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Abstract: A battery’s state-of-charge (SOC) can be used to estimate the mileage an electric vehicle
(EV) can travel. It is desirable to make such an estimation not only accurate, but also economical in
computation, so that the battery management system (BMS) can be cost-effective in its implementation.
Existing computationally-efficient SOC estimation algorithms, such as the Luenberger observer,
suffer from low accuracy and require tuning of the feedback gain by trial-and-error. In this study,
an algorithm named lazy-extended Kalman filter (LEKF) is proposed, to allow the Luenberger
observer to learn periodically from the extended Kalman filter (EKF) and solve the problems,
while maintaining computational efficiency. We demonstrated the effectiveness and high performance
of LEKF by both numerical simulation and experiments under different load conditions. The results
show that LEKF can have 50% less computational complexity than the conventional EKF and
a near-optimal estimation error of less than 2%.

Keywords: state-of-charge (SOC); tuning-free; electronic vehicle; lazy-extended Kalman filter (LEKF);
battery management system (BMS)

1. Introduction

Electric vehicles (EV) are a cost efficient solution to the worldwide energy crisis and environmental
pollution [1]. Power sources of EVs commonly adopt lithium-based batteries, which have a high
voltage, high energy density, low self-discharge rate, and long cycle life [2]. In order to improve the
performance of power supply, designers sometimes integrate thousands of batteries connected in
series and parallel [3], in which case, a battery management system (BMS) is required to monitor and
control the working status of each single cell properly to keep the EVs safe and to extend the battery
pack lifespan.

An EV BMS serves a number of functions as detailed in [4], among which the online state
of charge (SOC) estimation for each single cell is the core one. The SOC of batteries is defined
as the proportion of the remaining capacity to the total capacity of the battery. An accurate SOC
estimation can not only provide the information of the remaining mileage, but also give assistance to
active balancing and protection of the battery pack [5]. There are many different kinds of methods
that focus on SOC estimation [6-22]. However, due to the limited computational ability of the
embedded processor and the large amount of batteries used in EVs, the SOC estimation algorithm
needs to be simple and reasonably accurate. Open loop approaches, such as the coulomb counting
(CC) [6,7] and open circuit voltage (OCV) methods [8,9], are simple, but their drawbacks are significant:
the CC method directly integrates the current over time to obtain the battery capacity change, leading
to accumulated sensing error [23,24]. It is unlikely to provide an accurate SOC estimation with
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an uncertain initial SOC value [25]. According to [4], OCV can reflect SOC in an accurate way, whereas it
may take hours for the terminal voltage of a LiFePOy battery to become stable and close to the OCV
at low temperatures. In addition to these above-mentioned specific issues, open loop approaches
are also sensitive to sensor noise. Observer-based approaches are applied to solve these problems,
including the Luenberger observer, proportional-integral (PI) observer, extended Kalman filter (EKF),
and so on. The core theory of the observer is to estimate the OCV online through a battery model [26],
rather than waiting for a long setting time, and then use the OCV-based SOC to correct the SOC
obtained through the CC method. The Luenberger observer [11] is the simplest state observer, of which
the logical structure is shown in Figure 1a. It uses fixed gain for state feedback, and the selection of this
gain—more precisely, the pole placement of the observer system [12]—determines the convergence
speed and noise filtering performance. Due to its linear property, the performance of the Luenberger
observer deteriorates heavily when dealing with battery systems of strong nonlinearity [13]. The PI
observer [14] provides a solution to the problem, using a proportional-integral structure to replace
the constant gain. The feedback gains of these mentioned observers are mainly obtained through
trial-and-error, and improper gain settings may lead to system instability. Different from the way of
the PI observer, the EKF [19,20] linearizes the battery model locally and provides a minimum variance
solution of Luenberger observer. It has the advantages of higher converging speed, higher accuracy,
and tuning-free gain as a nonlinear adaptation. However, the cost of computation is about three times
more than that of the standard Luenberger observer [27].

Output
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Feedback

Sensor

Model Output

(a)

Figure 1. (a) General structure of the Luenberger observer and (b) the structure of the lazy-extended
Kalman filter (LEKF).

