky conditions for both the estimated and measured data [44].
In particular, the value of the hourly clearness index of pyranometer ktp has been calculated as the
ratio of the solar irradiance from the pyranometer to the extra-atmospheric total irradiance G0. Then,
the hourly clearness index of forecasts kt f has been calculated as the ratio between the 1 day-ahead
forecast data (considered to be more accurate than the 2 and 3 days-ahead forecasts, as confirmed by
the results indicated in Section 4) and the abovementioned G0.

3.2. Representation of Measured, Forecast and Estimated Data

In Figure 2, the daily evolution of the solar irradiance is represented for seven consecutive
days of July 2012 (17–23 July) for the two sites “Gi” (a) and “Ma” (b). The 1, 2 and 3 days-ahead
forecasts available every three hours from [42] are represented with circles, while the measurements
from the pyranometer Gpyr are indicated with a black line. Furthermore, the lines obtained by
polynomial spline interpolations are shown in different colors, corresponding to estimates obtained
from the 1 day-ahead forecast (in red), the 2 days-ahead forecast (in blue) and the 3 days-ahead
forecast (in green). These lines serve as references to identify the type of day on the basis of the
actual measurements. Finally, the dashed line represents the outcomes of the Moon-Spencer model.
By examining the daily evolution of measurements, for both sites there are four clear sky days, and
three days with variable sky or cloudy sky conditions. In general, the weather forecasts are able to
predict the clear-sky condition, but they are not able to predict the variable-sky condition: on 23 July
for the “Gi” site only the 1 day-ahead forecast is closer to the measurements. In particular, the hours
from 5 a.m. to 8 a.m. are classified by the algorithm related to the clearness index of measurement as
cloudy, in which ktp is between 0.04 and 0.16 and the value of the pyranometer irradiance does not
reach 200 W/m2. The calculation for the 1 day-ahead forecast of the same day classifies all the hours
as variable, with kt f in the range 0.36–0.67.

Actually, in variable-sky days, the phenomenon of broken clouds [46–48] (also called cloud
enhancement [48,49], cloud edge [50] or overirradiance [51]) may affect the outcomes of the analysis.
The presence of broken clouds appears when the sky is mainly clear, but the passage of clouds affects
the irradiance evolution. The irradiance may reach values higher than the peak at clear-sky for short
duration due to the clouds, surrounding the solar disc, which reflect a portion of irradiance in a small
area of the ground. Obviously, on a longer period the clouds determine an irradiation lower than at
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clear-sky, because of the shield of the direct irradiance by the clouds. This phenomenon may cause
fast positive and negative variations with the mentioned abnormal peak, which are revealed by the
pyranometer on 1 min scale. In order to identify this effect in a synthetic way, let us introduce the
acronym ISBC (Irradiance Spikes caused by Broken Clouds; no specific acronym has been found in
the literature to identify this phenomenon. Thereby, the new acronym ISBC is introduced here to
represent synthetically the occurrence of fast positive and negative irradiance variations in “broken
clouds” conditions).

Averaging the irradiance data over a time period longer than 1 min (to obtain a smoother
irradiance pattern) can reduce the relevance of the ISBC effect on the measured values. However,
working with smoothed data would make the distinction among different sky conditions more
challenging. In this respect, the ISBC effect is useful to provide highly variable real data characterizing
variable or cloudy sky conditions, impacting on the increase of the forecasting errors. Hence, the
polynomial splines obtained from the forecasted values are represented at 1-min time step as well
in order to be compared with the measured values.
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Figure 2. Solar irradiance values from: the Moon-Spencer model (Gth), pyranometer measurements
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A specific aspect can be observed in Figure 2b, where the measured data indicate a systematic
irradiance reduction at the “Ma” site in the early morning. This is due to the location of the irradiance
sensor in the meteorological station building. For this sensor, the direct irradiance is shadowed in the
early morning in the summer period, causing a bias in the error calculations. This systematic error
varies with the day. Its impact on the free-view curve can be determined by knowing the clear sky
model of the days and the exact location of the shadowing obstacles. When the sensor shadowing
occurs, the total irradiance is reduced to the diffuse irradiance. In the model used in this paper,
for the periods in which the systematic error occurs, the maximum spline values can be reduced to
the values of the diffuse irradiance calculated from the clear sky model.

