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Abstract: A novel dynamic co-simulation methodology of overall wind turbine systems is presented.
This methodology combines aerodynamics, mechanism dynamics, control system dynamics, and
subsystems dynamics. Aerodynamics and turbine properties were modeled in FAST (Fatigue,
Aerodynamic, Structures, and Turbulence), and ADAMS (Automatic Dynamic Analysis of Mechanical
Systems) performed the mechanism dynamics; control system dynamics and subsystem dynamics
such as generator, pitch control system, and yaw control system were modeled and built in
MATLAB/SIMULINK. Thus, this comprehensive integration of methodology expands both the
flexibility and controllability of wind turbines. The dynamic variations of blades, rotor dynamic
response, and tower vibration can be performed under different inputs of wind profile, and the
control strategies can be verified in the different closed loop simulation. Besides, the dynamic
simulation results are compared with the measuring results of SCADA (Supervisory Control and
Data Acquisition) of a 2 MW wind turbine for ensuring the novel dynamic co-simulation methodology.

Keywords: wind turbine; co-simulation; generator torque control; yaw control; pitch control;
dynamic simulation

1. Introduction

The growth of global population and the shortage of fossil fuel energy have enhanced the
need for alternative energy. Of all the renewable energies, wind energy is recognized as one of
the most important renewable energies due to the large power capacity and the expansion of wind
farms [1]. Furthermore, the number of wind power plant installations has risen gradually worldwide
after the offshore wind farm was developed. Due to the different locations of wind farms, such as
onshore and offshore, the requirements for wind turbines change depending on the category of the
wind and its location. In order to analyze the efficiency and reliability of the chosen wind turbine,
it is important for users to predict the response before installing it. Thus, a trustworthy simulation
software is required to test the wind turbine in certain wind farms. For simulation packages used
for power system studies, such as the Power System Simulator for Engineering (PSS/E), reasonably
accurate and low-capacity-demanding models using all system components are usually required [2].
However, the comprehensive knowledge requirement of the wind turbine makes simulation more
difficult to integrate. Computational fluid dynamics and multibody dynamics should be calculated
simultaneously under one interface. Furthermore, the diversity of wind turbine design and user-based
controller strategies should be taken into consideration. Therefore, it is necessary to simplify the model
to a certain level which is acceptable for grid simulation programs and building up a co-simulation
interface [3].
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Wind turbines convert the wind energy into mechanical energy and then transform it into electric
energy. In general, there are two kinds of wind turbines driven by different aerodynamic forces,
horizontal-axis wind turbine (HAWT) [4] and vertical-axis wind turbine (VAWT) [5]. Compared with
VAWT, HAWT is widely developed in large-scale wind turbines because of its better aerodynamic
behavior and higher power coefficient in high tip-speed ratio.

Of all the large-scale horizontal-axis wind turbines, HAWT can further be categorized into
different types owing to its working design: constant speed, variable pitch, and variable speed type.
Relevant researches have been published since the late twentieth century. A simple strategy with stall
control and fixed blade was developed in 1988 [6]. Freeman and Balas [7] made a system identification
of the dynamic models of wind turbines with experiments. In order to simulate the turbine dynamic,
several researches about modeling have been investigated: in 1991, Leithead described the roles and
objective of control of wind turbine [8]. Then the model of turbine drive system was developed by
Novak [9]. Subsequently, researches about the variable speed wind turbine and the correspondent
subsystem control started after the 1990s. The controls of variable speed wind turbine were studied in
2000 [10]. The nonlinear control of variable speed wind turbines without wind speed measurement was
discussed in [11], which also integrated both mechanical and electrical dynamics. Further researches
with advanced nonlinear controller for the rated-speed and the variable-power operation regime were
developed in [12].

Based on last paragraph, the dynamic simulation of wind turbines can be recognized as a key
technology in the design of the wind turbine, so that the dynamic characteristics of the wind turbine
can be evaluated. Several aeroelastic computational tools have been investigated and studied since
2001 [13]. For simulating the wind turbine dynamics, the simulation software FAST was released
by National Renewable Energy Laboratory (NREL), and the newest version, V8.12.00a-bjj, was
introduced in 2016. In 2006, Boukhezzar [14] cooperated with NREL and proposed multivariable
controller for torque control and pitch control. FAST is used to build a nonlinear model of wind
turbines. PID (Proportional-Integral-Derivative) and LQG (Linear-Quadratic-Gaussian) control
was used and compared. Zhang [15] used FAST to simulate WindPACT-1.5MW and developed
synchronized generators and multiobjectives controllers with MATLAB/SIMULINK for overall system
control. In 2008, Fadaeinedjad [16] developed a Double-Feedback Induced Generator model via
MATLAB and combined it with FAST. Lu [17] investigated the load computation of a 150 kW
wind turbine by IEC-61400-1 via FAST/SIMULINK. In 2010, Mandic [18] proposed FAST combined
with a permanent magnetic synchronous generator (PMSG) model. Furthermore, the flexibility of
FAST co-simulation inspires new control strategies in power control and blade loading reduction.
Besides, some novel co-simulation methodology has been developed by combining the Interface
Jacobian-based Co-Simulation Algorithm (IJCSA) with computational fluid dynamics to make the
simulation closer to the real physics [19,20].