In this paper, we introduced an idea that the inadequacy of the Luenberger observer can be
compensated through learning from another optimal observer (with the same structure shown
in Figure 1a). More specifically, by combining EKF with the Luenberger observer, a tuning-free
observer with a structure shown in Figure 1b is established for battery SOC estimation. In this way,
the Luenberger gain is determined online and updated intermittently with the EKF results. Noting that
the intermittent EKF is less accurate than the standard EKF method [28], an updating law (Section 2.3) is
proposed to ensure algorithm accuracy. The proposed algorithm can perform similarly to the standard
EKF if we assume that the observing probability of intermittent EKF can be obtained. This assumption
can be satisfied if a known intermitting rate strategy, for instance, in a periodical fashion, is applied.
In this way, the feedback gain of the Luenberger observer can be automatically determined and,
at the same time, the complexity of the proposed method can be significantly reduced while the
keeping the high accuracy similar with standard EKFE. The proposed method can contribute to the
pack SOC estimation since the pack SOC is sometimes determined by the SOC of each single cell [4]
and we decreased the computational cost of obtaining the single cell SOC. To the knowledge of the
authors, this hybrid strategy has not been previously reported, and we named this method as the
Lazy-Extended Kalman Filter (Lazy-EKF), as the full EKF works only occasionally. In this study,
we verified the proposed method to the efficient SOC estimation for power battery BMS simulation.
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The remainder of the paper is organized as follows: Section 2 reviews the conventional Luenberger
observer and EKF algorithm, followed by the introduction of the proposed LEKF method; Section 3
displays the derivation of the LEKF method, and present numerical experiments to illustrate that the
approximations and assumptions for deriving LEKF are reasonable; the performance of the LEKF
method on real batteries is illustrated in Section 4 under different dynamic load conditions; and the
last section reports the conclusion.

2. Lazy Extended Kalman Filter

2.1. Luenberger Observer
The definition of SOC is given by:

t
SOC(#) = SOCy +1 / i(t)dt/Cy (1)
0

where SOCj is the initial state of charge, 1 is the coulomb efficiency, i is the current and C, is the battery
capacity. In this paper, we assume the coulomb efficiency to be 1, and use the cumulative form to
replace the integral in the discrete-time cases for the following calculations. The following combined
model [19] is adopted to describe a battery system:

Vinodel = Eo + Iinput - 7 — ko/SOC — ky - SOC + k3 - In(SOC) + k3 - In(1 — SOC) @)

where Vi4e1 is the model output, the terminal voltage, linpyt is the input current, r is the battery
impedance, and constants E, ko, k1, k», and k3 are the battery model parameters.

The Luenberger observer is a state estimation method originally proposed by Luenberger, based on
model feedback [12]. With the above stated model, the Luenberger observer can be derived to update
S50C in the following way:

SOCk+1 = SOCk + Iinput/(3600 ’ Cn) +L- (Vm,k - Vmodel,k) (3)

where C;, is the battery capacity, Vy, i is the measured voltage at time k, V o4el ¢ is the model voltage at
time k to be predicted based on Equation (2), and L is Luenberger feedback gain, the tuning parameter
in the observer.

2.2. Extended Kalman Filter

The Kalman filter was first introduced to estimate battery SOC by Plett et al. [19,29,30] in 2004.
The algorithm of extended Kalman filter can be described as follows:
For a nonlinear system:
Xp+1 = f(xk/ u) + Wi (4)
Vi = §(Xp, u) + Vi

If it is linearized locally at time k:
Xk+1 = Axg + Bu + wy ®)
Vi = Cx¢ + Du + vi

where wy and v; are independent zero-mean Gaussian noises with variance matrices Q and R,
respectively. Next, the process for extended Kalman filter can be described as follows:
Initialize: when k = 0, let:
%0 = E[x] ©)

Py = [(xo — E[xo)) (xo — E[x0])] @)
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Computation: fork=1,2, ..., compute:

X = f(X—1u) (8)
P, = AP ;AT+Q ©)
K, = P, CT[CP, CT +R] "' (10)
X = % + Ki(yr — g(%,u)) (11)
and:
P, = (I— K,C)P, (12)

For the battery system described in Equation (2), if we set SOC as the state variable, current as the
input (positive when charging), and terminal voltage as output variable, we have:

A=1
B =1/(C,-3600)

_ ko ky k3
C=3-h+3-1%

(13)

X:Xk

D=r

2.3. Lazy Extended Kalman Filter

In order to reducing computation cost and obtain estimation accuracy simultaneously,
we constructed a hybrid strategy by using EKF to maintain its accuracy, together with the original
Luenberger observer for computation efficiency. To measure the frequency of switching, we introduced
an integer variable, NC, as the number of steps per cycle in LEKF (Figure 2). In the first step, we used
EKF to estimate the SOC, and use the Luenberger observer in the next NC-1 steps in the cycle.
The feedback gain for the observer is:

Ky

= — " 14
VNC+e¢e-NC (14)

where Kj, is the feedback gain of EKF in the n'" working cycle, and ¢ is a small number between 0
and 1. For simplicity, it was set to be 0.1 in this paper. The structure of the newly proposed method
is shown in Figure 1b, where the model error is switched for the update. The working procedure of
the proposed LEKF method is illustrated in Figure 2, where “update” means to use Equation (14) to
obtain the Luenberger feedback gain L, and “follow” means to continue to use the previous L for the
following Luenberger iteration.

