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Abstract: In this paper three metaheuristics are used to solve a smart grid multi-objective energy
management problem with conflictive design: how to maximize profits and minimize carbon
dioxide (CO;) emissions, and the results compared. The metaheuristics implemented are: weighted
particle swarm optimization (W-PSO), multi-objective particle swarm optimization (MOPSO) and
non-dominated sorting genetic algorithm II (NSGA-II). The performance of these methods with the
use of multi-dimensional signaling is also compared with this technique, which has previously been
shown to boost metaheuristics performance for single-objective problems. Hence, multi-dimensional
signaling is adapted and implemented here for the proposed multi-objective problem. In addition,
parallel computing is used to mitigate the methods” computational execution time. To validate the
proposed techniques, a realistic case study for a chosen area of the northern region of Portugal
is considered, namely part of Vila Real distribution grid (233-bus). It is assumed that this grid is
managed by an energy aggregator entity, with reasonable amount of electric vehicles (EVs), several
distributed generation (DG), customers with demand response (DR) contracts and energy storage
systems (ESS). The considered case study characteristics took into account several reported research
works with projections for 2020 and 2050. The findings strongly suggest that the signaling method
clearly improves the results and the Pareto front region quality.

Keywords: electric vehicle (EV); emissions; energy resources management (ERM); multi-objective
optimization; virtual power player (VPP); smart grid

1. Introduction

The increasing concern over global climate changes and air pollution has motivated policy makers
to promote renewable energy sources [1]. Distributed generation (DG) based on renewable sources
presents an opportunity to decrease this pollution impact considerably. The power industry represents
a significant portion of the global carbon dioxide (CO;) emissions corresponding to about 40% [2] and
regulations are currently in place for controlling the level of emissions in this sector [1]. In Portugal
the 2000s level of CO, emissions from electricity generation was 480 kgCO,/MWh [3]. In 2020 and
2050, it is expected that this level will drop to 190 kg CO,/MWh and 20 kgCO, /MWh, respectively [3].
The emissions from power sector decline as more renewable based generation is integrated. This raises
an interesting research issue which is discussed in this work: understanding the impact of considering
CO; emissions in the energy management problem up to 2050 within smart grids operation context.

With the emergence of intelligent infrastructures it will be possible to deploy smart grid
capabilities, such as optimizing energy resources scheduling and reducing the load demand,
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avoiding high peaks at high electricity prices, while enabling a smoothed demand profile and profit
maximization [4]. However, there may exist other challenges beyond maximizing the profit, such as
minimizing CO, emissions due to environmental concerns [5,6]. For that reason it is necessary to find
an optimal solution that considers two or more objectives. Hence, in most real-world circumstances
system operators are faced with a multi-objective problem [7-10].

In the literature, several approaches have been reported concerning intelligent energy resources
management (ERM) [8,9,11-17]. Regarding ERM under different design goals, several multi-objective
models have been investigated so far, to determine the optimal resource scheduling of a microgrid over
a day-ahead period time. In [16], the proposed ERM optimizes an aggregated multi-objective criterion
taking into account both the energy cost and thermal comfort of the occupants. In most multi-objective
ERM models developed in the literature, minimizing the emissions is considered as an additional
objective [8,9,11-15]. The multi-objective model published in [15] does not include the power flow
equations, electric vehicles (EVs), demand response (DR) and energy storage systems (ESS). The model
proposed in [11] considers a simple load balance (active power) and does not consider the presence
of EVs neither any type of DR. EVs and DR resources can bring important benefits to the future
smart grid [14,18]. A Benders’ decomposition approach to solve ERM is presented in [8]. This work
proposes a multi-objective operational scheduling for charging and discharging of EVs in a smart
distribution network in the day-ahead context. The multi-objective optimization considers both costs
and emissions but the work seems limited since it does not formulate or consider demand response,
wind or photovoltaic (PV) generation and ESS, which are vital smart grids features . Moreover,
uncertainties of the day-ahead decisions are not addressed. In [17], a differential search algorithm
(DSA) and quantum particle swarm optimization (QPSO) are used to solve a hard combinatorial
scheduling problem. A comparison between the DSA and QPSO, with their hybrid versions is
presented. However, that work considers only a single objective function to maximize the profits
and not addressing DR, ESS, market bids (sell or buy), and CO; emissions. In [19], the tradeoff
between cost and environment emissions is presented using a regular and a binary particle swarm
optimization (PSO). The computational intelligence-based scheduling seems promising to reduce cost
and emissions, while maximizing the renewable energy sources use. The multi-objective problem is
solved using a weighted sum approach with PSO, instead of a multi-objective evolutionary algorithm
or multi-objective PSO (MOPSO) [20]. Moreover, the network constraints are not considered in the
mentioned approach. In [15], a multi-objective energy management for a micro-grid using both
intelligent techniques and linear programming is presented to minimize the operation costs and
the environment impacts. However, the work proposes a linear formulation without power flow
equations and not considering the possibility of vehicle-to-grid (V2G). A modified PSO methodology
is developed in [21,22] to solve the problem of ERM with high penetration of DG and EVs with V2G,
with the aim to improve the performance of PSO. However, the reported work considers a single
objective function, i.e., the operation cost minimization. In [18], a multi-objective model is presented,
introducing the ERM model reliability concern through a multi-objective formulation. Pareto solutions
provide multiple alternatives for the energy aggregator, namely by picking the most appropriate
solution, taking into account the preference between minimum operation cost and the maximum
available reserve. Weighted PSO (W-PSO) is proposed to solve the multi-objective problem, which
uses a Pareto set scheme.

The problem handled in this paper concerns a profit seeking aggregator entity managing several
distributed energy resources (DER). The aggregator needs to solve the ERM problem, which is a
large-scale non-linear combinatorial DER scheduling problem including V2G resources, DR, sells/buys
market and external suppliers. A multi-objective function is used to maximize the profit corresponding
to the difference between the income and operating costs and a function to minimize the CO, emissions.
Three metaheuristics are compared, namely, the W-PSO, MOPSO and non-dominated sorting genetic
algorithm II (NSGA-II). Hence, the previous signaling method for PSO used in [23] is adapted and used
here to help W-PSO, MOPSO and NSGA-II to escape violations and improve fitness function. That
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way, this paper reviews the signaling method influence in the multi-objective problem. This validation
has not been addressed before in the literature, so it constitutes its major contribution.