3.3. Comparison between Estimated Values and Measurements in the Two PV Sites

On the basis of Equation (10), the clearness index determines the amount of diffuse hourly
irradiation with respect to the global hourly irradiation, and thus the sky conditions. The assessment
of clear, variable and cloudy sky conditions is carried out for the pyranometer measurements and for
the polynomial splines representing the estimated values. In both cases, the values are averaged
at each hour. When the assessment for measurement and estimate indicates the same type of sky
conditions, the comparison result is marked as a “pass”, otherwise it becomes a “fail”.

Tables 2 and 3 report the comparison performance by showing the number of hours with correct
classification (passes) and with incorrect classification (fails). The comparison is carried out with
estimates referring to 1 day-ahead forecast, summarized for all the months of the year 2012 in the
two sites. Only the hours having at least 30 min of sunlight are considered. The check on the sunlight
hours is carried out for each day by using the clear sky model. The last row of each table reports the
percentage of passes (or fails) per month related to the total number of sunlight hours per month.

For the site “Gi”, in summer (in particular in July) the highest number of hourly passes occurs
for the variable condition. The cases classified as variable from the measurements but clear from the
estimation occur mainly in the middle hours of the day (from 10 a.m. to 3 p.m.) in the days with
greater occurrence of the ISBC effect. On the other hand, in spring a great number of hourly fails
occur for the clear–variable condition.

The low number of clear days, especially in spring and summer, can be explained by the actual
air turbidity. In general, the air pollution can play a fundamental role. The number of clear-sky days
at the site “Ma” is lower than at the site “Gi”. In fact, the site “Ma” is close to high pollution areas,
with the presence of fine dust in the air, produced by industrial steel mills.
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Table 2. Number of passes for all the months of 2012.

(a) Site “Gi”

Measured Estimated January February March April May June July August September October November December

Variable Variable 192 88 136 80 112 139 148 130 140 120 178 185
Clear Clear 8 30 51 98 108 129 54 109 86 77 5 5
Cloudy Cloudy 7 31 18 33 12 29 10 16 31 45 31 24
Total Passes 207 149 205 211 232 297 212 255 257 242 214 214
Passes % 72% 48% 57% 53% 53% 67% 47% 60% 71% 72% 71% 72%

(b) Site “Ma”

Measured Estimated January February March April May June July August September October November December

Variable Variable 165 96 145 70 124 113 135 141 149 124 139 155
Clear Clear 24 31 44 101 118 103 50 73 87 77 16 12
Cloudy Cloudy 0 24 18 34 2 29 0 16 32 45 17 26
Total Passes 189 151 207 205 244 245 185 230 268 246 172 193
Passes % 65% 49% 57% 51% 56% 55% 41% 54% 74% 73% 57% 65%
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Table 3. Number of fails for all the months of 2012.

(a) Site “Gi”

Measured Estimated January February March April May June July August September October November December

Variable Clear 3 7 6 7 5 25 90 49 25 14 8 17
Variable Cloudy 18 77 30 77 65 16 57 48 34 30 51 32
Clear Variable 50 59 115 83 123 87 75 71 46 46 22 23
Clear Cloudy 8 16 6 21 9 20 16 1 2 2 4 6
Cloudy Variable 2 0 0 0 0 0 0 0 0 0 1 4
Cloudy Clear 0 0 0 0 0 0 0 0 0 0 0 0
Total Fails 81 159 157 188 202 148 238 169 107 92 86 82
Fails % 28% 52% 43% 47% 47% 33% 53% 40% 29% 28% 29% 28%

