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Abstract: Although it is well known that low nitrogen stimulates lipid accumulation, especially for
algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the
impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated
bioprocessing (CBP) candidates to examine the impact of two nitrogen deficiency strategies on
lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the
commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to
reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG)
biosynthesis pathway in Trichoderma reesei. We then examined the lipid production of Trichoderma reesei
and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural
repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen
depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei
and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and
filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the
impacts of nitrogen depletion on yeast were different from those for fungal species. Under three
types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for
both Trichoderma reesei and Y. lipolytica. While the overall fatty acid methyl ester (FAME) profiles of
Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty
acid metabolic pathway reconstructed in this work supports previous reports of lipid production in
T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further
investigation to identify the genetic targets responsible for the effect of nitrogen depletion on lipid
production improvement will facilitate strain engineering to boost lipid production under more
optimal conditions for productivity than those required for nitrogen depletion.

Keywords: advanced biofuel; lipids; nitrogen depletion; nitrogen repletion; Trichoderma reesei;
Yarrowia lipolytica

1. Introduction

Bacteria, yeast, and fungi can naturally synthesize fatty acids, isoprenoids, or polyalkanoates for
energy storage. These compounds have high energy densities and are compatible with current fuel
infrastructure, permitting their exploitation for hydrocarbon fuel production [1-4]. Consolidated
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bioprocessing (CBP) is a promising strategy for economical lignocellulosic biofuel production,
which biologically integrates enzyme production, saccharification, and fermentation. In general,
two strategies have been utilized for CBP strain development, which are called “native” and
“recombinant” strategies. A native strategy increases the fuel productivity of a naturally cellulolytic
microorganism, whereas a recombinant strategy enables a microbe with excellent productivity with
monomeric sugars to utilize lignocellulosic biomass directly [5,6]. The conventional/model yeast
Saccharomyces cerevisiae and the oleaginous yeast Yarrowia lipolytica are excellent candidates for the
recombinant strategy to enable lignocellulosic assimilation capability. Recently, National Renewable
Energy Laboratory (NREL) scientists proposed a native fungal CBP platform using the model fungal
cellulase producer, Trichoderma reesei [7].

Y. lipolytica is an oleaginous yeast that has been well-studied for its genetic and physiological
properties [8]. Y. lipolytica genome sequence annotation [9,10] and the development of versatile
genetic tools [11-15]) make it suitable for metabolic engineering. In addition, Y. lipolytica is capable
of metabolizing various substrates (e.g., glucose, glycerol, and wastes of animal fats and crude
oils) to lipids, which can be extracted and exploited as an alternative for biofuel production [16].
Thus, unsurprisingly, the application of engineered Y. lipolytica has increased recently for biofuel
production [17-20]. Furthermore, recent progress in expressing key cellulases, xylanases, and beta
glucosidases in this organism may eventually lead to the development of a CBP oleaginous yeast strain
that would permit direct utilization of biomass as carbon source and thus could further reduce the cost
of culturing this organism [21-24].

The filamentous fungus, T. reesei, is a primary producer of cellulases with efficient systems for
cellulase induction and nutrient transportation [25]. It possesses at least three classical enzymes:
exoglucanases (syn. cellobiohydrolases), endoglucanases, and 3-D-glucosidases. Other key enzymes
involved in cellulose degradation have been recently identified, such as GH61 lytic polysaccharide
monooxygenases (LPMOs, now classified as AA9), expansin-like proteins including swollenin
(SWQI), and the expansin/family 45 endoglucanase-like proteins (EEL1, EEL2, and EEL3) [26-28].
The regulation of cellulases production in Trichoderma reesei is complex with various transcriptional
factors (TFs) controlling cellulase gene expression discovered (e.g., XYR1, CRE1, ACE1, ACE2, AreA,
BgIR, and HAP2/3/5 complex) [27,29-36]. Additionally, the environmental conditions for cellulase
induction have also been investigated, with several inducers identified. These inducers include
cellulose, disaccharides of cellobiose, lactose and sophorose, and low-molecular weight compounds,
such as L-arabitol and L-sorbose [37,38]. Trichoderma reesei has been reported to have 16% to 32%
(w/w) total lipid production [39-42] highlighting its potential for being engineered into an oleaginous
organism, although caution should be taken for the lipid content values reported from different
laboratories with different methods.