The work is validated with a case study concerning a real 233-bus distribution network from a
region of northern Portugal, namely a part of the distribution grid from Vila Real city. Two scenarios
are assessed and evaluated using the multi-objective approaches for years 2020 and 2050, respectively.
In addition to the renewable generation increase from 2020 to 2050, EVs are expected to be increasingly
adopted. The study presented here takes into account these changes, including different DG
technologies EVs characteristics. The electricity grid is slightly updated, namely expanding the
DG units’ capacity to supply approximately 14,000 consumers. The EVs scenarios reach 5080 EVs in
2050, enabled with V2G capability. The results obtained suggest that signaling method effectively
improves Pareto front in the tested metaheuristics and finds profitable solutions with less CO, impact
and without constraint violations. Furthermore, W-PSO seems to present better results, but requiring
more computational times. The robustness test and sensitivity analysis suggest that signaling method
is robust and works well under variations of important parameters.

This paper is organized as follows: after this introductory part, Section 2 presents the
multi-objective ERM mathematical model, Section 3 presents the technical solutions employed in this
paper, Section 4 discusses the case study, and finally Section 5 presents our conclusions.

2. Multi-Objective Energy Resource Management

In this section the mathematical model of the day-ahead energy resource management problem
for virtual power players (VPPs) is presented. VPP is an energy aggregator entity that aggregates
several types of energy sources, namely DG units, and it is responsible for managing them using a
set of sophisticated software tools in order to raise their value and competitiveness. A VPP is defined
in [24] as “a system that relies upon software systems to remotely and automatically dispatch and
optimize generation, demand-side, or storage resources (including EVs and bidirectional inverters) in
a single, secure web-connected system”. VPPs are well-studied and defined in the literature, so the
reader can refer to [25-27] to find more information about these entities.

2.1. Mathematical Model

The envisaged problem is a hard combinatorial mixed-integer non-linear programming (MINLP)
problem due to multi-periodicity, high number of continuous, discrete, and binary variables and
network non-linear equations. The VPP two conflicting objectives are: to maximize profits, as shown
in Equation (1), and to minimize the CO, emissions, as shown in Equation (2):

Minimize Profit = OC — In D)

Minimize Emissions = Em 2)

The VPP can receive its income (In) from four sources, as seen in Equation (3): the consumers
demand revenue, the energy sold to the electricity market or to other entities, the revenue from the
charging process of storage units and from the EVs charging:

Maximize In =
N Ny
P -MP + P - MP +
Lgl Load(L,¢) Load(L ) MZ=1 Sell(M,t) Sell(M,f) @)

Ng Ny
Egl PCharge(E,t) ’ MPCharge(E,t) +V§l PCharge(V,t) ’ MPCharge(V,t)

It

—~

Function operation costs (OC) in Equation (4) represents the operation cost of the resources
managed/contracted by the VPP. It considers the cost with DG, external suppliers, discharge
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of ESS and EVs, DR, penalization with non-supplied demand, and penalization with DG units’
generation curtailment:

Minimize OC =
"/ Npg Ng 1
Igl PDG(I,t) ’ CDG(I,t)+S§1 PSupplier(S,t) : CSupplier(S,t)+
Np NE

r PLoadDR(L,t) * CLoadDR(L,t) + X PDischarge(E,t) ’ CDischurge(E,t)+ 4)
LI\TVl E=1 N,

VZ—:1 PDischarge(V,t) * CDischarge(V,t) + Lgl PNSD(L,t) "CNSD(L,t) +

Il

-~

Npg

El Pocp(1) - €aep(it)

Equation (5) shows the objective function to minimize the CO, emissions:

Minimize Em =

Q[l%)c P E
) X +
T & DG(It) DG(I,t) (5)
t=1 “?SP

SZ] PSupplier(S,t) X ESupplier(S,t)

2.2. Model Constraints

The problem constraints are similar to those given in [17]. The problem is mainly constrained by
the network equations, namely active and reactive powers, voltage and angle limits, DG generation and
supplier limits in each period, ESS capacity, charge and discharge rate limits, EVs capacity, EVs’ trips
requirements, charge and discharge rate limits (see Appendix A).

In the AC power flow model, both voltage magnitude and angle limits are considered.
The maximum and minimum limits for the voltage angle are constrained between [, 7], while
the magnitude can vary £5%. The constraints for high-voltage (HV)/medium-voltage (MV) power
transformers limits considering the power flow direction from HV to MV are taken into account, where
the maximum amount of apparent power supplied from the upstream network cannot be higher than
a predefined limit. This limit can correspond in reality to the capacity of the substation [23]. In the
present ERM model the upstream network supply corresponds to the power bought from the external
suppliers. For the three metaheuristics implemented in this paper, a full AC power flow is used [28]
to check the network conditions. The efficient load flow solution uses the forward and backward
propagation to calculate branch currents and node voltages [28]. With this information, it is possible to
evaluate if the metaheuristics solutions violate the network constraints. The problem’s mathematical
constraints are detailed further in the Appendix A of this paper.

2.3. Uncertainties

Forecasts are very important to the vast majority of electricity players. However, they constitute
imperfect information, due to forecasting errors. Certain input parameters in the proposed optimization
model are not deterministic, e.g., the load forecast, and can change significantly after the optimization
has been made. This is particularly true in day-ahead forecasts, with a larger time horizon. It is easier to
understand that near real-time optimization, decisions are less prone to suffer from uncertainty issues
in the ERM problem, mainly because forecasts” accuracy is much higher and faster decisions have to
be made [29]. There are a few methods that can be deployed to handle uncertainties in these inputs.
Two-stage stochastic programming is a suitable tool to handle scenario-based approaches, where a
set of representative scenarios, which account for the expected variability of uncertain variables, are
supplied to the two-stage optimization model. These models can provide a solution that takes into
account the possible scenarios and their probability of occurrence, while minimizing a given expected
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cost. The drawback of such approach is that it requires one to know the error distribution model
concerning the uncertain parameters, in order to build accurate scenarios. These scenarios must be
well picked up in order to provide an accurate representation. Sometimes these distributions are not
available, because there is a lack of historical data or missing information. Therefore, robust or fuzzy
models can be used as an alternative to stochastic programming [30]. Robust optimization models
are good for the analysis of the worst-case scenario. A solution may be called robust if it remains
feasible and the objective function slightly changes as the inputs vary. These uncertainty parameters
fall between a predefined range and the optimization seeks to find a solution that choses the best worst
case situation, i.e., better payoff.