Time Sequence

Figure 2. Procedure of the proposed LEKF method.
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Based on the computation complexity defined in [27], EKF has a complexity of 16, and Luenberger
observer’s complexity is 5. The average complexity of LEKF can be derived as:
16 NC-—1
lexity = — +5———— 1
Complexity NC+5 NC (15)
Equation (15) measures complexity in the mean sense. Clearly, the complexity of LEKF equals
to that of EKF method when NC is set to 1. The complexity of LEKF decreases with the increase of
NC, but the estimation error of LEKF method increases in the procedure. This is further discussed in
Section 4. BMS typically runs under a real-time operating system (RTOS); therefore, it is reasonable to
use mean complexity to represent computational burden in such an environment.

3. Derivation of the Lazy-Extended Kalman Filter

The key idea of the LEKF is to use Equation (14) to imitate the optimal EKF gain intermittently
and reduce the computational burden. This can be done as EKF and Luenberger observers share the
same structure. To simplify the derivation of Equation (14), the superscripts and the subscripts of the
matrices involved are omitted.

The modified algebraic Riccati function [31] based on Equation (5) for an intermittent Kalman
filter can be formulated as:

an(X) = AXAT + Q — AMAXCT(CXCT + R) ' CXAT (16)

where A represents the probability of the arrival of the observation, and here A = 1/NC. In the stochastic
observation problem, the arrival of the observation is usually considered as Bernoulli process with the
parameter 0 < A < 1 in a wireless sensing study with packet loss [31], and the arrival of the observation
is normally unknown. In this scheme, we decelerate the sampling frequency based on a known strategy
to simplify the application algorithm, which is a special case of the stochastic problem.
When the Kalman filter converges, the mathematical expectation of the matrix P has an upper
bound, which can be expressed as:
E[P| <V (17)

where V is the solution of the following algebraic equations:

for any E[Py] > 0.

In Equation (13), if we treat C as a constant matrix, which means the system is time-invariant
(this is reasonable since the SOC-OCYV relationship can be represented in the piecewise linear form [22]),
and solve Equation (18) based on Equation (13), we have:

an(V) = AVAT + Q — AAVCT(CVCT + R) ' CVAT (19)
AC2V” — QVC? — QR =0 (20)
2 24 2
v QC + v/Q2C* + 4AC2QR 1)
2AC2

Note that the upper bound should be greater than zero.

If we further assume Q?C* << 4AC2QR (true for the LiFePO, battery system, since its OCV-SOC
curve is flat when SOC is within 30%-80%, then C is close to zero, and normally Q is approximately
equal to zero as well) then we can derive:

2
V ~ % VAQR _ e o+ 7V(cg)l{\/Nc 22)
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Note that in Equation (10), if assuming that CP,- CT << R and matrix P is proportional to its upper
bound, we obtain the following approximate relationship:

KxPxV (23)

As previously stated, LEKF is equal to the standard EKF method when NC =1, and when NC > 1,
the intermittent Kalman filter’s gain K’ increases with NC. In Equation (22), if the following condition
is true:

Q << y/QR/C (24)

then we obtain Equation (25) to represent the relationship between the standard EKF feedback gain
and the intermittent EKF feedback gain when EKF converges:

K'/K = V'NC (25)

where K’ is the feedback gain of the intermittent Kalman filter with the working cycle equal to NC,
and K'/K here represents the growth multiple of the intermittent feedback gain corresponding to NC.
Equation (25) can be replaced by the following equation:

K'/K=VNC+¢-NC (26)

Equation (26) is a good explanation of Equation (14). To illustrate the assumptions and
approximations used in deriving Equation (14) are reasonable, we conducted numerical simulations of
the intermittent Kalman filter to verify the proposed method.