Multiple strategies have been proposed for overproducing storage lipids in various
microorganisms. Among them, one major strategy is the metabolic engineering by up- and/or
down-regulating several important rate-limiting enzymes or key pathways to channel carbon flux
towards lipid accumulation. The reported target genes are involved in glycolysis, TCA cycle, fatty
acid biosynthesis, storage lipids or triacylglycerol biosynthesis, and beta oxidation [18,19,43—45].
Another major strategy is the optimization of growth conditions, including agitation, aeration, pH,
and temperature [46-49]. Optimization of the medium, such as its C/N ration, has also been broadly
reported to affect the lipid production of oleaginous yeasts [50-52]. Nitrogen (IN)-depletion has
been reported as an effective approach for lipid production improvement in algal species [53-56].
Recently, a few reports also suggested that nitrogen depletion in oleaginous yeast could increase lipid
production [57-59]. However, the impact of different nitrogen deficiency strategies on lipid production
in yeast and filamentous fungi are thus far unreported in literature.

The goals of this study are to fill this nutritional knowledge gap, assess the effectiveness of
changing the C/N ratio, and apply the N-depletion concept on the lipid production of two potential
CBP candidates of Trichoderma reesei and Y. lipolytica. To fulfill these goals, we first conducted
genome analysis to identify the genes involved in the triacylglycerol (TAG) biosynthesis pathway in
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Trichoderma reesei and then examine the lipid production of both Trichoderma reesei and Y. lipolytica in
different media. We also validated the N-depletion approach for lipid production improvement in
both oleaginous yeast and fungal species.

2. Results and Discussion

2.1. Reconstruction of TAG Biosynthesis Pathway in Trichoderma reesei by Genomic Metabolic
Pathway Analysis

Even though engineering the TAG biosynthesis pathway has been the focus of Y. lipolytica
studies [17-19,60,61], this pathway is not well understood in T. reesei. We have recently reported
the genome re-annotation and reconstruction of glycolysis and fermentation; as well as terpenoid
biosynthesis pathways in Trichoderma reesei [62]. The same approach was used in this study to
reconstruct the fatty acid metabolism and TAG biosynthesis pathway in Trichoderma reesei (Figure 1).
Similar to previous results, multiple hits from the Blast result were identified for several enzymes in
fermentation and terpenoid biosynthesis pathways. Additionally, multiple genes that may play a role
in encoding fatty acid metabolism enzymes of in Trichoderma reesei were identified.
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Figure 1. The reconstructed fatty acid metabolism pathway in Trichoderma reesei. Enzymes are

represented by gray diamond boxes. The number(s) adjacent to enzyme represent the homologous

proteins ID number identified in Trichoderma reesei genome with yellow highlight indicating reasonable

similarity to homologous proteins. Multiple numbers were included for enzyme with multiple

homologues. Example reactions discussed are marked by a red star.
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However, none of the genes identified have separate functional domains as subunits of a functional
enzyme complex and nearly all the genes encoding an enzyme are potential paralogues with commonly
conserved protein domains. For example, besides Trire2 | 81110, which bears a high degree of similarity
to the acetyl-CoA carboxylase (ACC) enzyme, gene products of other transcripts (Trire2 | 64345,
Trire2 165921, Trire2 181930, and Trire2 | 120150) were also potential homologues to ACC enzyme
(Figure 1). Trire2 | 78683, Trire2 | 123274, Trire2 | 60418, and Trire2 | 52375 all contain the same conserved
NAD(P)*-dependent aldehyde dehydrogenase superfamily (ALDH-SF) domain. Trire2 | 4480 and
Trire2 | 68466 encode glycerone kinase with the same dihydroxyacetone kinase family domain, and
glycerol dehydrogenase encoded by Trire2 | 122778, Trire2 1120911, or Trire2 1107776 has a similar
Aldo-keto reductases (AKRs) superfamily domain. An exceptional case is the glycerol-3-phosphate
dehydrogenase encoded by Trire2 | 2574 and Trire2 | 76620, which have a different cofactor of NAD or
FAD preference, respectively.

The demonstrated existence of TAG biosynthesis pathway in the genome of Trichoderma reesei not
only supports the previous lipid production phenotype in Trichoderma reesei [47-50], but also provides
a pathway background for physiological study.

