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Abstract: This paper presents a short-term wind turbine (WT) outage model based on the data collected
from a wind farm supervisory control and data acquisition (SCADA) system. Neural networks (NNs)
are used to establish prediction models of the WT condition parameters that are dependent on
environmental conditions such as ambient temperature and wind speed. The prediction error
distributions are discussed and used to calculate probabilities of the operation of protection relays
(POPRs) that were caused by the threshold exceedance of the environmentally sensitive parameters.
The POPRs for other condition parameters are based on the setting time of the operation of protection
relays. The union probability method is used to integrate the probabilities of operation of each
protection relay to predict the WT short term outage probability. The proposed method has been
used for real 1.5 MW WTs with doubly fed induction generators (DFIGs). The results show that the
proposed method is more effective in WT outage probability prediction than traditional methods.

Keywords: short-term outage model; prediction model; supervisory control and data acquisition
(SCADA) data; wind turbine (WT)

1. Introduction

In consideration of the intermittency and randomness of wind power, the large-scale wind
power integration has a great influence on the safe and stable operation of the electrical power
system [1,2]. In view of this, the electrical power system in China has clearly claimed to bring the
active output control of the wind farm into the power network dispatching management [3]. Currently,
the electric power system dispatching is mainly based on the short-term wind speed and wind power
prediction [4-6], which fails to consider the impact of wind turbine (WT) outages on the wind power
variation. Meanwhile, there is still a lack of warning information of the WT outages to support the
internal coordination control technologies of the wind farm [7,8]. In fact, due to the adverse natural
environment, the outage rate of the WT is far higher than that of the traditional electric transmission
and transformation equipment. Therefore, the WT short-term operational reliability evaluation is
an important foundation of the optimal dispatching of electrical power systems and the economic
operation of wind farms.

The short-term operational reliability evaluation of the power system equipment could provide
a quantitative description of short-term outage risks of the equipment in the future (minute, hour
and day) [9,10]. Because of the uncertainty of wind speed and wind direction, the operation points
of the WT change quite significantly in the short term. Statistics show that the failure rate of the
WT equipment has a strong correlation with the external environment [11,12]. Furthermore, the
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WT outages are also influenced by factors such as equipment aging, maintenance strategies, and
geographical environment. Some studies have been conducted to evaluate the reliability of WTs and
the important WT subassemblies [12-14]. However, these long-term reliability evaluation methods
cannot reflect the impacts of various operation conditions on WT reliability. It is difficult to accurately
estimate the short-term WT outage probability based solely on the statistical data of WT faults.

Compared with the traditional electric transmission and transformation equipment, the WTs have
abundant condition monitoring data, which could provide comprehensive condition information for
the WT short-term operational reliability evaluation. The condition monitoring data of WTs are mainly
obtained from the wind farm supervisory control and data acquisition (SCADA) system. The SCADA
system can provide a large amount of monitoring parameters of the natural environment, equipment
operation and electricity system. To ensure the safe operation of WTs, once any parameters exceed their
threshold values of protection relays, the WT will be shut down. The short-term change in the SCADA
monitoring parameters are closely related to the external environment and operation condition of WTs.
By using advanced SCADA data mining methods, various condition parameter prediction models
have been developed to detect the significant changes in WT behavior prior to fault occurrences [15-19].
These prediction models were established by employing data-driven approaches that involve neural
networks (NNs) [20-22], a support vector machine (SVM) [23], adaptive neuro-fuzzy inference system
(ANFIS) [24], and the nonlinear state estimate technique (NSET) [25]. In [26], different WT performance
curves, such as the power curve, rotor curve, and blade pitch curve were modeled for monitoring
the performance of WTs. A nonlinear data-based modeling approach was proposed in [27] to detect
anomalies in WT generator winding and gearbox bearing. In [28], a NN based normal behavior model
of generator bearing temperature was developed to analyze bearing faults in WTs. A comparative
analysis of two NN-based models and a regression-based model was presented in [29] to detect
anomalies in gearbox bearing temperature and generator stator temperature.

The above studies are mainly for anomaly identification of WT condition parameters. These WT
anomaly identification models could provide a qualitative description of the WT health conditions.
However, since these methods do not consider the WT outage risks due to the anomalies in WT
condition parameters, it is difficult to quantitatively evaluate the short-term operational reliability
of WTs. This challenge lead to the discovery of a new approach to predict the short-term WT outage
probability based on comprehensive SCADA monitoring parameters.

Currently, the wind farm operators usually use a power curve to estimate the expected WT output
power based on the predicted wind speeds. However, in order to reduce the outage probability and
the number of outages of WTs, power generation schedule for the low-reliability WTs with higher
outage probabilities should be adjusted by performing the active output power control of WTs. Hence,
the short-term WT outage probability prediction is useful for the wind farm operators to monitor the
WT condition and make proper active output power control strategies. Furthermore, since the WT
outages could impact the output power and power variation of a wind farm, the wind farm operators
should evaluate the potential wind power loss due to the WT outages according to the WT outage
probability prediction results and formulate appropriate power generation schedules for WTs and
wind farms.