Supposing there is a signal of which the magnitude is a constant 1, and sensing noise for measuring
the signal is considerable. We applied the Kalman filter and intermittent Kalman filter (with different
working periods) to estimate the magnitude of this signal. We use the mean of the feedback gain
sequence to represent the general performance of the feedback gain. With the results of the intermittent
Kalman filter using different working periods, we fit the relationship between the growth multiple
and working periods, as shown in Figure 3.
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Figure 3. Relationship between the feedback gain’s growth multiple and working period of the
Kalman filter.

When substituting the results into Equation (26), the output least-square fitting ¢ is 0.09877,
with the confidence interval of (0.0976, 0.09994), and the adjusted R-square of the fitting is 0.9966,
which indicates the relationship in Equation (14) is reasonable and the value of ¢ can be chosen to
be 0.1. It should be noted that the simulation is not related with the batteries, so the result should be
applicable for both old and new batteries.
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4. Experimental Design and Verification

In this section, we introduced the testing platform used for the experiment, followed by validation
of the system model. The study is implemented under constant temperature 25 °C, the charging
current is set to be positive, and the discharging current is set to be negative.

4.1. Experiment Platform

An experimental platform, as shown in Figure 4, is used with the details listed in Table 1.
The analog to digital converter (ADC) in the electronic load has a resolution of 12 bits, and the
controlling accuracy of the thermal chamber is £2 °C.

Figure 4. Experimental platform: (a) charger and discharger and (b) thermal chamber.

Table 1. Battery and device models.

Battery Type Battery Capacity Device Model
OPTIMUM 32650  5.00 Ah (Manufacturer Data)  Electronic Load: Sunway CT3002W
Battery 1 5.13 Ah (Experimental Data) Thermal Chamber: Bole GDS150

4.2. System Model Parameter Identification

As stated previously, the model of the battery is given in Equation (2). At the experimental
temperature of 25 °C, the battery model parameters are identified through the least square fitting.
The results are shown in Figure 5 and Table 2.

[—Measured Vokage
- Model Votage

[=Curent

3.4
T 33
8 32

Current (A)
o & A b o v s o

T 31

{4400 4600 4800

1000 2000 3000 4000 5000 6000 7000 8000 9000
Time step (s)

-
S

300 400
Time Step (s)

(b)

Figure 5. (a) Load condition and (b) model identification result of Battery 1.
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Table 2. Results of the parameter identification.

Parameter Battery 1 Unit

Eo 3.3451 \Y%
r 0.0242 Q
ko 0.0080 \Y%
ks 0.0500 \%
ko 0.0477 \Y%
ks —0.0154 \Y%

The R-square of the fitting is 0.9586, and the root mean square error (RMSE) is 0.0172 V. The high
accuracy of the detected model parameters can support further SOC estimation despite that the
hysteresis is not taken into account in the selected model. The differences between the measured
terminal voltage and the calculated model-based terminal voltage are subtle.

4.3. Verification of the Lazy-Extended Kalman Filter Method

Here, we use loop dynamic load conditions, as shown in Figure 6a—c to verify the LEKF method
on Battery 1. For comparison, we also applied the Luenberger observer and standard EKFE. Since the
Luenberger observer requires gain tuning, we first examined its performance with different feedback
gains, and the results is best with L = 0.01 as shown in Figure 6d. During the entire procedure,
the sampling time is set to be 1s; at the same time we have taken both current and voltage noises into
consideration: standard deviation of the current noise is set to 2 A, and that of the voltage noise is set
to5mV.

Current (A)
Current (A)

L L 1 L L . L

40 50 60
Time Step (s)

30 70 80

15 2
Time Step (s)

]

‘—Reference SOC]

--L=0.01
1=0.005

Current (A)

- S R S-S

L L . L
1000 2000 3000 4000 5000
Time Step (s)

Figure 6. (a—c) dynamic load conditions; and (d) Luenberger observer with different feedback gains
under load condition in (a).

Figure 7a shows compassions of the SOC estimation results by the Luenberger observer, EKF,
and LEKF with different complexities, and Figure 7b shows the corresponding estimation errors. It can
be seen that the converging speed of the LEKF is similar to that of the EKF method, which is much
faster than that of the Luenberger observer. Figure 7b also demonstrates that the SOC estimation errors
can be limited within +2% when the complexity of LEKF is greater than 7.2, which is much better
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than the national standard of many countries (e.g., mainland China, +8%). Furthermore, the error
signal of LEKF is much smoother than that of the Luenberger observer. Figure 7c shows the estimated
terminal voltage of LEKF with the complexity of 7.2. It can be concluded that LEKF can estimate
terminal voltage with negligible noise. Figure 7d illustrates the comparison between the measurement
noise and estimation noise of the terminal voltage for LEKF with a complexity of 7.2. In general we
can come to the conclusion that LEKF can generally decrease the complexity by more than 50% while
maintaining accurate SOC estimation (with errors less than 2%).