Uncertainty has received research efforts in single-objective context but few reported studies
address it with a multiple criteria setting [31]. To handle input uncertainties, this paper uses the
same approach as presented in [18], namely fuzzy theory applied to load and EVs demand forecasts.
Furthermore, in the present multi-objective model, there are some types of DERs that can provide
some flexibility and help to mitigate uncertainty coming from renewables when approaching real-time,
namely ESS and DR resources. These DERs can be rescheduled in order to overcome the imbalances in
the actual generation and consumption when approaching real-time. Nevertheless, this paper focus
solely in the day-ahead model. For further details, real-time models have been addressed in [29,32,33].

3. Technical Solutions

Three technical solutions are presented to solve the multi-objective problem previously presented
in Section 2. The methods implemented are: W-PSO, MOPSO and NSGA-II.

3.1. Weighted Particle Swarm Optimization

The particle swarm paradigm has been attracting the interest of researchers around the globe
since its introduction in 1995 [9]. The initial ideas on particle swarms of Kennedy and Eberhart were
essentially targeting analogues of social interaction, rather than purely individual cognitive abilities.

The particle swarm is a population-based stochastic algorithm for optimization which is based on
social-psychological principles like flocks of birds or schools of fish. In PSO a number of particles are
placed in the search space and each particle evaluates the objective function at its current location. Each
particle keeps track of the coordinates associated with best solution found so far, this value is named
of “personal best” (pbest). The particle also has access to information on the best solution found so far
by others, this value is called “global best” (gbest). The basic idea of PSO is to accelerate every particle
in the direction for the local of pbest and gbest. The value of acceleration varies randomly during the
search procedure. While searching each particle uses the information from its best position in the past
and the current best position among its neighbors. The movement is determined from the combination
linear vectors with different weights. Each particle tries to change its position in accordance with the
following information: current position, current speed, distance between the current position and
personal best, distance between the current position and global best.

The present W-PSO implementation uses mutation of the strategic weights parameters [8]. At the
beginning of the process, the values of the strategic parameters are randomly generated between
0 and 1. After that, the particle’s weights are changed in each iteration using a Gaussian mutation
distribution according to [8]. The velocity limits, the new particle’s velocity and the new positions for
each particles they are also calculated according to the well-recognized movement equation [8].

The weighted sum method [18,34] is used in this context, to tackle the envisaged optimization
problem. In this case, several runs with different weights for each objective function are evaluated
before determining the Pareto front. The number of runs should take into account the tradeoff between
the quality of the Pareto front and the necessary computational time. A parallel computing platform
can mitigate this issue [18], used in this study to reduce the W-PSO computational burden.
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The fitness function in Equation (6) in W-PSO considers the total profit/loss, which is achieved by
subtracting the OC in Equation (4) to the income (In) in Equation (3), and the total emissions of CO,
(Em), as follows:

. OC —In s .
fitness = €= X pwy — 22 x pwy | + penalties (6)
S1 Em
where:
pw1 is the weight concerning the maximization of total profit
pwo is the weight concerning the minimization of total emissions
penalties  is the sum of penalties associated with solution’s violations
51 is the normalization factor of profit
Sy is the normalization factor of emissions

The Pareto weights pw; and pw, are applied to the profit and the CO, emissions, respectively.
When pw; tends to 1 (pwp — 0), the optimization will give more importance to maximize the profit.
In the opposite case, when pw; tends to 0 (pw, — 1), the optimization will give more importance to
minimize the total emissions of CO,. Parameters s; and s, are normalization factors that must be
adjusted for the optimization problem. The term penalties correspond to the violations detected in
the evaluation phase. The penalties configured in W-PSO are the following: 100 for voltage limits
violations, 1000 for line limits violations and 1000 for the solutions with insufficient generation. A full
AC power flow is used [28] to check the network conditions.

3.2. Multi-Objective Particle Swarm Optimization

MOPSOQ is an advanced optimization algorithm to solve multi-objective problems [20] used in this
work to handle the proposed energy management problem. MOPSO adopts an external repository and
uses a mutation operator aiming to explore the remote region of the search space and the full range of
each decision variable. A mutation of the strategic parameters as seen in the evolutionary PSO [35]
has been adapted to MOPSO in this work, instead of the usual fixed parameters as in the original
MOPSO [20]. This modification improved the cover rate and the overall front of the non-dominated
solutions (NDS) as higher exploratory properties were introduced in the search procedure. Two types
of mutation have been implemented in this work, which happen during the search loop, namely
mutation of the parameters of the velocity equation and mutation in the position of some particles
(randomly selected). The algorithm stops after the defined number of iterations is reached. This setup
is widely used in other multi-objective metaheuristic-based algorithms [20,23,36,37].

The fitness function in Equation (7) in MOPSO considers the total profit and the emissions of CO,:

fitness = [(OC — In) + penalties; Em + penalties] (7)

In fact, the fitness in this case is a vector of values resulting from the several objective functions of
the multi-objective problem (in this case two objectives), plus the penalties term, which corresponds to
the sum of the penalty factors of the violations found a given individual during the evaluation stage.
The penalties configured in MOPSO are the same as in W-PSO.

3.3. Non-Dominated Sorting Genetic Algorithm 11

The NSGA-II proposed by Deb et al. in 2002 [38] has been applied to various problems and is
considered one of the champions in multi-objective optimization [39]. NSGA-II has addressed some
problems of the earlier proposal, NSGA, namely by reducing the high computational complexity
of non-dominated sorting, from O(mN?3) to O(mN?), introducing elitism and less parameters.
The crossover and mutation operators remain as usual implemented in genetic algorithms, but selection
operator works differently [40]. Selection is done with help of crowed-comparison operator, based on
ranking, and crowding distance. Initially a random parent population is created. The population space
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is sorted based on the non-domination. Then each solution is assigned a fitness rank based on the
non-domination level. The new generation is created using the tournament selection, crossover, and
mutation. Elitism is introduced by comparing current population with the previously found best NDS.
In the next step, parent and children are merged to form a new set of individuals and next generation
is selected among this collection [34]. Like MOPSO, NSGA-II has the ability to find Pareto-optimal
solutions in one single run. MOPSO and NSGA-II are selected as references techniques in this paper
for multi-objective approaches due to their high relevance in the literature, namely in power systems
problems. The fitness function in Equation (7), used in MOPSO is also implemented in NSGA-IL

3.4. Multi-Dimensional Signaling Method

In [23], a multi-dimensional signaling method is presented to improve metaheuristics performance
to solve the energy scheduling problem. The method relies on a scheme to exchange signals between
the metaheuristic core process, i.e., movement and evaluation stage. The signaling is important in
both moments, namely identifying critical variables in the evaluation stage that should be treated
differently in the movement stage. In the evaluation stage, the identification of violations also occurs.
The following principles should be taken into account when deciding which variables should be
signaled: if changed in a certain direction, variables that cannot be changed by direct repair method,
variables that can improve fitness function.