This paper presents a short-term (i.e., 15-min-ahead) WT outage model based on condition
parameters obtained from the wind farm SCADA system. Prediction models are established to predict
condition parameters that are dependent on environmental conditions such as ambient temperature
and wind speed. The calculation for probabilities of protection operation caused by the threshold
exceedance of the component temperatures is based on the probability distributions of the prediction
errors of the developed prediction models. The calculation for probabilities of protection operation
for other monitoring parameters is based on the setting time of the protection operation. The union
probability method is utilized to integrate the probabilities of each protection relay to predict the WT
short term outage probability. The proposed method has been used for real 1.5 MW WTs with doubly
fed induction generators (DFIGs).
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The remainder of the paper is organized as follows: The SCADA data that can be used for the WT
outage model development are discussed and grouped in Section 2. Section 3 proposes the methodology
for developing the short-term outage model. The details in developing condition parameter prediction
models and the calculation for POPR are given in Sections 4 and 5. The procedure for predicting the
short-term WT outage probability is given in Section 6. Three cases are investigated to validate the
proposed short-term WT outage model in Section 7. The conclusions are given in Section 8.

2. Parameter Description and Classification

Table 1 shows the typical condition parameters measured and delivered by the SCADA system
of a wind farm. The positions of corresponding sensors are shown in Figure 1. These condition
parameters can be grouped into two types:

Type 1 parameters include various component temperatures which are strongly influenced by
environmental conditions. For example, the relationship between the gearbox input shaft temperature
of a variable speed constant-frequency (VSCF) WT and the wind speed is shown in Figure 2. For the
VSCF WT, when the wind speed is below its rated speed, a faster rotational speed, due to a higher wind
speed, will evidently raise the temperature of the mechanical components. When the wind speed is
over the rated wind speed, the WT will be kept at its rated output power by variable pitch control and
the component temperatures will be less affected by the wind speed. Figure 3 shows the relationship
between the gearbox input shaft temperature and the ambient temperature. The heat dissipation of
mechanical components of a WT is also affected by the ambient temperature. At a lower ambient
temperature, the heat dissipation is faster and the component temperatures can vary in a larger range.
Conversely, at a higher temperature, the component temperature tolerable variation range is smaller
with slower heat dissipation. It is noted that the gearbox will produce a large amount of heat in the
operation of WTs [30]. In order to ensure the secure and stable operation of WT, an effective gearbox
cooling system has to be implemented. Therefore, the gearbox cooling water temperature, which has
a large impact on the gearbox component temperatures, is also considered as one of Type 1 condition
parameters. Moreover, wind speed has a major impact on the wind power output and WT component
temperatures, which is also classified into Type 1 parameters in this paper.

Type 2 parameters include yaw position, yaw angle error, and hydraulic oil pressure. Yaw position
represents the rotation angle of the nacelle. Yaw angle error is the angle between the wind and the
nacelle position. Type 2 parameters do not have an obvious relationship with environmental conditions.

Table 1. Wind turbine (WT) condition parameters studied in this paper. Temp.: Temperature.

Normal Range

Number WT Condition Parameters — — Type
Upper Limit  Lower Limit

1 Temp. of gearbox input shaft 100 °C - 1
2 Temp. of gearbox output shaft 100 °C - 1
3 Temp. of gearbox oil 80 °C 10°C 1
4 Temp. of gearbox cooling water 50 °C - 1
5 Temp. of main bearing a (on the rotor side) 70°C - 1
6 Temp. of main bearing b (on the gearbox side) 70°C - 1
7 Temp. of generator winding (U |V IW) 165 °C - 1
8 Temp. of generator bearing a (front) 95°C - 1
9 Temp. of generator bearing b (back) 95°C - 1
10 Temp. of generator cooling air 50 °C 35°C 1
11 Temp. of control cabinet 55°C - 1
12 Wind speed 25m/s 3m/s 1
13 Yaw position 750° —750° 2
14 Yaw angle error 15° —15° 2
15 Hydpraulic oil pressure for yaw 150 bar 135 bar 2
16 Hydpraulic oil pressure for rotor brake 120 bar - 2
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The SCADA data used in this paper are obtained from an onshore wind farm in northern China.
The wind farm has 34 1.5 MW WTs with doubly fed induction generators (DFIGs), labeled WT 1 to
WT 34. All the WTs are the same type in the wind farm. The SCADA data have been collected since
15 February 2011. The sampling rate of the SCADA system is one sample per second, i.e., 1 S/s.
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Figure 1. The main components and sensor positions of the considered wind turbine (WT).
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Figure 2. Relationship between the gearbox input shaft temperature of a variable speed
constant-frequency (VSCF) WT and the wind speed.
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Figure 3. Relationship between the gearbox input shaft temperature of a VSCF WT and the
ambient temperature.