2.2. Lipid Production by Yarrowia lipolytica in Different Media

Since the C/N ratio is considered to play an important role in lipid accumulation in oleaginous
yeasts, the lipid profiles of Y. lipolytica in different media were first investigated. The investigation
analyzed three different media types, including (1) regular YPD containing totally 30 g/L of yeast
extract and peptone, (2) YPD with less nitrogen containing totally 10 g/L of yeast extract and peptone,
and (3) a mineral medium (MM) containing only 0.5 g/L of ammonia sulfate supplemented with
0.5 g/L of yeast extract. As shown in Figure 2, a slight adjustment of the C/N ratio in the YPD
medium did not cause significant changes to lipid production. The mineral medium had a C/N
ratio at least 10 times higher than the YPD medium, but the FAME content of the cells growing on
the mineral medium only increased by 30%. This result suggests that, although a high C/N ratio
with less nitrogen in the medium can benefit lipid accumulation, it is likely to limit cell growth and
therefore affect the final lipid titer. Thus, a new strategy to enhance lipid production without sacrificing
healthy cell growth is needed. To this end, nitrogen depletion combined with an enrichment step on
those mediums containing a low C/N ratio before nitrogen depletion might prove effective. Besides
Y. lipolytica, we also included the fungal CBP candidate, T. reesei, to examine two nitrogen deficiency
strategies on lipid accumulation in these two potential CBP candidates.
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Figure 2. Lipid production by Yarrowia lipolytica in YPD and minimal media with different C/N ratios.
Total lipid content in biomass was expressed as fatty acid methyl esters (FAME). Data show mean
value with standard deviation from technical triplicate samples of one representative experiment. The
difference among three conditions is significant based on One Way Analysis of Variance (ANOVA)
with p-value less than 0.001 for all comparisons.
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2.3. Effects of Two Nitrogen Deficiency Strategies on Lipid Production Yield

This investigation revealed that the color of the Trichoderma reesei culture varied when grown
in a medium containing a high C/N ratio versus one containing a low C/N ratio. Two days post
spore inoculation, the high C/N ratio culture turned yellow; the yellow color darkened 3 days
after inoculation, while the low C/N ones remained white. In contrast, the nitrogen depletion at
2 days post inoculation by centrifugation and then switch to nitrogen-free minimum medium caused
the cells from low C/N medium changed to dark yellow, which was similar to that of high C/N
culture. This indicated that the C/N ratio was significant to the physiology of Trichoderma reesei and
could therefore serve as a lipid-production indicator for this strain. This result is consistent with the
observation with algae [63].

In addition to the culture morphology, the FAME production of both Trichoderma reesei and
Y. lipolytica were evaluated. The FAME production of Trichoderma reesei jumped from 7.9% to 13.4%
after nitrogen depletion in the low C/N ratio medium. Similarly, nitrogen depletion in the low
C/N ratio medium increased Y. lipolytica lipid production from 3.2% to 7.4%. Furthermore, the lipid
production of both Trichoderma reesei and Y. lipolytica after nitrogen depletion was higher than that of
the high C/N medium (Figure 3). In addition to enhancing lipid accumulation, nitrogen depletion
also benefited cell growth due to a greater supply of nitrogen in the cell growth phase. The cell
mass of Y. lipolytica grown in low C/N medium with nitrogen depletion (9.0 &+ 0.16 g/L) was greater
than that grown in a low C/N medium with nitrogen repletion (5.6 &= 0.1 g/L) and grew to almost
twice the cell mass in a high C/N medium (4.6 = 0.3 g/L). The same observation was found with
T. reesei, i.e., that more cell mass coupled with higher lipid content combined to increase lipid titer by a
significant amount.
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Figure 3. Lipid production of Trichoderma reesei (Blue columns) and Yarrowia lipolytica (Green columns)
in different minimum media with a high C/N ratio, low a C/N ratio, and a low C/N ratio with
nitrogen depletion, respectively. Data show mean value with standard deviation from technical
triplicate samples of one representative experiment. The difference among three conditions in each
species is significant based on One Way Analysis of Variance (ANOVA) with p-value less than 0.001 for
all comparisons.