(b) Site “Ma”

Measured Estimated January February March April May June July August September October November December

Variable Clear 12 6 11 12 12 70 120 67 27 32 38 31
Variable Cloudy 30 75 18 77 75 30 66 48 27 25 85 49
Clear Variable 51 66 116 83 96 74 62 76 41 31 2 15
Clear Cloudy 7 10 10 18 7 24 16 2 1 0 0 8
Cloudy Variable 0 0 0 4 0 0 0 0 0 1 2 2
Cloudy Clear 0 0 0 0 0 0 0 0 0 0 1 0
Total Fails 100 157 155 194 190 198 264 193 96 89 128 105
Fails % 35% 51% 43% 49% 44% 45% 59% 46% 26% 27% 43% 35%
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Comparing the number of passes with the number of fails, it is interesting to point out that in
both sites only in two months (February and July) the number of passes is lower than the number
of fails. In particular, in July the classification of the cloudy conditions in these sites is particularly
challenging, especially when a cloudy day appears after a number of successive clear days.

3.4. Identification of the Irradiance Spikes caused by Broken Clouds (ISBC) Conditions

In order to estimate the number of occurrences of the ISBC effect in a day, an additional control
has been performed. In general, the ISBC effect may happen at each time (minute, hour . . . ) of the
day, when the irradiance spikes exceed the irradiance indicated by the reference model at clear sky.
The maximum value of clear-sky irradiance changes in each day; the monthly values are shown in
Table 4. The reference model considers a fixed plane (i.e., with the same 30˝ tilt angle of the modules
in the PV plant).

Table 4. Maximum clear-sky solar irradiance values with tilted angle of 30˝ for each month of 2012.

Month
Max Clear-Sky Irradiance (W/m2) on a 30˝ Plane

Site “Gi” Site “Ma”

January 852 856
February 971 977

March 1080 1100
April 1100 1110
May 1060 1070
June 1060 1060
July 1020 1030

August 1080 1080
September 1040 1040

October 1000 1020
November 906 905
December 856 853

In this paper, a spike is defined by the occurrence of an increase in the global irradiance Gtcell on
the tilted solar cells, from one minute to the successive minute, higher than a threshold value. The
threshold is set to 45 W/m2, that is, the maximum expanded uncertainty of the pyranometer with
99.7% confidence indicated in Section 2.2. The occurrence of the ISBC effect has been determined by
showing two different outcomes:

(i) the number of irradiance spikes for which the measured irradiance exceeds the irradiance of the
reference model at the same minute;

(ii) the number of irradiance spikes for which the measured irradiance is so high to exceed
the maximum irradiance Gmax indicated by the reference model of the corresponding day.
The rationale of this choice is that for irradiance values higher than the maximum value
established at clear-sky conditions the PV system may inject in the electrical network a power
that could be even higher than the rated power of the PV plant.

For the two sites, the global irradiance Gtcell is gathered with a resolution of 1 min. For the
“Gi” site, in the year 2012 the ISBC effect occurs for a number of minutes corresponding to about
2 days and 17 h. The details by month are shown in Table 5a. The occurrence of the ISBC effect in
2012 at the “Ma” site is similar to what happens at the “Gi” site, with a number of minutes in which
the ISBC effect occurs corresponding to 2 days and 16 h. The details by month are shown in Table 5b.
The months with a higher occurrence of the ISBC effect are in spring (April–May) and in autumn
(September).
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Table 5. Number of ISBC events for each month, considering Gtcell with time step of 1 min, exceeding
the minute-by-minute points and the daily peak of the clear sky model.