3. Framework of the Wind Turbine Outage Model

Most of the wind farm SCADA monitoring parameters reflect the current condition of WTs and
power grid. In order to assure the safe operation of WTs, several outage protections are designed for
the WTs. Once any monitoring parameters exceed their threshold value, the corresponding protection
relays will be activated to stop WTs. Hence, based on the logical relationship between the WT outage
and the operation of each protection relay, the short-term operational reliability of WTs can be evaluated
by applying reliability theory of the series networks [31]. Therefore, the WT outage probability can be
calculated by using the union probability method [31,32] as follows:
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where F; represents the probability of the operation of the protection relay (POPR) for condition
parameter i and N is the number of condition parameters.

The POPR for Type 1 parameters: Figure 4 shows the framework of calculating the POPR for
the environmentally sensitive parameters (i.e., Type 1 parameters). First, the short-term wind speed
prediction model is established to predict the wind speed in the next 15 min. Since the WT outages
caused by the lower wind speeds have little influence on the WT output power fluctuation, the WT
outage probability due to the wind speed lower than the cut-in wind speed is not considered. Then, the
15-min-ahead prediction models are developed to predict the Type 1 parameters at each predicted value
of wind speed. Finally, the threshold exceedance probabilities for Type 1 parameters are calculated based
on the prediction error distribution of the wind speed prediction model and Type 1 parameter prediction
models. Since the protection relays of Type 1 parameters do not have the time delay for the protection
action, the threshold exceedance probabilities of the Type 1 parameters are approximate to the POPR.

The POPR for Type 2 parameters: It is difficult to predict the threshold exceedance probabilities
of Type 2 parameters by using the environmental parameters such as wind speed and ambient
temperature. In this paper, the POPRs for Type 2 parameters are estimated based on operation
principles of the protection relays.

[
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[Wind speed prediction model] : [ ic ambien ] [ 1¢ previous ]
I
I

temperature: component
T, temperature: 7,

Wind speed: v, The BPNN based prediction J

model of the Type 1 parameter

wind speed v;: P() probability for the Type 1 parameter

The probability of The threshold exceedance
i when wind speed is v;: O,(v))

v
[The POPR for the Type 1 parameter i: F=% P(v;)Oy(v; )]

Figure 4. The calculation method of the probabilities of the operation of the protection relays (POPR)
for the environmentally sensitive parameters.

4. The Probabilities of the Operation of the Protection Relays for Type 1 Parameters

4.1. Wind Speed Prediction Model

Various studies have been done on the short-term wind speed prediction, however, the current
prediction models still have non-negligible prediction errors. To accurately calculate the POPR for
the Type 1 parameters, the error distribution of the short-term wind speed prediction model should
be analyzed. Most study results indicate that the wind speed prediction errors follow the normal
distribution [33,34]. In this paper, the autoregressive moving average (ARMA) model is used for
15-min-ahead wind speed prediction and the normal distribution parameters of prediction errors are
obtained. The 10-min averaged wind speed data are used to develop the prediction models. Figure 5
shows the normal distribution based probability density function (PDF) of the wind speed prediction
errors. Based on this, the prediction errors are divided into nine regions (i.e., —oo to —1.75 m/s,
—1.75m/sto —1.25m/s, ... ,1.75 m/s to o), as seen in Figure 5. To simplify the calculation of POPR
for the Type 1 parameters, the wind speed prediction errors are discretized into nine discrete values
(i.e, 0m/s, £0.5m/s, £1 m/s, £1.5m/s, £2 m/s) corresponding to the nine regions. The probability
for each discrete prediction error can be calculated based on (2) and the results are shown in Table 2.
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where ¢, is the discrete prediction error of wind speed and Fyy, is the cumulative distribution function
(CDF) of the wind speed prediction error.
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Figure 5. Nine regions of wind speed prediction errors.

Table 2. The probability for each discrete wind speed prediction error.

Discrete Prediction Error (m/s) Probability
0 0.234
+0.5 0.197
+1 0.118
+1.5 0.05
+2 0.018

4.2. Prediction Models of Component Temperature Parameters

The 15-min-ahead prediction models for component temperature parameters are established
in this section. To develop the prediction models, the following three factors have been carefully
considered: (1) input parameters; (2) training algorithm; and (3) sample data.

Input parameters: For the VSCF WTs, the wind speed is one of the key factors that influence the
component temperatures [35]. Faster rotational speed due to higher wind speed will evidently raise the
mechanical component temperatures. Consequently, the output power and the electrical component
temperatures increase [35]. Moreover, the ambient temperature can impact on the heat dissipation
efficiency of the WT components and thus influence the component temperatures. Therefore, based on
the operating characteristics of the VSCF WTs, the wind speed v(t), the previous ambient temperature
T,(t — 1) and the previous component temperature T.(f — 1) are selected as input parameters of the
prediction models of component temperature parameters T,(t).