In this case, the method is adapted to the multi-objective problem presented in this paper to help
W-PSO, MOPSO, and NSGA-II escape violations and improve fitness function.

3.4.1. Signaling Matrix Definition

The multi-dimensional method uses a signaling matrix as a way to communicate between the
evaluation and movement stage. The method is important in both moments, namely identifying
critical variables in the evaluation stage that should be treated differently in the movement stage. In the
evaluation stage, the signaling matrix changes if some conditions match the rules in the knowledge
base. Later, in the movement stage, the signaling matrix is read and the signaled decision variables are
mutated or changed. After the movement stage in each iteration the signaling matrix is reinitialized
with zeros.

The multi-dimensional signaling matrix can be defined as SP*" € ZP*" with p elements
(e.g., number of particles in PSO) and 7 is the number of decision variables. The signal function
presented in Equation (8), namely sigFun,(S) and sigFun;(S) changes the matrix S values in each
iteration at the evaluation stage if a violation of a given constraint z is found, i.e., g(c,(x¢))>0, or if a
custom condition 7 (9;) is true:

sigFun,(S), ifg(c;(x°)) >0,z€Lecyp
S =< sigFun;(S), if9; = true,i e N,i £z (8)
0, otherwise

where z corresponds to the constraints that are suitable for signaling, x to the n decision variables and
9; to the i condition.

Variables which should be signaled during evaluation stage and their respective conditions,
which identify the signaling, should be defined by the system implementer. The algorithm should be
designed to evaluate the conditions and identify which variables should be signaled across iterations
to improve solution fitness and/or constraint handling in the best way. The next section shows how
signaling conditions have been implemented for the problem investigated in this paper.

3.4.2. Implementation and Knowledge Base

Signaling can be implemented for reducing constraints violations or improve fitness function.
The most problematic constraints are related with network voltage, angles, and line thermal capacity.
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The appropriate variables are signaled to reduce or increase reactive/active power according to the
type of violation in the respective zones, where a problem is found. Table 1 presents the signaling codes
and rules to improve fitness function, i.e., improve profit, or reduce CO; emissions. This signaling
codes are applied by sigFun;(S). In W-PSO the signaling may switch, in evaluation stage, between rules
to improve profit (light grey) or reduce emissions (dark grey) according to the weights of the objective
function (see Section 3.1, which refers to W-PSO weights scheme). In MOPSO and NSGA-II, the
switching occurs according to a uniform random probability of 50%. Yet, Prgq is the global probability
of signalling to be later applied in the movement phase, which is 80% in this case. Then an individual
probability for each rule can be configured if desired, which influences the final probability of the
signalling to really occur. It is important to remark that only 50% of the population individuals are
selected to be signalled. The MC represents the marginal cost of the system in period ¢.

Table 1. Signaling codes to improve fitness. EVs: electric vehicles; ESS: energy storage system; DR:
demand response; and DG: distributed generation.

Variables Rule/Condition Signal Code  Probability of Signal Benefit
MC(t) > CDischarge(V,t) -1 Pr
sig
EVs MCy < MPcjarge(vsy 1
(Random) 2 Prjg/2
MC > Cp; -1
(t) = “Discharge(E,t) Prsjg/2
ESS MCyy < MPcparge(E 1) 1
(Random) 2 P”sig /2 Profit improve
MCy 2 (CroadDr(Lt) + MPLoadDR(L 1)) 1 Prsig
DR
MCy < (Croudpr(Lf) + MProadDR(L 1)) 2 Prgie
MCy > MPseim g 2 Prsig
Market sell
MC ) < MPseamp) 1 Prsig
EVs - 2 P Tsig
ESS - 2 Prsig
DR ) 1 Prsig CO; reduction
DG * - 2 Prsig
Market sell - 2 Prgie

* DG and external suppliers’ variables.

The rules, which may improve fitness condition, namely profit maximization are: signal EVs
and/or ESS to discharge if the system marginal cost is higher than the contracted price with code —1,
signal EVs and/or ESS to charge if the system marginal cost is lower than the contracted price (code
1), signal DR to use if the system marginal cost is higher than the DR contracted price plus the load
income (code 1), signal DR with code 0 if the system marginal cost is lower than the contracted price
plus the load income, signal market energy offer to increase if the system marginal cost is lower than
the market price (code 1), signal market energy offers with code 0 if the system marginal cost is higher
than the market price.

The rules which may help to find solutions with lower CO, emissions are: signal V2G/ESS
resources with code 0 and a signaling probability of 50%. This will set the variables to 0 in the
following iteration; signal DR use to increase by using code 1 and a signaling probability of 50%;
signal suppliers and DG units that generate CO, emissions with a probability of 50% and with code 0;
signal market energy offers with code 0 and a probability of 50%, to avoid more energy demand and
consequently more CO, emissions.
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4. Case Study

The proposed methodology was tested using a case study implemented on a MV 30 kV
distribution network with 233 buses. This is part of a real network from Vila Real in Portugal.
A reconfiguration was performed to the original mostly meshed network using the software developed
in [41] to obtain the radial configuration presented in Figure 1. This single-line diagram does not
represent the actual geographical design.
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Figure 1. Vila Real 233-bus kV medium-voltage (MV) network.

The work was developed in MATLAB R2014a 64 bits (MathWorks, Natick, MA, USA) using
a computer equipped with one Intel Xeon E5-1650 processor (Intel Corporation, Santa Clara, CA,
USA) and 10 GB of RAM running Windows 8.1. The parallel platform is implemented in MATLAB
distributed computing, i.e., a total of six computers with 42 cores. The single-core tests are done on the
mentioned workstation.

4.1. Scenario Description

The regular demand (without EVs) was forecasted for 2020 and 2050, taking into account the
published results [3,42,43]. According to [3], the consumption will rise by 4% and 29% for 2020 and
2050, respectively, in comparison with 2010. Hence, an updated consumption curve for 2020 and 2050
were obtained from the base consumption data available for this grid. Taken into account the actual
population (21,000) in Vila Real city, the total number of regular vehicles was estimated using the
expected growth/decay rate and the vehicle rate per person. According to the penetration rate of
EVs provided by [43], the total number of EVs was set to 1540 for 2020 and 5080 for 2050. The EVs’
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scenarios were created using EVeSSi tool (GECAD, Porto, Portugal) [44]. The charging and discharging
efficiency considered was 80% for 2020 and 90% for 2050. According to [3], the forecasted penetration
of renewable generation in Portugal will amount to 49% and 77% in 2020 and 2050, respectively.
Photovoltaic capacity installation is expected to be larger than wind installation in the future [3].
Moreover, it was considered that the capacity of the combined heat and power (CHP) increased by
two-fold in 2050.