However, the full system dynamic response including subsystem dynamics is still rare.
The distribution of wind turbulence at different heights not only leads the unbalanced loads on
the blades and tower, but also increases the difficulty of pitch control. Therefore, the dynamic response
must be taken into consideration. ADAMS (Automatic Dynamic Analysis of Mechanical Systems)
was first developed by MDI (Mechanical Dynamics Inc.) and then transferred to U.S. company “MSC
Ltd.”, called MD Adams (Multibody Dynamics Adams) has been applied widely in many industrial
design and dynamic simulations of complex mechanism and multibody systems. This software has
been widely used in multibody dynamic analyses such as automobile [21], structural analysis [22],
and wind turbine analysis [23].

With all the aspects shown previously, an integration of co-simulation analysis should be
developed, which is also the subject of this study. This paper aims to develop the co-simulation
analysis of aerodynamics, mechanism dynamics, and control system dynamics for 2 MW wind turbines.
As shown in Figure 1, by combining FAST, ADAMS, and MATLAB/SIMULINK, the aerodynamic,
mechanism dynamic, and control system dynamic simulation can be calculated simultaneously under
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different inputs of wind. Meanwhile, dynamic models of the main subsystems—such as the pitch/yaw
control systems and the direct driven permeant magnetic synchronized generator (PMSG)—are
developed in MATLAB/SIMULINK combined with the control strategies of the overall wind turbine
system to implement power tracking control. Finally, the co-simulation results are compared with
a 2 MW wind turbine for verification, and the results show that the co-simulation analysis of
aerodynamics, mechanism dynamics, subsystem dynamics, and control system dynamics for 2 MW
wind turbines developed in this paper can analyze the overall system characteristics satisfactorily.

Energies 2016, 9, 637 3 of 20 

 

synchronized generator (PMSG)—are developed in MATLAB/SIMULINK combined with the control 

strategies of the overall wind turbine system to implement power tracking control. Finally, the co-

simulation results are compared with a 2 MW wind turbine for verification, and the results show that 

the co-simulation analysis of aerodynamics, mechanism dynamics, subsystem dynamics, and control 

system dynamics for 2 MW wind turbines developed in this paper can analyze the overall system 

characteristics satisfactorily. 

 

Figure 1. Co-simulation of FAST (aerodynamics), ADAMS (mechanism dynamic), and 

MATLAB/SIMULINK (subsystems and control system) for wind turbines. 

2. System Model Build Up 

More precisely, a turbine model, including aerodynamic forces, torque coefficient, and transmission 

system, was derived in FAST software. Next, the nonlinear dynamic models of wind turbine 

subsystem, containing one permanent magnet synchronous generator, three independent pitch 

control systems driven by DC motors, one yaw system driven by four AC motors, and overall system 

controller were built by using MATLAB/SIMULINK software. Finally, the dynamic response and 

multibody interaction was represented in ADAMS software. Table 1 shows the versions of different 

software that were to use in this study. 

Table 1. Specifications of software versions. 

Software Version 

IEC v5.01.01 (2010-03-18) 

AeroDyn v13.00.00a-bjj (2010-03-31) 

FAST v7.00.01a-bjj (2010-11-05) 

ADAMS v2010 

SIMULINK v7.11.0.584 (R2010b) 

2.1. Mathematic Model of Wind Turbine System 

The kinetic energy of airs through a unit area can be denoted as: 

31
 ( , )

2
w w PP A v C    (1) 

with 𝑃𝑤 as power of the wind, ρ as air density, 𝑣𝑤 as velocity of the wind, and 𝐴 as the cross-

sectional area of the blade covering region. 

Based on the law of Lanchester–Betz, only some of the power can be captured by the generator. 