Training algorithm: Back-propagation NN (BPNN), a widely used NN for prediction, is applied
in this study for the prediction of the component temperature parameters. In consideration of the
size of the training set and the training time, the NN is chosen to have only one hidden layer and
the number of neurons in the hidden layer ranges from 2 to 10. The transfer function used in the
hidden layer is tan-sigmoid while the output layer transfer function is log-sigmoid based. The actual
number of nodes (i.e., neurons) in the hidden layer is determined by trial-and-error to find the right
number at which the NN has the best generalization performance. The relationship between the
BPNN prediction performances of four component temperature parameters (i.e., gearbox input shaft
temperature, generator bearing a temperature, generator winding U temperature and main bearing a
temperature) of a WT and the number of hidden layer nodes (i.e., neurons) are taken as an example,
as shown in Figure 6. Based on this, the optimal hidden layer node numbers of the four prediction
models are chosen as 10, 8, 7, and 6 respectively.
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Data sampling and data pre-processing: There are no generalized rules for selecting training
samples of the WT condition parameter prediction models. Two points have been carefully considered
to select the sample data. Firstly, the training samples must be collected when the WT is under normal
condition. Secondly, ambient temperature and wind speed vary with the seasons. Figure 7 shows the
boxplot of ambient temperature and wind speed of four seasons in a year. The data are collected from
the SCADA dataset of a WT. The median, 25th and 75th percentiles are shown with boxes, while the
maximum, minimum and outliers are shown with whiskers and crosses, respectively. It is clear that
there are significant differences among the data distributions of the four seasons.
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Figure 7. Boxplot of ambient temperature and wind speed of four seasons.

Table 3 shows the training and test data for the prediction models of the Type 1 parameters.
The samples are collected from the SCADA data in 2011 and 2012. The 10-min averaged SCADA data
of each season are used to develop the prediction models of component temperature parameters.
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Table 3. Data sampling for the prediction models of Type 1 parameters.

Sample Data
Seasons Sample Type
Start Time Stop Time

Sorin 15 February 2011 23 April 2011 training
PHng 24 April 2011 30 April 2011 test

S 1 May 2011 24 July 2011 training
ummer 25 July 2011 31 July 2011 test

A 1 August 2011 24 October 2011 training
utumn 25 October 2011 31 October 2011 test

Wi 1 November 2011 24 January 2012 training
inter 25 January 2012 31 January 2012 test

When the wind speed varies within its low value region, it may cause frequent WT startup or
shutdown. Thus, the data collected during these periods of time have different stochastic characteristics
and should be filtered out. To solve this problem, a lower limit of output power is set at 100 kW for the
1.5 MW WTs for sample data selection. In other words, only the data when the output power is greater
than 100 kW are used to train the NNs.

Furthermore, during certain instances in the operation of a WT, the output power can be curtailed
by adjusting the blade pitch angle. Figure 8 shows the measured power curve of a WT during two time
periods (i.e., 1-30 May 2011 and 1-5 June 2011) for example. The power curve in May is considered to
be in normal condition. However, the WT output power between 1 and 5 June was curtailed through
increasing the blade pitch angle, which can be seen in Figure 9. This reduction in output power for
a particular wind speed is due to change in control by the pitch regulation module and is not related to
a degraded condition of the WT [36]. Moreover, the prediction models could not provide an accurate
prediction since few SCADA data for this situation can be collected. Consequently, the data instances
in which the WT pitch control mechanism was engaged (based on the pitch blade angle reading) are
filtered out.
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Figure 8. Relationship between WT output power and wind speed during two time periods.
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Figure 9. Relationship between pitch blade angle and wind speed during two time periods.

Furthermore, scaling and missing data processing are performed before training the BPNNS.



Energies 2016, 9, 882 9 of 21

(a) Data scaling: Data scaling is an important step when training the BPNN based prediction models.
The data scaling method can be expressed as follows:
Y = Ymin
Ys = Ymax — Ymin (3)
where y is a variable and y; is the corresponding normalized variable.

(b) Missing data processing: Unknown or missing values are particularly harmful when training
the BPNN. If they are not classified as not a number (i.e., NaN) but 999 for example, the BPNN
may try to fit these values. This will reduce the prediction accuracy of the BPNN models. Hence,
it is necessary to clarify how the missing values are labeled in the SCADA system. Since there
is a large amount of SCADA data available, no approximation was performed in this paper.
Instead missing input and target values are processed by neglecting the data set [21].

Prediction performance analysis: To analyze the performance of the prediction models, metrics
such as mean absolute error (MAE), mean squared error (MSE), and mean absolute percentage error
(MAPE) have been used, as shown in (4)—(6).

18
MAE = 2} 19; = vil 4)
i=1
18 )
MSE = [ 2} (9i = vi) (5)
i=1
n A‘ _ .
MAPE = %Z Yi— ¥}« 100% (6)
i=1 i

where 7 is the number of test samples, 7J; is the predicted value for a time period i, and y; is the
measured value at the same time.

Table 4 shows the prediction performance of the component temperature parameters of a WT.
Although the prediction accuracy of each component temperature is different, the maximum of MAE is
lower than 1 °C. The trained models are tested by using the test data in Table 3. The error residuals and
prediction error distributions for the gearbox input shaft temperature, the main bearing a temperature,
the generator bearing a temperature and the generator winding U temperature are given as an example,
as shown in Figures 10 and 11. It can be seen that the prediction errors coming from the successfully
trained prediction models are normally distributed with a mean around zero.