Table 2 shows the data for the developed scenario, taken into account the mentioned forecasts.
The considered prices took into account the levelized generation costs presented in [42]. In reality
the prices correspond to the cost that the VPP has to pay to buy energy from the respective DER’
owner, except from the charge of ESS and EVs, where the owners pay to the VPP instead, therefore
contributing to the income in Equation (1) (see Section 2.1). The loads also pay to the VPP and the
price varies as can be seen in Table 2 depending on the contract (consumer type).

Table 2. Energy resource data. CHP: combined heat and power; and PV: photovoltaic.

Availability (MW) Prices (m.u./kWh) Numbers of
Energy Resources Minimum-Maximum Minimum-Maximum Units
2020 2050 2020 2050 2020 2050
Biomass 0-0.20 0-0.50 0.15 0.15 1 1
CHP 0-1.80 0-4.00 0.10 0.10 3 3
Small hydro 0-1.83 0-2.52 0.13 0.13 1 1
PV 0-1.04 0-3.75 0.20 0.20 81 81
Wind 0.20-1.15 0.38-2.22 0.12 0.12 48 48
External supplier 0-10.00 0-15.00 0.11 0.11 1 1
Charge 0-0.25 0-2.00 0.12 0.12
Storage 4 8
Discharge 0-0.25 0-2.00 0.18 0.18
Ch 0-8.33 0-31.29 0.14 0.14
EV arge 1540 5080
Discharge 0-7.31 0-29.21 0.19 0.19
DR Red 0-1.06 0-1.31 0.07 0.07 89 89
Load 6.59-14.76  8.20-18.34 0.09-0.15 0.09-0.15 162 162
Market 0-4.00 0-4.00 0.08-0.10 0.08-0.10 1 1

It is assumed that the VPP is responsible to manage the distribution network and all the energy
resources aiming to maximize profit and minimize CO,. It is expected that solutions with higher
profits are also those with higher CO, emissions. The 14,000 network consumers are aggregated by
bus totaling 162 aggregated bus-loads. In addition, 89 of the 162 aggregated loads offer DR possibility.
The DG units are also aggregated by bus and by type as can be seen in Table 2. The external supplier
located in the substation represents the energy imported from the main grid and is modeled with a
10 MW contract for 2020 and 15 MW for 2050. The EVs are considered individually, increasing 3.3 times
in 2050 when compared with 2020. The maximum energy that VPP can export is depicted in the table
as the “market” resource, i.e., a maximum of 4 MW.

Table 3 presents the energy supplier (main grid) and the CHP CO, emission rate taken into
account the values presented in [3,45]. A considerable reduction of CHP emission rate in the 2050
scenario from 2020 is considered.

Table 3. Carbon dioxide (CO,) parameters of the scenarios.

Scenario Supplier CO, Emissions (kgCO,/MWh) CHP CO; Emissions (kgCO,/MWh)

2020 190 444-963
2050 20 230




Energies 2016, 9, 807 11 of 23

Table 4 presents the parameters founded by empirical testing. W-PSO is run independently using
the weighted sum approach (see Section 3), namely with a set of 100 weights randomly generated for
the two objectives, profit and emissions. In the end, a Pareto front algorithm determines the Pareto
front in W-PSO, while NSGA-II and MOPSO obtain the Pareto front in a single run. In fact, the results
shown in the following sections for scenarios 2020 (Section 4.2) and 2050 (Section 4.3) have been
obtained using a random trial. Previously, a robustness test was performed to understand the results
variability for the implemented algorithms. In Section 4.4 this test is described, which verified that the
variation of the solutions between trials was quite small. Any random trial should fall within those
depicted ranges with a high probability.

Table 4. Metaheuristics-based approaches parameters. W-PSO: weighted particle swarm optimization;
MOPSO: multi-objective particle swarm optimization; and NSGA-II: non-dominated sorting genetic

algorithm II.
Parameters W-PSO MOPSO NSGA-II
#Individuals 10 50 50
Initial solution Random between variable bounds
Repository size - 100 -
Number of divisions - 30 -
Inertia weight 0.73 -
Acceleration coefficient Gaussian mutation 1.50 -
Cooperation coefficient weights between 0 and 1 1.50 -
Perturbation coefficient 0.97 -
Mutation learning parameter 0.20 -
Mutation rate - 0.50 0.10
Crossover rate - - 0.70
Crossover range - - 0.30

Maximum velocities Velocity clamping factor equation }

Minimum velocities -

Velocity clamping factor 1 1 -
S . . Minimum iterations 500 - -
topping criteria
Maximum iterations 2000
Maximum positions Equal to the upper bounds of the variables
Minimum positions Equal to the lower bounds of the variables

4.2. Results—Scenario Portugal 2020

This section presents the results that have been studied for the scenario 2020. Figure 2 presents
the Pareto front achieved in MOPSO, W-PSO and NSGA-II metaheuristics with and without signaling,
respectively. The marker represents each obtained NDS. NDS-L (left) and NDS-R (right), represents
the NDS with lower emissions and higher profit, respectively. There are some Pareto front regions
with more markers representing higher density of NDS. Important to refer that without the use of
the signaling method, the only metaheuristic that found solutions without violations was the W-PSO
(8 NDS). In contrast, all the NDS found by MOPSO and NSGA-II, had violations, which was caused by
the voltage and line limit violations and by insufficient generation. The range of the Pareto front results
were greatly reduced when compared with the results obtained using the signaling method. Hence,
it is possible to conclude that the signaling method use contributed to a better performance of the three
metaheuristics addressed in this paper. In the results with the signaling method, the MOPSO profit
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ranged between 6771 m.u. and 10,058 m.u.; while in the W-PSO, the profit ranged between 6355 m.u.
and 10,563 m.u. whereas in the NSGA-II, the profit ranged between 7506 m.u. and 10,006 m.u. In terms
of CO; emissions, the range varies between 64.11 tCO, and 67.79 tCO, (tCO, is equivalent to 1000 kg
CO, where t stands for tonne) in MOPSO; 63.67 tCO, and 71.26 tCO, in W-PSO; and 65.02 tCO, and
67.46 tCO, in NSGA-IL

72.0
70.9 <«— NDS-R
69.8 /

-~

N

» 68.7 W_PSQ

g 76 no sign;l[i%v/\ / ks

@ 07.