The maximum rate of power efficient is equal to 16 27⁄ (53%). Normally, the power efficiency is 

determined by power coefficient 𝐶𝑝 which is representative of 𝜆 and 𝛽: 

Wind turbine 

Mechanism Dynamic 

Simulation

ADAMS

AeroDynamic

of Blade 

FAST

Control System 

Dynamic Simulation

MATLAB/

SIMULINK

Wind Turbine 
Subsystem System 

(Generator) 
Dynamic Simulation

MATLAB/
SIMULINK

Wind Turbine 
Subsystem System 

(Pitch/Yaw) 
Dynamic Simulation

MATLAB/
SIMULINK

Figure 1. Co-simulation of FAST (aerodynamics), ADAMS (mechanism dynamic), and
MATLAB/SIMULINK (subsystems and control system) for wind turbines.

2. System Model Build Up

More precisely, a turbine model, including aerodynamic forces, torque coefficient, and
transmission system, was derived in FAST software. Next, the nonlinear dynamic models of wind
turbine subsystem, containing one permanent magnet synchronous generator, three independent pitch
control systems driven by DC motors, one yaw system driven by four AC motors, and overall system
controller were built by using MATLAB/SIMULINK software. Finally, the dynamic response and
multibody interaction was represented in ADAMS software. Table 1 shows the versions of different
software that were to use in this study.

Table 1. Specifications of software versions.

Software Version

IEC v5.01.01 (2010-03-18)
AeroDyn v13.00.00a-bjj (2010-03-31)
FAST v7.00.01a-bjj (2010-11-05)

ADAMS v2010
SIMULINK v7.11.0.584 (R2010b)

2.1. Mathematic Model of Wind Turbine System

The kinetic energy of airs through a unit area can be denoted as:

Pw =
1
2

ρA v3
wCP(λ, β) (1)

with Pw as power of the wind, ρ as air density, vw as velocity of the wind, and A as the cross-sectional
area of the blade covering region.
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Based on the law of Lanchester–Betz, only some of the power can be captured by the generator.
The maximum rate of power efficient is equal to 16/27 (53%). Normally, the power efficiency is
determined by power coefficient Cp which is representative of λ and β:

Cp(λ, β) =
Pw

1/2Aρv3
w

(2)

where λ denotes tip speed ratio, and β is blade pitch angle.
Subsequently, blade lifting force derives the turbine rotor with specific torque Tw, which can be

expressed as Equation (3)

Tw =
1
2

ρAv2
wRCq(λ, β) (3)

with blade length R and torque coefficient Cq.
Furthermore, the relation between rotor velocity and wind power can be attributed to blade

element momentum theory (BEM) [21], which is combined with blade element theory and momentum
theory to alleviate some of the difficulty in calculating equivalent torque on rotor drivetrain.
The advantage of the BEM theory is that each blade element is modeled as a two-dimensional airfoil.
Figure 2 shows the resultant aerodynamic forces on the element. These forces dictate that the thrust
(perpendicular) and torque (parallel) of the rotor, which are the dominant forces for turbine design.
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Figure 2. Lift and drag force of blade airfoil.

The aerodynamic force is applied at the center of airfoil chord line, which generates an equivalent
torque. When we include two-dimensional airfoil tables of lift and drag coefficient as a function of the
angle of attack, α, a set of equations are derived that can be iteratively solved for the induced velocities
and the forces on each blade element. The equivalent torque at this center equals zero so that the
torque is not affected dramatically while changing α. Thus, each blade is divided into several pieces
with different airfoils and lift/drag coefficients.

Figure 3 shows the relation between the lift, drag, pitching moment coefficients, and the angle of
attack α at 17,750 mm based on the blade root.
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Figure 3. Lift, drag, and pitching moment coefficients at 17,750 mm based on the blade root.
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Meanwhile, the tower influence model was based on the study of Bak et al. [24]. A potential
flow solution around a cylinder was used as the base flow field along with a downwind wake model
dependent on tower drag coefficient Cd. This model also expresses the influence of the tower on the
local velocity field at all points around the tower, including the raise in wind speed around the sides of
the tower and the cross-stream velocity components in the tower near flow field. Table 2 denotes the
specification of blade/tower parameters with all the parameters measured from a 2 MW wind turbine.

Table 2. Specifications of wind turbine.

Name Dimensions (m) Mass (kg)

Generator ϕ 3.8× 2.2 4900
Nacelle 3.5× 2.8× 2.8 12,000

Hub 2.5× 2.2× 2.2 19,000
Blade 34 5500
Tower 61.859 100,000

After finishing the model mathematic setup, a geometric preference can be exported in ADAMS
software with specific joints and applied aerodynamic force in Figure 4. The model is a simplified
expression of components. The kinematics and dynamics are calculated in terms of Jacobian matrix
and Eulerian representation.
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2.2. Co-Simulation Wind Turbine Interface

In this section, the interactions between the three softwares will be expounded properly to
demonstrate the necessity of this interface.