Table 4. Prediction performance of the component temperature parameters (i.e., Type 1 parameters).
MSE: mean squared error; MAE: mean absolute error; MAPE: mean absolute percentage error.

Index
Condition Parameters
MSE (°C) MAE (°Q) MAPE (%)
Temp. of gearbox input shaft 0.62 0.46 0.77
Temp. of gearbox output shaft 0.85 0.62 1.03
Temp. of gearbox oil 0.66 0.39 0.83
Temp. of gearbox cooling water 0.77 0.51 0.95
Temp. of main bearing a 0.19 0.13 0.34
Temp. of main bearing b 0.13 0.09 0.22
Temp. of generator winding U 0.83 0.57 1.07
Temp. of generator winding V 0.77 0.48 0.86
Temp. of generator winding W 0.80 0.43 0.74
Temp. of generator bearing a 0.36 0.19 0.50
Temp. of generator bearing b 0.73 0.42 0.73
Temp. of generator cooling air 0.72 0.35 1.10

Temp. of control cabinet 0.81 0.55 1.22
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Figure 11. Prediction error distributions of four component temperature parameters. (a) Gearbox
input shaft temperature; (b) Main bearing a temperature; (c) Generator winding U temperature; and
(d) Generator bearing a temperature.

4.3. The Probabilities of the Operation of the Protection Relays for Type 1 Parameters

The POPR for component temperature parameters: According to the normal distribution
characteristics of the prediction error for component temperature parameters, the threshold exceedance
probabilities of the Type 1 parameters at the predicted wind speed can be calculated as:

Oi(vj) = P(Te > Tiim — TUj) =1- FNC<Tlim - ij) 7)
where T, is the prediction error of the target component temperature; T;; represents the predicted
value of the component temperature parameter i when the wind speed is vj; T};,, represents the upper
limit of the Type 1 parameter i; and Fx,(:) represents the CDF of the prediction error.

The anomaly of WT condition parameters can be detected in advance through the normal
distribution characteristics of prediction error [22]. The existing statistical anomaly identification
methods are mainly based on the assumption that normal instances occur in the high probability
region of a stochastic model, while abnormal conditions happen in the low probability regions [37].

In this paper, when the predicted residuals are out of the 99% confidence interval of the normal
distribution, it counts as one invalid prediction.
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Three months of SCADA data from 1 April 2012 to 31 July 2012 are collected when the WTs are
under healthy condition, which are used as the test data of the prediction models. The prediction
error series of five WT temperature parameters (i.e., gearbox input shaft temperature, gearbox cooling
water temperature, generator bearing a temperature, generator winding U temperature, and main
bearing a temperature) are obtained. The prediction error series of gearbox input shaft temperature
are taken as an example, as shown in Figure 12. Based on the 99% confidence interval of the prediction
error, a total of 209 invalid predictions are detected from the error series of the five temperature
parameters. Then, a fixed-size time window, which contains data in one hour, is used to collect the
prediction error data when the invalid prediction occurs (seen in Figure 12). A total of 182 groups of
the prediction error series are obtained by using the 1-hour fixed-size time window. It is found that
84.62% (154/182) of the error groups contain one invalid prediction, 14.84% (27/182) of them contain
two invalid predictions, and only 0.55% (1/182) of them contain three invalid predictions. Therefore,
in order to avoid misdiagnosis of the anomalies in component temperature parameters, the anomalies
are detected based on the following criterion: if there are at least three invalid predictions in one hour,
the corresponding parameter is considered as abnormal.
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Figure 12. Collection of the prediction error series for gearbox input shaft temperature by using
a fixed-size time window.

A case is used for further explanation. A WT suffered a sudden breakdown on 20 July 2012
because of the severe oxidation of its carbon brush. Figure 13a,b shows the prediction results and
error residuals of the generator bearing a temperature from 8 July 2012 to 10 July 2012. It can be seen
that the original prediction model could not realize the efficient prediction. Thus, it is necessary to
adjust the prediction results according to the abnormal level of the component temperature parameters.
One simple and efficient method is to set the mean value of original normal distribution of prediction
error as the previous prediction error. Based on this, the prediction results of the above case are
adjusted after occurrence of the parameter anomaly (more than three invalid predictions in one hour),
as shown in Figure 13c. It can be seen that errors of the adjusted predictions (MAE from 19:30, 10 July
to 21:30, 10 July is 1.06 °C) are lower than original errors (MAE from 19:30, 10 July to 21:30, 10 July is
2.34 °C). The condition parameter prediction results for the other eight WT outages are used to further
verify the proposed method. Table 5 compares the MAE errors for the original predictions and the
adjusted predictions during the period from the occurrences of the condition parameter anomaly to the
WT outage. It can be seen that the MAE errors of the adjusted predictions are lower than the original
MAE errors, which demonstrates the effectiveness of the prediction adjustment method.
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Figure 13. Prediction results of generator bearing a temperature: (a) Measurement and prediction
results; (b) Prediction error series; and (c) Error series for the adjusted predictions.

Table 5.
adjusted predictions.