Number of ISBC Events (Year 2012)

Month
(a) Site “Gi” (b) Site “Ma”

Exceeding the
Minute-by-Minute

Points of the
Clear Sky Model

Exceeding the
Daily Peak of the
Clear Sky Model

Exceeding the
Minute-by-Minute

Points of the
Clear Sky Model

Exceeding the
Daily Peak of the
Clear Sky Model

January 378 190 357 172
February 228 117 231 117

March 232 89 430 217
April 552 283 469 221
May 646 343 397 190
June 252 108 202 73
July 227 104 167 57

August 154 60 34 10
September 493 207 663 311

October 345 161 416 166
November 245 121 214 79
December 174 86 289 140
Total year 3926 1869 3869 1753

4. Accuracy of the Estimated Values

4.1. Error Indices to Compare the Irradiance Estimates with the Measurements

In order to compare the estimated quantities with the measured ones, the estimation error εG is
the difference between the estimated irradiance Gest and the measured irradiance Gmeas [52]:

εG “ Gest ´ Gmeas (11)

Different statistical parameters [53] have been calculated on a daily basis, by considering a
generic error ε:

‚ the root mean square error (RMSE):

RMSE “

g

f

f

e

1
N

N
ÿ

i“1

ε2
i (12)

‚ the mean bias error (MBE), representing the systematic part (bias) of the error [54]:

MBE “ ε “
1
N

N
ÿ

i“1

εi (13)

‚ the mean absolute error (MAE):

MAE “
1
N

N
ÿ

i“1

|εi | (14)

The estimation error is calculated by using Equation (11) with Gest given by the estimated data
interpolated from the 1, 2 and 3 days-ahead irradiance forecasts, and Gmeas equal to the irradiance
Gpyr measured from the pyranometer. Figures 3–5 show the RMSE, the MBE and the MAE calculated
errors, respectively, expressed in kW/m2 for the days of July 2012 in the sites “Gi” and “Ma”.
For example, it can be observed that on 23 July there is a significant increase of the three errors with
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respect to the preceding days, at both sites. This situation can be explained by looking at the last
graphs of Figure 2, in which the sky on 23 July becomes variable after a sequence of clearer days.
A similar situation occurs on 24 July at both sites and on 25 July at the site “Gi”.

On the average, the 1-day ahead estimate is the most accurate, with lower errors compared
to the 2-days and 3-days ahead estimates. In particular, considering the RMSE errors in Figure 3,
the average value of the 1-day ahead estimates give figures around 119 W/m2 for the site “Gi” and
around 107 W/m2 for the site “Ma”; whereas the maximum value is around 266 W/m2 for the site
“Gi” and around 280 W/m2 for the site “Ma”. Furthermore, the minimum value is around 81 W/m2

for the site “Gi” and around 82 W/m2 for the site “Ma”. From Figure 4, it can be pointed out that
the 1-day ahead estimates give MBE figures around 50 W/m2 for the site “Gi” and around 40 W/m2

for the site “Ma”. In the best results the MBE index decreases down to 20 W/m2 for the site “Gi”
and down to 10 W/m2 for the site “Ma”, and in the worst results the MBE raises up to 140 W/m2 for
the site “Gi” and up to 160 W/m2 for the site “Ma”. The presence of a positive bias (with estimates
higher than the measured values) may be associated with air pollution. From Figure 5, the MAE for
the 1-day ahead estimates is 90 W/m2 for the site “Gi” and 80 W/m2 for the site “Ma”, the minimum
value is about 60 W/m2 for both sites and the maximum value is 180 W/m2 for the site “Gi” and
190 W/m2 for the site “Ma”.

Energies 2016, 9, page–page 

15 

graphs of Figure 2, in which the sky on 23 July becomes variable after a sequence of clearer days.  

A similar situation occurs on 24 July at both sites and on 25 July at the site “Gi”. 