@ _

NDS-R no signaling
with penalties

62.1
6,300 6,800 7.300 7.800 8,300 8.800 9,300 9.800 10,300 10,800 11,300
Profit (m.u.)
—+—W-PSO —<MOPSO ——NSGA-II —+=W-PSO (no signaling) ——MOPSO (no signaling) —+—NSGA-II (no signaling)

Figure 2. Pareto front for weighted particle swarm optimization (W-PSO), multi-objective particle
swarm optimization (MOPSO), and NSGA-II: scenario 2020.

Figures 3 and 4 present the total generation and consumption for two solutions of the Pareto
front, namely NDS-L and NDS-R for MOPSO, W-PSO, and NSGA-II method, with the utilization of
signaling method. It can be seen that NDS-L uses DR. This enables a significant reduction in the use of
power production sources that emit CO,, but will lead to a lower profit due to the need to remunerate
customers against the implementation of these measures.

300

e

Tk

w
(=

(=]

Total active power (MWh)

W-PSO MOPSO NSGA-II

~ Distributed Generation N External Suppliers Storage Discharge # Vehicle Discharge Il Demand Response
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Figure 3. Total generation and consumption: NDS-L (lower emissions): scenario 2020.
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Figure 4. Total generation and consumption: NDS-R (higher profit): scenario 2020.

Table 5 presents the obtained results for each method. The difference between NDS-L and NDS-R
were analyzed. The highest profit was obtained in W-PSO (NDS-R solution), i.e., 10,564 m.u. The lowest
CO; emissions was obtained in W-PSO, with 63.67 tCO,. The highest difference between NDS-R
and NDS-L in CO, emissions was achieved with W-PSQO, i.e., 7.59 tCO,, while the lowest difference
was achieved in NSGA-II with 2.44 tCO,. In MOPSO the difference was 3.68 tCO,. Regarding profit,
the highest difference was reported by W-PSO, with 4209 m.u., while NSGA-II presented the lowest
difference of the tested methods, with 2500 m.u. Similarly to the previous scenario, this results
indicated that W-PSO method performed better with a higher diversity and better convergence than
NSGA-II and MOPSO when signaling method was used. Nevertheless, execution time in W-PSO
was much higher than in those methods (65,100 s). However, in parallel mode the execution time
was greatly improved (16 x) to about 3973 s. In MOPSO this improvement is far less (3 ) from 7020
s to 2021 s. In NSGA-II the execution time is 6096 s in single-core, while the parallel mode did not
improved the performance.

Table 5. Scenario 2020 results: total profits and CO, emissions. NDS: non-dominated solution.

Method
5 W-PSO MOPSO NSGA-II
Indicator NDS
R 10,563.49 10,057.91 10,005.88
Profit (m.u.)
L 6354.92 6770.93 7506.04
R 71.26 67.79 67.46
Emissions (tCO5)
L 63.67 64.11 65.02
Execution time single core (s) 65,100 7020 6096
Execution time (s) 3973 2021 -

4.3. Results—Scenario Portugal 2050

This section presents the obtained results regarding the scenario 2050. Figure 5 presents
the Pareto front achieved in MOPSO, W-PSO, and NSGA-II metaheuristics with and without
signaling, respectively.
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Figure 5. Pareto front for W-PSO, MOPSO, and NSGA-II: scenario 2050.

The marker represents each obtained NDS. NDS-L and NDS-R, represent the NDS with lower
emissions and higher profit, respectively. There are some regions of the Pareto front with more markers,
representing higher density of NDS. Important to refer that without the use of the signaling method,
all the NDS found by the three metaheuristics had violations, caused by voltage limit and line capacity
violations and also by insufficient generation. Moreover, the range of the Pareto front was greatly
reduced when compared with the results using signaling method. In the results with the signaling
method, the MOPSO profit ranged between 8868 m.u. and 13,235 m.u., while in the W-PSO, the profit
ranged between 8334 m.u. and 15,320 m.u. whereas in the NSGA-II, the profit ranged between 11,147
m.u. and 13,030 m.u. In terms of CO, emissions, the range varies between 25.75 tCO, and 26.76 tCO,
in MOPSO; 25.68 tCO, and 28.05 tCO, in W-PSO; and 26.01 tCO, and 26.62 tCO; in NSGA-IL

Figures 6 and 7 present the total generation and consumption for two solutions of the Pareto front,
NDS-L and NDS-R, and each of compared methods MOPSO, W-PSO, and NSGA-II with signaling.
It can be seen that NDS-L schedules DR whereas NDS-R do not in each method (higher in W-PSO).
This use will mean a significant reduction in the generation sources that emit CO,, but will lead to a
lower profit due to the need to remunerate customers that use DR measures [46].
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Figure 6. Total generation and consumption: NDS-L (lower emissions): scenario 2050.
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Figure 7. Total generation and consumption: NDS-R (higher profit): scenario 2050.

Table 6 presents the results for each method. The difference between NDS-L and NDS-R can be
seen. The highest profit was obtained in W-PSO (NDS-R). The lowest emissions were achieved with
W-PSO, i.e., 25.68 tCO,. The highest difference between NDS-R and NDS-L in CO; emissions was
achieved with W-PSQ, i.e., 2.37 tCO,, while the least difference was achieved in NSGA-II, i.e., 0.61 tCO,.
In MOPSO the difference was 1.01 tCO,. Regarding profit, the highest difference was reported
by W-PSO, with 6985 m.u., while NSGA-II presented the least difference of the tested methods,
with 1883 m.u. Similarly to the previous scenario, this results indicated that W-PSO method performed
better with a higher diversity and better convergence than NSGA-II and MOPSO when signaling
method was used. Nevertheless, execution time in W-PSO was much higher than those methods.

Table 6. Scenario 2050 results: total profits and emissions.

Method
- W-PSO MOPSO NSGA-II
Indicator NDS
Profit (m.u) R 15,319.73 13,235.01 13,029.95
oht {m.u. L 8334.39 8868.35 11,147.06
. R 28.05 26.76 26.62
Emissions (tCO) L 25.68 25.75 26.01

4.4. Robustness Test

To confirm the validity of the metaheuristics developed in this paper a robustness testing was
computed. This test is necessary because for each run a slightly different Pareto front and solutions
can be obtained with these metaheuristics, due to their stochastic nature. For this test each algorithm
was run for 100 trials (100 Pareto fronts) in order to confirm that the variability of the obtained results
are similar, i.e., robust. Figure 8 presents the Pareto fronts, in two different perspectives: 3D and 2D,
obtained in the W-PSO method with the use of signaling method for the 2020 scenario. The W-PSO
was chosen here, since this was the method that yielded better solutions comparatively to the other
methods, namely NSGA-II and MOPSO (see previous sections). The average standard deviation of the
Pareto fronts are 37.25 m.u. (0.38%) and 0.039 m.u. (0.05%) for the profit and emissions, respectively.
Despite the low variation, it can be seen that the front deviation tends to be higher (variability) for
profitable solutions (Figure 8b).
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Figure 8. Variability of the Pareto front obtained in W-PSO method for the 2020 scenario (100 trials).
(a) 3D perspective (all runs); and (b) Pareto front 2D perspective.