The input source of wind power can be attributed to the diversity of wind conditions, which
causes strength and azimuth angle differences depending on different seasons and locations on the
earth. Besides, most of faulty problems such as resonance vibration and subsystem actuator shut down
occur in operating periods. Besides, the control strategies in both the cut-in region and cut-out region
also determine the performance of the wind turbine, which may damage the turbine if the strategy is
not properly designed. All these factors show the importance of co-simulation of turbine dynamics and
subsystem dynamics. The turbine dynamics software ADAMS combines the aerodynamics software
FAST to present the dynamic performance in time domain. Then, the subsystem acquires the data
of states such as rotor speed and pitch angle from dynamic performance, and the subsystem offers
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equivalent loads to drive the model. Figure 5 categorizes the roles of each software and shows the
simultaneous interaction among them.
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With the help of this comprehensive interface, the user can easily develop a user-based controller
with desired subsystems. We not only can compare the subsystems with realistic supervisory control
and data acquisition (SCADA), but create different control strategies when connecting to different
types of generator or operating under different circumstances. The block diagram is presented as the
structure of wind turbine configuration in Figure 6.
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3. Modeling of Turbine Subsystem

The mathematic models of turbine subsystems are derived in this chapter as default model of
wind turbine. A direct current (DC) motor driving pitch control system is built up in Section 3.1
and the yaw control system driven, by alternating current (AC) induction motors, is modeled in
Section 3.2. Based on the design of this wind turbine, a permeant magnetic synchronized generator
(PMSG) is installed without a gear box. To simplify the model, power grid and converter are simplified
and implemented in Section 3.3. Finally, the maximum power point tracking (MPPT) control will be
introduced in Section 4.
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3.1. Modeling of DC Servo Motor in Pitch Control System

DC servo motors are widely used in rotatory actuator nowadays, especially in mechanical systems.
The mathematic model has been developed properly and can be derived as follows:

Va(t) = Raia(t) + La
dia(t)

dt
+ Eb (4)

where Va is input voltage, ia is armature current, Ra indicates armature resistance, and Ra is armature
inductance. Eb is back electromagnetic force.

While taking gear ratio ng into consideration, the momentum equation can be rewritten as a form
of rotatory angle θm and ng.

∑ T = n · Tm − Text/ng

= Jeq
..
θm + Deq

.
θm + Ceqθm

= (Jm + Jb
n2

g
)

..
θm + (Dm + Db

n2
g
)

.
θm + (Cm + Cb

n2
g
)θm

(5)

where Jm refers to moment of inertia of motor, Jb is moment of inertia of blades, Db is equivalent
damping ratio, and Cb is equivalent spring constant. Finally, the motor parameters can be estimated by
the datasheet and T-n curve diagram from the supplier. For the mathematic block diagram is illustrated
as Figure 7.
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Figure 7. Block diagram of DC servo motor.

3.2. Modeling of AC Induction Motor in Yaw Control System

Induction motors are unsynchronized motors, which are usually modeled with a dynamic model
using squirrel cage and reference frame, fixed on the stator [26]. The model of the induction motor can
be projected to the d-q vector coordinate so that the system can be simplified as follows:

vds
vqs

vdr
vqr

 =


−ωsLs Rs + sLs −ωsLm sLm

Rs + sLs ωsLs sLm ωsLm

−ωsl Lm sLm −ωsl Lr Rr + Lr

sLm ωsl Lm Rr + Lr ωsl Lr




ids
ids
idr
iqr

 (6)

with the electromagnetic torque is found as:

Ty =
p
2

3
2
(ψqs ids − ψds iqs) =

p
2

3
2
(Lmiqsids − Lmidsiqr) =

3
4

pLm(iqsids − idsiqr) (7)

where subtitles ds, qs, dr, and qr are indicated as d-axis stator, q-axis stator, d-axis rotor, and q-axis
rotor, respectively. Ls, Lr, and Lm are the inductances of stator, rotor, and interaction. ψ is the magnetic
flux in each part and p denotes the number of pole pairs.

As in DC motor torque control, the induction motor can be also achieved by the controlling
torque and flux component independently, which is known as indirect vector control. This control
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is considered to be a fast response and high performance method. In the indirect vector control
method, the induction motor can be operated like a separately excited DC motor for high performance
applications. Likewise, many closed loop speed control techniques have been developed to improve
the performance in the last decades [27].