On the average, the 1-day ahead estimate is the most accurate, with lower errors compared to 

the 2-days and 3-days ahead estimates. In particular, considering the RMSE errors in Figure 3, the 

average value of the 1-day ahead estimates give figures around 119 W/m2 for the site “Gi” and 

around 107 W/m2 for the site “Ma”; whereas the maximum value is around 266 W/m2 for the site 

“Gi” and around 280 W/m2 for the site “Ma”. Furthermore, the minimum value is around 81 W/m2 

for the site “Gi” and around 82 W/m2 for the site “Ma”. From Figure 4, it can be pointed out that the 

1-day ahead estimates give MBE figures around 50 W/m2 for the site “Gi” and around 40 W/m2 for 

the site “Ma”. In the best results the MBE index decreases down to 20 W/m2 for the site “Gi” and 

down to 10 W/m2 for the site “Ma”, and in the worst results the MBE raises up to 140 W/m2 for the 

site “Gi” and up to 160 W/m2 for the site “Ma”. The presence of a positive bias (with estimates higher 

than the measured values) may be associated with air pollution. From Figure 5, the MAE for the 

1-day ahead estimates is 90 W/m2 for the site “Gi” and 80 W/m2 for the site “Ma”, the minimum value 

is about 60 W/m2 for both sites and the maximum value is 180 W/m2 for the site “Gi” and 190 W/m2 for 

the site “Ma”. 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

[k
W

/m
2
] 

days 

RMSE 1-day RMSE 2-days RMSE 3-days 

 
(a) 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

[k
W

/m
2
] 

days 

RMSE 1-day RMSE 2-days RMSE 3-days 

 
(b) 

Figure 3. The RMSE in kW/m2 in July. (a) Site “Gi”; (b) Site “Ma”. Figure 3. The RMSE in kW/m2 in July. (a) Site “Gi”; (b) Site “Ma”.



Energies 2016, 9, 8 16 of 27
Energies 2016, 9, page–page 

16 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[k
W

/m
2
]

days

MBE 1-day MBE 2-days MBE 3-days

 
(a) 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[k
W

/m
2
]

days

MBE 1-day MBE 2-days MBE 3-days

 
(b) 

Figure 4. The MBE in kW/m2 in July. (a) Site “Gi”; (b) Site “Ma”. 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[k
W

/m
2
]

days

MAE 1-days MAE 2-days MAE 3-days

 
(a) 

Figure 5. Cont. 

Figure 4. The MBE in kW/m2 in July. (a) Site “Gi”; (b) Site “Ma”.

Energies 2016, 9, page–page 

16 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[k
W

/m
2
]

days

MBE 1-day MBE 2-days MBE 3-days

 
(a) 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[k
W

/m
2
]

days

MBE 1-day MBE 2-days MBE 3-days

 
(b) 

Figure 4. The MBE in kW/m2 in July. (a) Site “Gi”; (b) Site “Ma”. 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[k
W

/m
2
]

days

MAE 1-days MAE 2-days MAE 3-days

 
(a) 

Figure 5. Cont. Figure 5. Cont.



Energies 2016, 9, 8 17 of 27
Energies 2016, 9, page–page 

17 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[k
W

/m
2
]

days

MAE 1-days MAE 2-days MAE 3-days

 
(b) 

Figure 5. The MAE in kW/m2 in July. (a) Site “Gi”; (b) Site “Ma”. 

In order to provide an overall view of the estimation errors during the year 2012, Figure 6 

shows the monthly average values of the daily RMSE, MAE and MBE obtained from the 1 day-ahead 

estimates. At both sites, relatively high average errors occur in April and May, while generally the 

months with lower errors are from October to January. These results are consistent with the 

occurrence of the most relevant ISBC effects in April and May, as shown in Table 5. 

0.00	

0.02	

0.04	

0.06	

0.08	

0.10	

0.12	

0.14	

0.16	

0.18	

0.20	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

av
er
ag
e	
er
ro
r	
[k
W
/m

2 ]
	

month	number	

RMSE	

MAE	

MBE	

 
(a) 

Figure 6. Cont. 

Figure 5. The MAE in kW/m2 in July. (a) Site “Gi”; (b) Site “Ma”.