4.5. Parameter Sensitivy Analysis

A sensitivity analysis experiment has been conducted to understand if W-PSO with signaling was
robust enough to variation of essential parameters. The following parameters have been analyzed:
number of particles, maximum number of iterations and the number of weight sets. Regarding the
number of particles, the experiment has been made with 5, 10 and 20 particles. In what concerns the
maximum number of iterations, it has been tested with 200, 500 and 2000 iterations. Finally, the weight
sets with 10, 100 (default) and 200 weights. In each test, the remaining parameters of W-PSO have been
left unchanged (Table 4). Figure 9 presents the tests made for each parameter as described.

The green line corresponds to the default parameters as tested in the case study (see Table 4).
The results suggest that increasing the number of particles and the number of iterations, can improve
the Pareto front quality. However, this improvement cannot be deemed significant, except from the
number of weight sets. This result suggest that signaling method contributes to W-PSO robustness if
the number of weight sets is adequate. The execution times (parallel mode) for each tested case can be
seen in the figure. Increasing any of the tested parameters can result in more computational burden.
Reducing the number of iterations or the number of weight sets can reduce computational burden,
but decrease the Pareto front quality. This degradation is more noticeable when changing the weight
sets parameter, e.g., the case with 10 weight sets, the W-PSO obtained 9 NDS with a reduced range
of choice regarding profit/CO,. A trade-off between the Pareto front quality and the experimented
parameters is recommend. Therefore, the recommended settings for W-PSO with signaling, based on
this experiment are:

- 10 or less particles (a higher number will exponentiallly increase execution times due to the
Pareto front selection procedure);

- Between 500 and 2000 iterations (the execution time increases with a higher number of iterations,
but it is more reasonable than increasing the number of particles and also more effective,
particularly in parallel mode);

- At least 100 weight sets (more weight sets will mean more NDS but much higher
computation times).
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Figure 9. Sensitivity analysis: (a) number of particles; (b) number of iterations; and (c) number of
weight sets.

5. Conclusions

This paper presented a study regarding ERM in smart grid with multi-objective goals, namely
the VPP profit and CO, emissions. The metaheuristics implemented to tackle the ERM large-scale
optimization are the weighted particle swarm optimization (W-PSO), multi-objective particle swarm
optimization (MOPSO), and NSGA-II. A comparison between these methods was made using the
signaling method adapted to the multi-objective problem. To validate the proposal, two realistic
scenarios were developed using as basis a real distribution grid from Vila Real in Portugal. Several
heterogeneous DERs managed by a VPP were considered in the grid. The considered characteristics of
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the cases studied took into account several research work and forecasts available in the literature for
2020 and 2050.

The findings achieved in this paper allowed to understand that the signaling method greatly
improved the diversity and convergence of the Pareto front in the metaheuristics-based approaches.
In addition, constraints violations were easily avoided with signaling when compared with the
standard approaches counterpart, which presented a high number of infeasibilities in both scenarios.
This enable to conclude that, the use signaling leverages the better performance of the addressed
methods in the ERM as it was demonstrated previously in single-objective problem [23]. In this
case, the metaheuristic that featured better results was W-PSO, however, the execution time was
higher, when compared with the NSGA-II and MOPSO, mainly in single-core. Therefore, a tradeoff
between Pareto front quality and execution time seems to be important as well as considering parallel
implementation, which demonstrated to be relevant in this work.

It was verified that CO, emissions between 2020 and 2050 may drastically reduce if renewable
share increases according to available projections. EVs will certainly contribute to increase the average
load consumption, despite other loads consumption decrease with energy efficiency improvements.
This study also reveals that pursuing CO, goals reduction within next decades may lose its significance
for electricity entities and other similar players. Indeed, the results showed that the profits are
substantially affected in exchange for little emission in 2050.

Nomenclature
Indices
I Index of DG units
t Index of time periods
L Index of loads
S Index of external suppliers
%4 Index of EVs
E Index of ESSs
M Index of energy buyers
Sets
b Set of DG units with CO; emissions
Sp Set of suppliers with CO, emissions
Parameters
Npg Total number of distributed generators
Ny, Total number of loads
Ngr Total number of storage units
Ns Total number of external suppliers
Ny Total number of EVs
Ng Total number of ESSs
Num Total number of energy buyers

CDischarge(V,t)
CD[scharge (E,H)
CDG(Lt)
CGCP(Lt)
CNSD(L,t)

Discharging cost of EV V in period t (m.u.)

Discharging cost of ESS E in period ¢ (m.u.)

Generation price of DG unit I in period ¢ (m.u.)

Generation curtailment power price of DG unit I in period ¢ (m.u.)
Non-supplied demand price of load L in period  (m.u.)
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CSupplier(S,1) Energy price of external supplier S in period f (m.u.)
CLoadDR(L ) Demand response cost of load L in period f (m.u.)
Epct CO; emissions of DG unit [ in period t (kgCO,/MWh)
Esp(spy CO; emissions of the external supplier S in period ¢ (kgCO,/MWh)
MPcparge(, 1) Price for the charge process of ESS E in period t (m.u./MWh)
MPcparge(v,p) Price for the charge process of vehicle V in period t (m.u./MWh)
MProsap Price of load L in period t (m.u./MWh)
MPseiam,p) Forecast price of the market M in period t (m.u./MWh)
Variables
Ppcy Active power generation of I unit in period ¢t (MW)
Psypplier (s, Active power generation of the external supplier S in period t (MW)
PLoadDR(1,t) Demand response program active power activated for load L in period ¢t (MW)
Pcharge(E,p Power charge of ESS unit E in period t (MW)
Pcharge(vp) Power charge of EV V in period t (MW)
Ppischarge(E,t) Power discharge of ESS unit E in period ¢ (MW)
Ppischarge(v;t) Power discharge of EV V in period t (MW)
Pnspp Non-supplied demand for load L in period ¢t (MW)
Pacp Generation curtailment power in DG unit I in period t (MW)
Proadp Active power demand of load L in period ¢t (MW)
Em Total emissions CO, (kg)
In Total income (m.u.)
ocC Total operation cost (m.u.)
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Appendix A