Therefore, the system should be assumed at some ideal condition to eliminate the
coupled phenomenon:

ψqr = 0
ψdr = const.
vdr = vqr = 0

(8)

Thus, Equations (6) and (7) can be performed by the field orientation control calculations:

vqs = (Rs + sLs)iqs + ωsLsids + sLm(−
Lm

Lr
)iqs (9)

Ty =
3
4

pLm(iqsids − idsiqr) =
3
4

p
L2

m
Lr

idsiqs =
3
4

p
Lm

Lr
ψdriqs (10)

Second, the electromagnetic torque derives the mass damping system of whole nacelle with a
simple torque equation with specific gear ratio ng as in Equation (5). In Figure 8, the AC induction
motor is simplified as a DC servo motor block diagram.
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3.3. Modeling of Permanent Magnetic Synchronous Generator System

The mechanical power of the wind turbine is converted into electric power by an alternating
current (AC) generator or a direct current (DC) generator. The AC generator can be either a synchronous
machine or an induction (asynchronous) machine. A synchronous generator was chosen in this study
with several advantages as follows: (1) the AC voltage output is synchronized with the rotor speed;
(2) a synchronous generator directly connects to rotor shaft without gear sets, which can reduce not
only the nacelle weights but the difficulty of installation; and (3) it offers better performance due to its
higher efficiency and lower maintenance cost when comparing with double-fed induction generator.
Regardless the power electric parts, this study focused neither on the converter (grid side and rotor
side) nor on grid controls. The power from stator Ps will be considered as power output.

The dynamic model of the PMSG is derived from the two phase (d/q) synchronous reference
frame, where the q-axis is perpendicular to the d-axis along the direction of rotation. The transformation
between the d-q axis rotatory reference frame and the three phase (a/b/c) frame is maintained by
utilizing a phase locked loop. In order to simplify the model, magnetic hysteresis and saturation effects
are negligible, and the power losses are considered as constant [28]. A form of voltage equations can
be derived in Equation (11):

vds = Rsids + (Lds + Lls)
dids
dt −ωe(Lds + Lls)iqs

vqs = Rsiqs + (Lds + Lls)
diqs
dt + ωe [(Lds + Lls)ids + ΨPM]

(11)
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where subscripts d/q refer to the physical quantities that have been transformed into the d/q
synchronous rotating reference frame, Lds and Lls are the inductances and the leakage inductance of the
stator, ids, iqs denotes the stator currents respectively, R is the stator resistance, ψPM is the permanent
magnetic flux, and ωe is the electrical rotating speed.

Then, the mechanical load on the rotor shaft Tg is equivalent with electromagnetic torque Te and
it can be described by the equation as follows:

Te =
3
2

p
[
ψdsiqs − ψqsids

]
=

3
2

p
[
(Lds − Lqs)idsiqs + ΨPMiqs

]
(12)

To avoid the risk of overvoltages due to over speeds, the stator voltage must be controlled instead
of reactive power. Thus, the Field Oriented Control (FOC) strategy is implemented in the synchronous
rotating reference frame for easier control [29]. This type of control also puts the PMSG into high
performance. In this method, the electromagnetic equations are transformed into a coordinate system
with synchronous rotation and permanent magnet flux. Besides, FOC allows separate and indirect
control of the flux and torque by using a current control loop. This type of control presents several
advantages such as: good torque response, accurate speed control, and achievement of full torque at
zero speed. The Field Oriented Control schematic block diagram is presented in Figure 9.
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Therefore, Equation (11) can be decoupled by using FOC to control ids and iqs separately. With the
help of this, Equation (11) was changed in terms of decoupled parts v and compensated parts ∆v:

vds = [Rs + (Lds + Lls)s] ids −ωe(Lds + Lls)iqs = v′ds + ∆vds
vqs = [Rs + (Lds + Lls)s] iqs + ωe [(Lds + Lls)ids + ΨPM] = v′qs + ∆vqs

(13)

Finally, in order to achieve the torque control by finding a proper torque, three PI
(Proportional-Integral) controllers were used to implement FOC control. The stator current reference
in d-axis must be maintained at zero to produce maximum torque which is also the usage of first
controller. The stator current reference i∗qs is calculated from the reference torque using constant torque
angle control property (CTA), obtained by three PI controllers. Finally, the active power Ps and reactive
power Qs will be determined as Equation (14):

Ps =
3
2
[
vdsids + vqsiqs

]
Qs =

3
2 [vqsids − vdsiqs]

(14)
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4. MPPT Controller Design

In this section, we demonstrate several levels of the control system. A supervisory controller with
monitors is used to determine the time to start up and shut down for safety due to the wind speed data
from an anemometer. Second, the mechanical performance should be controlled under the constraints
of wind turbine. Torque control, which is driven by the electrical power generator, could extract a
proper torque to generate an optimal power with different wind inputs. Meanwhile, the extracted
torque, opposite to rotor mechanical torque driven by aerodynamics, achieves rotor speed control in
some specific regions [6,10]. The pitch control should be motivated to reduce the aerodynamic loading
to protect the generator from over speed when the extracted wind power exceeds the rated power.
Finally, the controls of generator, including grid integration and power system, will be set as the lowest
level, which is also negligible in this study.