In order to provide an overall view of the estimation errors during the year 2012, Figure 6
shows the monthly average values of the daily RMSE, MAE and MBE obtained from the 1 day-ahead
estimates. At both sites, relatively high average errors occur in April and May, while generally
the months with lower errors are from October to January. These results are consistent with the
occurrence of the most relevant ISBC effects in April and May, as shown in Table 5.
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imbalance impacts on the need to procure further reserves for supporting the grid operation.

Figure 8 indicates that the positive bias exceeded by 5% of the quarters of hour during the year
is about 0.49 for the site “Gi”, and about 0.44 for the site “Ma”. Figure 9 shows that the negative bias
exceeded by 5% of the quarters of hour during the year is about ´0.24 for the site “Gi”, and about
´0.27 for the site “Ma”. Furthermore, Figure 10 shows the duration curves for the absolute error.
In the zoom of Figure 11 it is shown that the absolute error exceeded by 5% of the quarters of hour
during the year is about 0.43 for the site “Gi” and about 0.38 for the site “Ma”.

The bias and error values obtained are compared with the pyranometer uncertainty indicated in
Section 2.2. The absolute error exceeded in 5% of the cases is indicatively one order of magnitude
higher than the expanded uncertainty (45 W/m2, that is, 0.045 per units) of the pyranometer at
confidence level 99.7%. Thereby, the measurement uncertainty plays a minor role in the interpretation
of the results.
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Figure 9. Zoom of the duration curves of negative bias for the solar irradiance estimated data with
respect to measurements for the year 2012 at the sites “Gi” and “Ma”.
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Figure 11. Zoom of the duration curves of the absolute error for the solar irradiance estimated data
with respect to measurements for the year 2012 at the sites “Gi” and “Ma”.

5. AC Power Estimations Compared with Experimental Results

Figure 12 shows the application of the PV conversion model to the reference-cell irradiance data
for seven consecutive days of July 2012 in the sites “Gi” and “Ma”. For example, low deviations occur
on 23 July (an extremely variable day), meaning that the model is able to follow also huge irradiance
variations. Moreover, thanks to the days with clear sky, since the deviations are proportional to the
solar irradiance, it is possible to detect the failure of a portion of the PV arrays, becoming evident by
the occurrence of large and regular deviations between the measured values and the outputs of the
model, as reported in [20]. Thereby, a salient characteristic of the model is that it can be useful for
fault diagnosis.
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Figure 12. Comparison between PV power measurements and simulations for seven consecutive days
of July 2012. (a) Site “Gi”; (b) Site “Ma”.

The differences appearing in Figure 12 may be also attributed to the fact that average values
have been used in the representation of the sources of losses and efficiencies, with the scope of
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estimating both clear sky and variable conditions without varying the efficiencies in function of the
sky conditions.

For the calculation of the power PAC to be used in Equation (9), the reference-cell irradiance
data gathered on the tilted plane Gtcell , averaged on 15-min basis, are used as inputs of the model
previously described. The results of error calculation for the estimated power profiles are reported
in the following figures. The error duration curves calculated for ∆P are represented with averaging
time step of 15 min and on an annual basis. Figure 13 shows the duration curves of positive and
negative ∆P errors. At both sites, the number of negative errors ∆P´ is higher than the number of
positive errors ∆P`, but the positive errors may be quantitatively higher. This aspect is confirmed by
comparing the results shown in the zoom of Figure 14 (for positive estimation errors) and Figure 15
(for negative estimation errors). The corresponding errors exceeded by 5% of the number of quarters
of hour in one year are of about 120–130 kW for the positive errors at the two sites, and of about
´60 kW and ´100 kW for the negative errors at the sites “Gi” and “Ma”, respectively.
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Figure 13. Duration curve of positive and negative estimation errors of the AC power profiles with
respect to experimental results for the year 2012. (a) Site “Gi”; (b) Site “Ma”.
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6. Conclusions 