A binary variable, Xpg( ), is necessary to schedule the DG units that have dispatchable nature
(set Q‘,’SG). A value of 1 means that the DG unit is operating at period t. The maximum and minimum
limits for active (PpgmuaxLimit,+)) (KW) and reactive (Qpgmaxtimit(1t)) power of each DG unit I in each
period t can be formulated as in Equations (A1) and (A2):
(A1)

d
Xpo(1t) - PoeminLimitit) < Poo(iy) < Xpc(r) - PpoMaxLimit(ryy — VE VI € Opg

Xpa(1t) - Qoomintimit(n < Qo < Xpo(iy - QoeMaxtimi(yy  VHEYI € Qhg  (A2)

Non-dispatchable DG is formulated in Equation (A3). The Ppgrorecast(1,+) i an input parameter
representing the forecast of non dispatchable DG I in period ¢ (kW). Non-dispatchable DG units are
represent by the set Q’f)dG:

PDG(I,t) = PDGForecast(I,t) MIAZNS Q%dG (A3)
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The upstream supplier maximum limit in each period t regarding active power in Equation (A4)
and reactive power in Equation (Ab) is formulated bellow. The maximum and minimum limits
for active and reactive power of each supplier S are inputs represented by Pspaxrimi(r+) (KW) and

QsMaxLimit(t) (kvar):
Xsupplier(s,t) - PsminLimit(s,t) < Psupptier(s,t) < Xsupptier(s,t) - PsmaxLimit(s,ry ~ VEYS — (A4)

Xsupptier(s,t) - QsminLimit(s,) < Qsupplier(s,t) < Xsupplier(s,t) - QsMaxLimit(sy ~ VE VS (A5)

The constraints for the ESS (batteries) are described below. The ESS charge and discharge cannot
be simultaneous as represented by Equation (A6). Therefore, two binary variables, namely XggsE s for
discharging and Yggg(g 1) for charging guarantee this condition for each ESS in each period t:

Xess(ep) + Yesse) <1 VL VE (A6)

The maximum battery balance for each ESS can be formulated in Equation (A7). The variable
Estored(E ) Tepresents the energy stored in ESS E in period ¢ (kWh). The At parameter converts power
to energy, i.e., fort =1h, At =1, t = 30 min, At = 0.5. The parameters n.g) and ng) corresponds to
charging and discharging efficiency of ESS E (%), respectively:

EStored(E,t) = EStored(E,tfl) +

Ne(E) - PCharge(E,t) At — ﬁ(E) ) PDischarge(E,t) - At Vt,VE

(A7)

The maximum discharge limit for each ESS can be represented by Equation (AS8), where
PpischargeLimit(E,+) 18 an input regarding the maximum discharge rate of ESS E in period ¢ (kW).
Similarly, Equation (A9) represents the maximum charge limit for each ESS E in each period t, where
PchargeLimit(E,+) 18 an input parameter (kW):

PDischarge(E,t) < PDischargeLimit(E,t) ’ XESS(E,t) Vi, VE (A8)

PCharge(E,t) < PChurgeLimit(E,t) ’ YESS(E,t) vt,VE (A9)

The maximum energy stored in each ESS E for each period ¢ can be represented by Equation (A10),
variable Esored(E +), and Epaicap(e) i an input parameter representing the maximum battery capacity of
ESS E (kWh):

EStored(E,t) < EButCap(E) vt,VE (A10)

The minimum stored energy to be guaranteed at the end of period t can be represented by
Equation (A11), where Epfincharge(E,+) 1S the minimum energy stored required in ESS E in period t (kWh):

EStored(E,t) 2 EMinCharge(E,t) vt, VE (A11)

The constraints for the EVs are described below. The charge and discharge of each EV is
not simultaneous. Two binary variables are needed for each vehicle that can be represented by
Equation (A12). Therefore, two binary variables, namely Xgy(y;) for discharging and Ygy v for
charging guarantee this condition for each EV in each period t:

Xevevy tYevivy <1 VLYV (A12)

The battery balance for each EV (Esyredvr)), Equation (A13), and the energy consumption for
period ¢ travel (Egyv4)) has to be considered jointly with the energy remaining from the previous
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period (t — 1) and the charge/discharge occurred in period t. Parameters n¢) and n gy corresponds
to charging and discharging efficiency of EV V (%), respectively:

EStored(V,t) = EStored(V,tfl) - ETrip(V,t)+

Me(v) PCharge(V,t) At — #(V) ’ PDischurge(V,t) - At vt, vV

(A13)

When connected to the grid the vehicle cannot discharge to the grid more than the admissible
rate (PpischargeLimit(vt)) (KW). The discharge limit for each EV considering battery discharge rate can be
formulated as in Equation (A14):

PDischurge(V,t) < PDischargeLimit(V,t) ’ XEV(V,t) v, vV (A14)

where PpiscnargeLimit(v,+) 18 the maximum active discharge rate of EV V in period t (kW).

When connected to the grid the vehicle cannot charge more than the admissible safety rate
(PcnargeLimit(v,)) (KW). The charge limit for each EV considering battery charge rate can be formulated
as in Equation (A15):

PChurge(V,t) < PChargeLimit(V,t) ’ YEV(V,t) v, vV (A15)

Another important aspect is the minimum stored energy to be guaranteed at the end of period ¢,
which is formulated in Equation (A16). This can be seen as a reserve energy (EpinCparge(vt), fixed by
the EVs’ users or estimated by the operator) that can be used for a regular travel or an unexpected
travel in each period t:

EStored(V,t) 2 EMinChurge(V,t) vt, vV (Al6)

Load demand response program limit, namely direct load control, represented by the variable
ProadDR(Lt,), load reduced for load L in period ¢ can be formulated as in Equation (A17). The maximum
load reduce is limited by Py ysaprMaxLimitr,r) (KW) parameter:

Proaapr(Lt) < ProsdDRMaxLimit(Lyy ViYL (A17)

The market offer may be constrained by a minimum and maximum amount,
Equations (A18) and (A19), respectively. Xppkerm,r) 1S @ binary variable that represents the
choice of market M in period ¢:

PSell(M,t) < PSellMarketMax(M,t) ’ XMarket(M,t) vt,VM (A18)

Psemp) 2 PsetimarketMin(M,t) - XMarket(M,y  VE VM (A19)
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