WT outage cases and corresponding MAE for the original predictions and the

iti MAE (°C)
Number WT Outage Cases Abnormal Condition
Parameters Original Prediction =~ Adjusted Prediction
1 Gearbox output shaft Gearbox output shaft 115 0.86
overheating of WT 9 temperature ’ '
Generator bearing Generator bearing b
2 overheating of WT 14 temperature 1.04 0-55
3 Generator carbon brush Generator bearing a 071 0.69
oxidation of WT 18 temperature ' '
4 Gearbox input shaft Gearbox input shaft 1.84 135
overheating of WT 18 temperature ' ’
Gearbox oil Gearbox oil
5 over-temperature of WT 20 temperature 091 0-58
Generator carbon brush Generator bearing a
6 oxidation of WT 22 temperature 052 047
7 Gearbox output shaft Gearbox output shaft 1.9 1.46
overheating WT 24 temperature ' )
8 Generator bearing Generator bearing b 0.88 083

overheating of WT 31

temperature

Based on the prediction adjustment, when the WT is under abnormal condition, the POPR for the
component temperature parameters at the predicted wind speed can be calculated as:

Oi(vj) =1~ Fne(Tiim —

Toj — €t-1)

®)
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where ¢;_1 represents the previous prediction error.
Finally, the POPR for the condition parameter i is calculated as follows:

N
Fi = P(v)Oi(vj) )

j=1

where N represents the number of the discrete wind speed prediction errors and P(v;) represents the
probability of the wind speed v;.

The POPR for wind speed parameter: The WT outages due to exceedance of the cut-out wind
speed (i.e., 25 m/s for the 10 min average wind speed) of WTs also have a major impact on the wind
power output variability, which should be included in the WT short-term outage model.

Based on the CDF of the wind speed prediction errors, the POPR for wind speed can be
calculated as:

F; = P(ve > vjjy, — v) = 1 — Fnw(Vcut—out — ) (10)

where v, is the prediction error of wind speed; v is the predicted value of wind speed; v¢yt—out is the
cut-out wind speed (i.e., 25 m/s); and Fnp,(-) is the CDF of the wind speed prediction error.

5. The Probabilities of the Operation of the Protection Relays for Type 2 Parameters

The POPRs for Type 2 parameters are estimated based on operation principles of the protection
relays. In order to avoid the frequent WT startup or stop, the WT outage protections usually have
a specified setting time. It means that the protection relay operates only when threshold exceedance
duration of the parameter exceeds the setting time. The setting time is decided by the WT producers
and wind farm operators, which is usually less than 1 min. The POPR will increase with the increase of
threshold exceedance duration. However, it is difficult to obtain the threshold exceedance probability
density function by statistics technology due to the lack of outage data. In this paper, the linear
function is used to describe the relationship between the POPR and the duration of parameter threshold
exceedance. The instantaneous data of Type 2 parameters are used for POPR prediction. The POPR for
the Type 2 parameters can be calculated as follows:

1 t < Him
Fi=qt/tim 0 <t <ty (11)
0 t<0

where t is the threshold exceedance duration of the parameter and ty;,,, is the setting time. Since the
setting time for the protection relays of Type 2 parameters is short, the time interval of the POPR
prediction is also short, usually within 1 min.

6. Procedure for Predicting the Short-Term Wind Turbine Outage Probability

Following the discussion in the previous sections, a procedure for dealing with the short-term WT
outage probability prediction is established, as shown in Figure 14. The procedure can be summarized
into the following two steps:

Step 1 (Prediction model development): The wind speed prediction model is developed and the
probabilities of the predicted wind speeds (i.e., P(v})) are obtained based on Table 2. The BPNN based
prediction models of component temperature parameters (i.e., Type 1 parameters) are established
based on what was discussed in Section 4.2 and the threshold exceedance probabilities of the Type 1
parameters (i.e., O;(v;)) are calculated according to (7) and (8).

Step 2 (POPR and WT outage probability calculation): Based on the probabilities of the predicted
wind speeds and the threshold exceedance probabilities at each predicted wind speed, the POPRs for
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Type 1 parameters are calculated based on (9). The POPRs for Type 2 parameters are obtained by using
(11). Finally, the short-term WT outage probability can be calculated according to (1).

< Monitoring data of a wind turbine >

Step 1: - ¢ N - h 4 ~
Prediction model Wind speed Component temperature
development prediction model: v, ’ prediction models A

kil

. . probabilities at each
predicted wind predicted wind speed
speeds: P(v;)

[ I f (based on (7) and (8): O(v;) |
v

\ J \ s Monitoring data
I -~
i ¢ of Type 2
! (" Threshold exceedance | arameters
: Probabilities of the b
1
I
|
I

______ ¢ \ 4
i { POPRs for Type | parameters based on ] P(Z)];Iz:afggtsz ¢
Step 2: | (9) and (10): F=2P(v)O(v)) based on (11): F,
POPR and wind
turbine outage 7
probability
calculation { The short-term wind turbine outage probability based on (1): F=I-[](1-F)) ]
I

v
Fom ( End )

Figure 14. Flowchart of the short-term WT outage probability prediction.