This paper has presented the comparison of irradiance and AC power estimates with respect to 
the experimental results gathered from meteorological stations and energy meters in grid-connected 
PV systems. The data used refer to two PV sites located in Southern Italy. The solar irradiance 
forecasts up to 3 days ahead on the horizontal plane, available from a weather forecast provider at 
geographic coordinates close to the PV plants, have been used to obtain estimated data patterns.  
It has been established to what extent the estimated data referring to the 1 day-ahead forecast are 
better than the estimated data determined from the 2 and 3 days-ahead forecasts, by calculating 
some classical average errors. A method to classify each hour of a day by using three categories 
(variable, cloudy, or clear) has been implemented. Examining the results month by month, it has been 
possible to determine the number of successful and unsuccessful classifications provided by the  
1 day-ahead estimated data with respect to the pyranometer measurements. The low number of 
clear-sky days, especially in spring and summer, can be explained by the air turbidity, e.g., due to 
pollution deriving from human activities. Deep cloudy weather cases can be reproduced when the 
WRF forecasts indicate low irradiance values and the polynomial spline connecting these points 
remains well below the clear sky conditions. 
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6. Conclusions

This paper has presented the comparison of irradiance and AC power estimates with respect to
the experimental results gathered from meteorological stations and energy meters in grid-connected
PV systems. The data used refer to two PV sites located in Southern Italy. The solar irradiance
forecasts up to 3 days ahead on the horizontal plane, available from a weather forecast provider at
geographic coordinates close to the PV plants, have been used to obtain estimated data patterns.
It has been established to what extent the estimated data referring to the 1 day-ahead forecast are
better than the estimated data determined from the 2 and 3 days-ahead forecasts, by calculating some
classical average errors. A method to classify each hour of a day by using three categories (variable,
cloudy, or clear) has been implemented. Examining the results month by month, it has been possible
to determine the number of successful and unsuccessful classifications provided by the 1 day-ahead
estimated data with respect to the pyranometer measurements. The low number of clear-sky days,
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especially in spring and summer, can be explained by the air turbidity, e.g., due to pollution deriving
from human activities. Deep cloudy weather cases can be reproduced when the WRF forecasts
indicate low irradiance values and the polynomial spline connecting these points remains well below
the clear sky conditions.

The results obtained for the ISBC effect have shown that this particular effect contributes to
determine variable sky conditions. Assessing the ISBC effect is useful to explain the presence of
power production peaks even higher than the rated power specified at STC of irradiance and cell
temperature. The ISBC effect, even if noticeable on 1-min scale, is smoothed on the 15-min scale and
considering the aggregation of more locations.

For the comparison between estimated and measured data, the statistical indicators RMSE,
MAE and MBE have been calculated. Considering positive and negative MBE, the error duration
curves have been obtained for 15-min averaged irradiance values on an annual basis. Finally,
the combination of irradiance estimation and PV conversion model provides interesting results to
boost the PV penetration into the grid. Considering the error of the AC power calculated from the
PV model with respect to the AC power measured by the meters on the real grid-connected PV
system, the error duration curve allows us determine which positive or negative errors occur for
an established percentage of the data analyzed.

The categorization of the types of sky for each period of the day, associated with the short-term
estimation of the weather conditions, is a specific information that can be used to quantify the
additional reserve necessary to balance the fluctuations of the PV generation in periods in which
high fluctuations are expected, without requiring such reserve to be continuously available [55,56].
The connection of PV power to the grid, like in the case of wind power, requires additional reserve
with respect to the normal reserve required for the balance control of the grid [57]. For this purpose,
the information on the PV forecasting uncertainty can be handled to assist the assessment of the
amount of reserves needed to integrate the uncertain PV generation into the electrical system. For this
purpose, persistence models, Markov chains and neural networks can be applied [56–58]. These
results are also useful to estimate the contribution of PV in the definition of capacity value and
capacity credit of renewable energy sources [59–61].
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