The proposed LEKF is also evaluated with different complexities for SOC estimation. A plot of
the SOC error variances against the different algorithm complexities is given in Figure 8. Generally,
the decrease of complexity results in an increase in estimation error, but the relationship between them
is rather nonlinear, and this nonlinear curve is lower than the linear one in the plot, which indicates
the proposed LEKF can be computationally efficient with little sacrifice in accuracy.

—Reference SOC
—EKF Complexity=16
—LEKF Complexity=10.5
—LEKF, Complexity=8 67 []
LEKF Complexity=7 2

—EKF Complexity=16
—LEKF Complexty=10.5
—LEKF Complexty=8 67
LEKF Complexty=7.2
LEKF Complexty=6.1
—Luenberger,Complexty=5,

LEKF,Complexity=6.1
—Luenberger.Complexty=5 |

&
g
o
o
(o]
@

5000 6000

4000
Time Step (s)

(b)

3000 4000
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—LEKF Noise, Complexity=7.2

T
—Reference Terminal Vottage
-~ LEKF Terminal Vokage, Complexty=7.24

6900 6550 7000 7050 7100

o ,NV°|tag°5.5V),
P ‘." e —

N
T

1000 2000 3000

3000 4000
Time Slep (s) Tme Step (s)

(c) (d)

Figure 7. SOC estimation of different methods under load condition in Figure 6a. (a) SOC
results; (b) SOC errors; (c) terminal voltage estimated by LEKF with complexity equal to 7.2;
and (d) noise comparison.

T T
* Varience V.S. Complexity|+
—Smooth Fit

Varience

10 12
Complexity

Figure 8. Relationship between variance and complexity.
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The LEKEF is further tested under dynamic load conditions shown in Figure 6b,c, with NC set
to be 5 (corresponding to the LEKF complexity of 7.2). The corresponding results are shown in
Figure 9. It can be seen that, in all cases, the SOC errors are limited within £2% and error signals are

rather smooth.

" 1
—Reference Terminal Voltage ~ T i T T T = ReIGraNCo SOC
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Figure 9. SOC estimation of different load conditions with LEKF, complexity = 7.2. (a—c): terminal
voltage, SOC, and SOC error of dynamic load condition in Figure 6b; and (d-f): terminal voltage, SOC,
and SOC error of dynamic load condition in Figure 6c.

We also tested the execution times and the mean absolute SOC estimation error of the Luenberger
observer, standard EKF and LEKEF of different complexities. MATLAB 2010a (MathWorks, Natick, MA,
USA) was used on a laptop computer with CORE i5-5200U CPU (Samsung, Daegu, Korea), results are
listed in Table 3. Only the execution times for the core codes in the iteration are counted here.

Table 3. Operating time of different algorithms.

. Complexit Operatin, Mean Absolute SOC
Algorithms (Based on EI:]uatiZn (15)) pTime s Estimation Error

EKF 16 0.166132 s 0.70%
LEKE, NC =2 10.2 0.108353 s 0.75%
LEKF, NC =3 8.67 0.075501 s 0.92%
LEKF, NC =5 7.2 0.049359 s 1.12%
LEKE NC =10 6.1 0.040920 s 1.48%
LEKF, NC =20 5.55 0.022172s 2.52%

Luenberger 5 0.016095 s 4.67%
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Despite the fact that the execution time may vary with the operating platform, programming skills,
and hardware of the embedded systems, the results in Table 3 can still indicate the differences in
computation costs of the algorithms. The execution time of LEKF is shorter than that of the conventional
EKF in all settings, with acceptable sacrifice in accuracy. The Luenberger observer is the quickest
algorithm, but its accuracy is the lowest.

5. Conclusions

A tuning-free hybrid observer, named the LEKF, has been developed and tested in this paper for
SOC estimation of lithium-based batteries. The method uses the results of the full EKF to update the
feedback gain of the Luenberger observer intermittently. LEKF has the following advantages:

(1) Lower computational complexity while maintaining the estimation with near optimal accuracy;

(2) Incorporating a tuning-free observer with no gain parameters to be tuned based on experience or
by trial-and-error; and

(38) Algorithm complexity is controlled by a single variable, NC.

In our future work, we will focus on the battery models with consideration to the aging and
temperatures of batteries. In addition, batch observation will also be investigated, understanding that
cells in a pack are similar to each other.
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