7. Case Study

7.1. Case 1

In this case, a WT suffered a breakdown because the temperature of generator bearing b, which
belongs to the Type 1 parameters, exceeded its threshold value (i.e., 95 °C). The WT stopped at 15:30
and restarted at 17:00. Figure 15 shows the time series of wind speed, ambient temperature, and
generator bearing b temperature from 05:00 to 17:00. It can be seen that wind speed fluctuated around
the rated value 11.5 m/s and ambient temperature kept increasing within two hours before the WT
outage. Measured values of the generator bearing b temperature are always higher than the predicted
values. According to the proposed anomaly detection method, the temperature of generator bearing
b has been found abnormal. Therefore, under the high-temperature and high-wind speed natural
environment, it was the continuous increase of the bearing temperature that led to the WT outage.

The data at 15:30 (i.e., the moment of outage) are used to elaborate the calculation process of the
WT outage probability. The prediction result of wind speed at this moment is 11.2 m/s by using the
ARMA model. According to the probability of the discrete prediction error (Table 2), the predicted
wind speeds and the corresponding probabilities can be obtained, as shown in Table 6.

For each predicted wind speed, the generator bearing b temperature is predicted by using the wind
speed, ambient temperature, and the previous generator bearing b temperature as input parameters of
the prediction models. In normal condition, the mean of the prediction error for generator bearing
temperature b is 0. Because the WT is in abnormal condition, the mean of the prediction error should
be superimposed by 2.5 °C on the basis of the previous prediction error (i.e., the prediction error
at 15:15. The POPR for generator bearing b temperature at each predicted wind speed is calculated
according to (8), as shown in Table 7. Based on the probabilities of predicted wind speeds (i.e., P(v;)
in Table 6) and the parameter threshold exceedance probabilities at each predicted wind speed (i.e.,
O(vy) in Table 7), the POPR for generator bearing b temperature can be obtained by using (9), which is
calculated to be 0.66. Because the POPR for other condition parameters are very low at this time (i.e.,
15:30), based on (1), the WT outage probability is approximated to be 0.66.
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Figure 15. Time series of (a) wind speed; (b) Ambient temperature; and (c) Generator bearing b temperature.

Table 6. Prediction results of wind speed.

Predicted Wind Speeds (m/!

s):v,'(j=1,2,...,9)

Probabilities of the Predicted Wind Speeds: P(v;)

13.2
12.7
12.2
11.7
11.2
10.7
10.2
9.7

9.2

0.018
0.05
0.118
0.197
0.2347
0.197
0.118
0.05
0.018

Table 7. The threshold exceedance probabilities for generator bearing b temperature under each

predicted wind speed.

Predicted Wind Speeds (m/s):
Uj(j=1,2,...,9)

Prediction Result under Each
Predicted Wind Speed (°C)

Threshold Exceedance Probabilities under
Each Predicted Wind Speed: O(v;)

13.2
12.7
12.2
11.7
11.2
10.7
10.2
9.7

9.2

93.13
93.15
93.11
93.20
93.34
93.26
93.01
92.59
92.06

0.66
0.67
0.66
0.68
0.71
0.69
0.63
0.52
0.38

For the traditional statistic-based reliability assessment method, the component random outage
probability during a period of At can be calculated according to P = 1 — e~ 4 [31], where A represents
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the outage rate of a component. Usually, the component outage rate A can be considered as the
statistical average outage rate which is used in traditional power system reliability evaluation [32].
Since the wind speed has a significant impact on the WT short-term operational reliability [11], the
WT outage rate varies depending on the wind speed. Figure 16 shows a relationship between the WT
outage rate and wind speed in the studied wind farm. Based on the multiple predicted wind speeds
and the corresponding WT outage rate as shown in Figure 16, the traditional statistic-based method is
modified and the WT outage probability during At (i.e., 15min) can be calculated as follows:

P= % P(vj)(1—e M)A (12)
j=1

where P is the WT outage probability obtained by the statistics-based method; N represents the
number of the discrete wind speed prediction errors; v; is the predicted wind speed and A(v)) is the
corresponding WT outage rate; P(v;) represents the probability of predicted wind speed v;.

700
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E 400}

2
= 300t ]
3
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=
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5 6 7 8 9 10

11 12 13 14 15
Wind speed (m/s)

Figure 16. Relationship between WT outage rate and wind speed.

The time series of WT outage probabilities obtained by the proposed method and the
statistics-based method from 05:00 to 17:00 are compared in Figure 17. It can be seen that the WT
outage probabilities obtained by the proposed method are much higher than those calculated by the
traditional statistic-based method during the period of high wind speed (i.e., from 14:00 to 15:30).
Since the traditional method fails to consider the WT outage risks caused by the threshold exceedance
of WT condition parameters, the proposed method is more accurate than the statistic-based method.

0.7 T T T T
The WT outage probability at 15:30 is 0.66 —~
0.6 I'[—+— The proposed method
z 0.5 - —+— The traditional statistic-based method
Z 0.
< " """~
o D
g 04r 1< Zoors
2 T E
L oi1z=
= 031 122 oo
3 (=
02 28
= | % 20.005 |
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ol IR Tme _______ |
5:00 8:00 11:00 ™

Figure 17. A comparison of WT outage probabilities obtained by the proposed method and the
traditional statistic-based method.