Control Regions in Wind Turbine

As discussed in the previous paragraph, there are four different regions in a wind turbine, as
shown in Figure 10. Region 1 is where the wind speed is below the cut-in speed, and pitch should
keep in standby mode (90◦). While the wind speed is large enough to drive the turbine but not enough
to reach the rated speed, the pitch system will move to working mode for keeping 1◦ of pitch angle,
and the turbine generator is controlled to capture the optimal power in Region 2. During Region 3,
between the cut-out speed and the rated wind speed, the wind turbine reaches the maximum power
capacity at rated power which is also the best region for power generation. However, if the wind
exceeds the cut-out speed, the huge aerodynamic loads will damage the turbine system severely if the
turbine still extracts power from the wind. Thus, the pitch control system changes the pitch angle to
90◦ of cut-out mode immediately in Region 4.
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For the energy capture point of view, Region 2 and Region 3 are more important than others. The
objective of this variable speed control in Region 2 is to extract the energy as much as possible. This
can be achieved by manipulating the rotor speed to reach the optimal point in current wind input.
The optimal power curve is determined by the optimal tip-speed ratio, which is the ratio between the
tangential speed of the tip of a blade and the velocity of the wind, as shown in Equation (15).

λ =
Rω

vw
(15)

The system can achieve maximum power tracking control by keeping the rotor speed at an
optimal value since the optimal tip-speed ratio is fixed. However, for a large wind turbine, the slow
response from the rotor shaft and the high variance of wind speed makes the system more difficult to
catch the optimal rotor speed in Region 2. Thus, a torque control is developed because the extracted
torque can be designed continuously to make the response smoother. This specific control law in
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this region is a widely used strategy in wind industry, also referred to as the Kω2 law [30,31]. In this
control, the control torque can be derived as follows:

τc = Kω2 (16)

where K is the control gain andω is angular speed in rotor side. The control gain can be given by the
combining Equation (1) with Equation (16):

K =
τc

ω2 =
Pw/ω

ω2 =
1
2

ρAR3 Cpmax

λ3
opt

, (17)

In spite of tracking optimal rotor speed, this law allows the system to operate regardless the
information of current wind speed. The continuous torque extracting command can also prevent the
system from overloading when comparing with the speed command from optimal tip-speed ratio.
Besides, this law can also still operate the turbine to the optimal operation point successfully since
the optimal parameters, Cpmax and λopt, have already been integrated into this control gain, which
is also the constraint of this control law. The values of dominant characteristic parameters are listed
in Table 3 as a reference of control strategy setup, and model description and the configuration of
Region 2 control is shown in Figure 11.
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Figure 11. Control system configuration in Region 2.

Table 3. The dominant parameters of 2 MW wind turbine.

Name Values Unit

ωrated 25.6771 (rpm)
Trated 7.44 × 105 (Nm)
λopt 7.37 (−)

Cpmax 40.08 (%)

In Region 3, the total rotor power is much greater than rated power; unlike the double-fed
induction generator with gearbox, PMSG directly links the generator to the rotor shaft. That means the
synchronous generator cannot keep the rotor in rated rotating speed. In order to solve this problem,
the pitch control strategy should be built to reduce the power coefficient so that the rotor can be
maintained at the rated speed. In other words, the aerodynamic loading should be changed by rotating
the blade pitch angle in Region 3. Meanwhile, this controller is used to implement constant generator
rated power by using the pitch control algorithm. Figure 12 shows the control system configuration of
maximum power tracking in Region 3.
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5. Simulation Results and Comparison

This chapter contains two parts to verify the validity of the wind turbine interface and the built
mathematic models. The turbine characteristics are expressed in Sections 5.1 and 5.2 demonstrates a
comparison between the measuring data of SCADA and the simulation results. In Section 5.3, mode
shape analysis is recognized as another leading factor in wind turbine, thus the Campbell diagram will
also be illustrated. Finally, the validity of the user-built controller strategy and the performance of real
time response are shown in Sections 5.4 and 5.5 with the Kω2 control law and the MPPT control by
implementing different kinds of wind input. Figure 13 illustrates the overall co-simulation system in
MATLAB/SIMULINK, where the orange block is the interface of MATLAB/SIMULINK and ADAMS.
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Figure 13. Overall co-simulation system in MATLAB/SIMULINK.