7.2. Case 2

In this case, a WT stopped on 17 July 2012 because of the yaw system fault. Figure 18 shows
the time series of yaw angle error in one hour on 17 July 2012. The upper and lower limit of the yaw
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angle error is —15° and 15°. The parameter exceeded the lower limit several times, which caused two
WT outages.

Yaw angle error (°)

_ , !
. o' 5 |
15 - 1

WT outage

-3 Oo 15 30 45 60

Time (min)

Figure 18. Time series of yaw angle error.

The setting time of yaw angle error protection relay is 1 min and the POPR is calculated every
10 s, as show in Figure 19. It is noticed that, when the WT is stopped (as shown in the grey part
of Figure 18), the POPR is set to be 0. At 15 and 56 min, the threshold exceedance duration of the
yaw angle error keeps raising and finally exceeds the setting time of protection. The yaw angle error
exceeded the threshold value twice at 32 min without the protection relay operation because the
threshold exceedance duration is shorter than the setting time (i.e., 1 min). Since other condition
parameters did not exceed their threshold values, the WT outage probability is equal to the POPR
for yaw angle error. It is proved that the proposed method is able to effectively estimate the WT
outage probabilities.

0.5¢

POPR for yaw angle error

0 15 30 45 60
Time (min)

Figure 19. POPR for yaw ang]le error.

7.3. Case 3

Figure 20 shows the output power and power variation of the studied wind farm from 18 July to
25 July 2012. It can be seen that the wind farm output power showed a fierce fluctuation at constantly
high wind speed on 21 July 2012, with the maximum of 9 MW. However, according to the Chinese
national standard “Technical Regulations of Wind Power Integration on Electrical Power System” [3],
the maximum limit of wind farm active power variation within 1 min shall be no more than 3.3 MW.
It is clear that the output power fluctuation of the wind farm during this period cannot satisfy the
requirements of the electrical power system. If only the fluctuation of the wind speed is considered,
the output power variation shall be in normal condition. However, after the analysis of the operation
condition of each WT during this period, it is found that many WTs repeatedly started and stopped
during this period due to the threshold exceedance of condition parameters. The low reliability of the
WTs at high wind speed is one of the major reasons for the fierce fluctuation of output power of the
whole wind farm.

A WT is taken as an example for the outage probability analysis. This WT stopped nine times
from 11:00, 21 July to 06:00, 22 July due to the threshold exceedance of the gearbox oil temperature.
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Figure 21 shows the time series of the gearbox oil temperature, where the time points of the WT
outages are marked. The WT outage probabilities during this period are obtained by using the
proposed outage model. The calculation process is similar to Case 1 and the results are shown in
Figure 22. Compared with the prediction results of outage probabilities only in consideration of
the statistical information, the proposed outage model can accurately predict the short-term outage
probability of the WT. If the wind farm operators could predict the short-term outage probability of
each WT and formulate the proper power generation schedules, the reliability of the wind farm can be
improved. The proposed short-term WT outage model is helpful for the safe and economical operation
of the wind farms and the electrical power systems.
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Figure 20. Wind farm output power (a) and output power variation within 1 min (b).
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Figure 21. Time series of gearbox oil temperature.
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Figure 22. WT outage probabilities of Case 3.
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8. Conclusions

This paper presents a novel approach for short-term WT outage probability prediction.
The conclusions of the study can be summarized as follows:

(1) The BPNN based prediction models are established for the WT component temperature
parameters. The test results show that although the prediction accuracy of each component
temperature is different, the maximum of MAE is lower than 1 °C.

(2) The component temperature prediction models cannot realize the efficient prediction when the
WT is under abnormal condition. The proposed prediction adjustment method could effectively
decrease the prediction errors when the WT is abnormal.

(8) A novel approach is proposed to calculate the short-term WT outage probability by considering
the threshold exceedance of the SCADA condition parameters. Three case studies for an onshore
wind farm in northern China have been carried out and analyzed, which demonstrates the
effectiveness of the short-term WT outage model.

(4) Since the traditional statistic-based reliability evaluation method fails to consider the WT outage
risks caused by the threshold exceedance of WT condition parameters, the proposed method is
more accurate than the statistic-based method.

(5) The WT outages could impact on the power output variation of a wind farm. The prediction results
of short-term WT probabilities are useful for the wind farm operators to estimate the potential
wind power loss due to the WT outages and formulate proper power generation schedules.

Since the proposed short-term WT outage model has not been used in wind farms, there is
still a lack of actual WT outage cases to support a statistical analysis to show how much the WT
outage probability can be reduced by using the proposed method. In future research we will focus
on enhancing the applicability of the proposed short-term WT outage model in large wind farms.
Furthermore, active power control strategies of wind farms based on the short-term WT outage
probability prediction will be investigated. The condition based maintenance strategies with respect to
different WT faults, also deserve further study.
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