5.1. Comparison of Wind Turbine Characteristics

Performance of a wind turbine can be characterized by power curve—a graphical representation
of the turbine electric power output as a function of wind speed. Based on different designs of blade
airfoil and subsystem size, the power curve is recognized as an important regulation of wind turbine
classification. Figure 14 denotes the comparison of the authorized power curve and the simulation
power curve.
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Figure 14. Power curve comparison of the practical wind turbine and the simulation.

In Figure 14, the power curve of simulation is similar to the authorized curve. However, the
power acquisition in middle wind speed level is below the authorized data. To explain this difference,
the curve from simulation is still reasonable. Due to the wind power equation from Equation (1), wind
power is proportional to the cubic of wind speed, which is also consistent with the curve in simulation
(in 5 m/s and 10 m/s). Furthermore, the location of the anemometer has a strong influence on the
result. In the realistic turbine, the anemometer is installed on the top of nacelle and behind the blades,
which not only interferes with the accuracy of data acquisition, but also undervalues the wind due to
the law of conservation of energy. This also explains why the higher the wind speed it is, the less error
it is.

Meanwhile, the power coefficient can be calculated in this co-simulation modulus. If the rotor
speed is too slow, most of the wind will pass through the operating area with little power extraction.
On the other hand, if it is too fast, the blades will act as a solid wall to obstruct the wind flow, which
also reduces the efficiency of power extraction. By determining the optimal tip-speed ratio, the control
law can easily produce the optimal power with the help of power curve in Figure 14. Since the power
coefficient Cp will decrease after the maximum, Figure 15 illustrates the trend of power coefficient.
Under a fixed and steady wind input, the theoretic power which can be extracted from a generator
depends on the value of rotor speed (as generator speed). In fact, the power coefficient is a function of
tip-speed ratio λ and blade pitch angle β. By sketching the power coefficient with tip-speed ratio, the
maximum of power coefficient can be captured in Figure 15, with Cpmax = 0.408 with λopt = 0.737.
The formula of power coefficient can be derived in Equation (18):

Cp =
Pg

1/2ρAvw3 (15)

where Pg is the theoretical power that can be captured by the generator.
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5.2. Comparison of Simulation Results with SCADA

In this section, the comparison will be divided into two parts: one is the subsystem comparison,
and the other is the overall turbine comparison. The comparison in the pitch driven system of DC
servo motor represents the dynamic response of the variable pitch control system. The result in
Figure 16 shows the dynamic response between SCADA and simulation. By extracting the data of
wind, rotor speed, and pitch angle as system input, a path trajectory control was used to catch up the
desired pitch angle. The result shows a good performance in path trajectory control, and dynamic
response of motor torque is correspondent with the SCADA. However, there are the constraints in
computational calculations that may cause certain error between the simulation and the SCADA. Some
possible reasons are environmental parameters mismatch, such as azimuth and tilt angle of the input
wind profile.
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Figure 16. Pitch subsystem comparison of 2 MW wind turbine: (a) Input wind; (b) Pitch angle; (c) Rotor
speed; and (d) Motor current.

Second, the overall data comparison denotes the overall efficiency between the realistic turbine
and simulation model. The wind input will also be shown in this case to express the realistic wind
profile in Taiwan. Figure 16 is a comparison of pitch system in a short-term time response and
Figure 17 makes a long-term time response comparison of turbine dynamics and power output. The
results of Figures 16 and 17 show the reliability and major consistence between simulation model and
SCADA. Thus, this integrated co-simulation methodology can be recognized as a convincing tool for
dynamic simulation.
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5.3. Mode Shape Analysis of Wind Turbine

The significant resonance phenomenon of the wind turbine system can be observed when the
structural frequencies match with the frequency resulting from mass unbalance of blades or the
harmonic frequencies due to blade passage of tower, which is also known as tower shadow. Other
external loads such as low frequency sea wave or earthquake hitting on the tower base will also produce
the resonance in many issues. Maintaining activation of the resonance phenomenon will lead to
structural deformation and create fatigue in the tower [32]. In order to increase the lifetime and reduce
the cost of maintenance, the resonance frequency should be avoided by adding rule-based controller
strategies. All these reemphasize the importance of mode shape analysis. Table 4 shows the comparison
of different mode frequencies by ADAMS analysis and practical experimental measurement.

Table 4. Comparison of blade tower mode shape analysis.

Tower 1st fore-aft 2nd fore-aft

Experiment 0.432 3.281
ADAMS 0.441 3.813

Blade 1st fore-aft 2nd fore-aft

Experiment 1.880 3.000
ADAMS 1.151 3.193

With the help of this interface, a Campbell diagram can be developed in design and analysis, as
shown in Figure 18. By sketching the curve of different mode frequencies versus rotating speed, the
resonance point of frequency can be determined and forecasted beforehand, as the red circles shown in
Figure 18. At approximately 26.5 rpm, blade 1P hit the first tower fore–aft frequency, which is also
observed in the real time. Thus, we can create a rule-based control strategy depending on different
model of wind turbine with the help if this Campbell diagram.
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Figure 18. Campbell diagram of 2 MW wind turbine.

5.4. Overall Simulation in Region 2

Owing to Kω2 law shown in Section 4, torque can be extracted smoothly under randomly
fluctuating wind conditions. In Figure 19, pitch angle starts from standby condition to working
condition, then the power extraction is activated when the rotational speed exceeds the cut-in speed,
which is the optimal rotor speed calculated by cut-in wind speed (3 m/s). Under rated wind speed,
the control strategy follows the Kω2 law to generate the power depending on the current rotor speed.
Although the generator could not reach the optimal rotor speed in real-time response, the system drops
the total efficiency to prevent the impulsive loading when encountering a sudden wind discrepancy.
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The difference between optimal rotor speed and simulation data are shown in Figure 20b,c. Finally, the
overall efficiency and the simulation wind profile are expressed in Figure 21. Obviously, the optimal
power tracking has been implemented according to the Kω2 law. However, some errors, such as the
overestimated power coefficient, can result from following reasons: (1) the drop of power coefficient in
the beginning is owing to system start up with zero rotational speed and (2) the values that are much
larger than the maximum power coefficient are caught by the sudden changes of wind conditions that
the response from the rotor could not react to immediately.
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Figure 19. Pitch angle tracking control in region 2: (a) Pitch 1; (b) Pitch 2; (c) Pitch 3; (d) Pitch 1 tracking
error; (e) Pitch 2 tracking error; (f) Pitch 3 tracking error.
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Figure 20. Generator performance in Region 2: (a) Generator speed; (b) Output power;
(c) Electromagnetic torque.
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Figure 21. Wind input and overall efficiency in Region 2: (a) Wind input; (b) Overall power coefficient.
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5.5. Overall Simulation of MPPT

In order to achieve the maximum power tracking control, a proper control strategy in Region 3 is
necessary. In this region, the power has reached the rated power due to the sufficient aerodynamics
loads. The exceeded power should be released to prevent the overloading and the damage to PMSG
generator. The Kω2 law still operates until rotor speed reaches the rated rotor speed to achieve optimal
power tracking control. Then, variable pitch system is activated when output power is going to
overrated power (2 MW). In Figure 22, pitch actuator starts functioning from 220 s. The pitch reference
is changed with the help of wind table which is built up in advanced and compensated by a PID
controller to smooth the trajectory for the discontinuity. The rotor speed difference in Figure 23a
follows the optimal tip-speed ratio well and performs the variable speed control successfully, and the
output power in Figure 23b,c expresses the control strategy and the simulation successfully, presenting
maximum power tracking control in this co-simulation interface. An overspeed can result from a
sudden rise of the wind input (12 m/s to 18 m/s) in Figure 24a. Under this condition, the power
coefficient must be below the maximum value to prevent the damage in Figure 24.
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Figure 22. Pitch angle tracking control in Region 3: (a) Pitch 1; (b) Pitch 2; (c) Pitch 3; (d) Pitch 1
tracking error; (e) Pitch 2 tracking error; (f) Pitch 3 tracking error.
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Figure 23. Generator performance in Region 3: (a) Generator speed; (b) Output power;
(c) Electromagnetic torque.
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Figure 24. Wind input and overall efficiency in Region 3: (a) Wind input; (b) Overall power coefficient.

6. Conclusions

The paper not only proposed a novel co-simulation system of wind turbines combining three
advanced softwares, but also built up a comprehensive data comparison with a real wind turbine.
Each software played a different role in the simulation to achieve an overall system dynamic response.
Meanwhile, in order to present the dynamic response of the wind turbine, three subsystems such as
DC servo pitch driven motor, AC induction yaw driven motor, and one directly driven permanent
magnetic synchronous generator were built up to drive the components simultaneously. Besides, a
system controller with control strategies was set up to achieve the optimal power tracking control with
Kω2 law. The simulation results in different regions proved the system controller worked perfectly in a
correct mode with a good response. Finally, the parameters of each subsystem were adjusted through
SCADA comparison to ensure the reliability of this simulation.
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