The results of this investigation into lipid production of Trichoderma reesei and Y. lipolytica in
different minimal media containing a high C/N ratio, a low C/N ratio, and a low C/N ratio with
nitrogen depletion confirmed that nitrogen depletion can enhance lipid production of both oleaginous
yeast and fungal species. Further investigation however is needed to identify the most responsive
genetic target in order to facilitate future strain engineering for lipid production improvement without
physical nitrogen removal by centrifugation.
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2.4. Impacts of Two Nitrogen Deficiency Strategies on the Lipid Composition Profile

For both Trichoderma reesei and Y. lipolytica, C16 and C18 fatty acids were the predominant forms
of lipids (Figure 4). However, there are two striking differences in the ways that Trichoderma reesei and
Y. lipolytica responded to different C/N ratios in the growth medium.

First, whereas the overall FAME profiles of Trichoderma reesei cultured under the three types of
C/N ratio conditions are similar in the distribution of fatty acid chain lengths (Figure 4A), the overall
FAME profiles of Y. lipolytica grown in the three types of C/N ratio conditions observed a shift from
relative more C16 under high and low C/N ratio medium conditions to more contribution from C18
under that of low C/N with N-depletion (Figure 4B). This contrast between Trichoderma reesei and
Y. lipolytica suggests that these two species may differ in their lipid biosynthesis pathways (especially
the activity of key enzymes), and also in their “fine” mechanisms for sensing N-depletion, which leads
to a more dramatic reshuffling in the FAME.

Secondly, a more detailed analysis revealed that under conditions where a low C/N ratio and
nitrogen depletion was present, the lipid composition shifted to saturated forms of fatty acids for
T. reesei. Y. lipolytica, in contrast, experienced a dramatic increase in its proportion of unsaturated
fatty acids, especially oleic acid (C18:1n9), from approximately 20% under high and low C/N ratio
conditions to 57% when a low C/N ratio with N-depletion conditions was present (Figure 4B).
This observation suggests the presence of an N-depletion trigger up-regulating gene expression and/or
enzymatic activity of stearoyl-CoA 9-desaturase (i.e., delta 9-desaturase), which may be responsible
for the biosynthesis of oleic acid from its precursor, stearoyl-CoA.
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Figure 4. Lipid composition of (A) Trichoderma reesei and (B) Yarrowia lipolytica in different minimal
media with a high C/N ratio, a low C/N ratio, and a low C/N ratio with nitrogen depletion,
respectively. Data show mean value with standard deviation from technical triplicate samples of
one representative experiment.
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Together, the contrasts between Trichoderma reesei and Y. lipolytica suggest that these two species
may provide a suitable pair of model microorganisms to study metabolic responses to N-depletion at
the molecular level.

3. Materials and Methods

3.1. Trichoderma reesei Fatty Acid Metabolism and TAG Biosynthesis Pathway Reconstruction

We have systematically updated the Trichoderma reesei annotation after the 34-Mb genome
sequence of Trichoderma reesei were reported and annotated in 2008 [28]. Additionally, we have
reconstructed glycolysis and fermentation metabolic pathways; as well as terpenoid biosynthesis
pathways [62]. A similar approach was used to reconstruct the fatty acid metabolism and TAG
biosynthesis pathway in this study. 9143 protein sequences containing all manually curated and
automatically annotated models chosen from the filtered models sets representing the best gene
model of each locus (TreeseiV2_FrozenGeneCatalog20081022.proteins.fasta) were downloaded from
JGI website (http://genome.jgi-psf.org/Trire2 / Trire2.download.ftp.html). At this point, the sequences
were imported into CLC Genomics Workbench (V7.0) as reference protein sequences for the Blast
search. KEGG pathways, KOG, enzyme code, reaction substrate(s), and product(s) were extracted
from the annotation results. The potential homologous gene(s) in Trichoderma reesei were identified by
reiterated BlastP searches. Protein product and conserved domain information was examined and the
pathway was reconstructed with the enzyme and pathway information obtained from literature search.

3.2. Strain and Growth Conditions

This work focuses on Trichoderma reesei QM6a (ATCC 13631) and Y. lipolytica Polg (ATCC 20460
devirative, CLIB 725) [64] strains. Trichoderma reesei was revived from frozen glycerol stocks for ~6-8 h
in 10 mL RM (10 g/L yeast extract, 2 g/L KHyPOy) + 2% glucose at 33 °C prior to inoculating overnight
seed cultures in RM + 5% glucose (5% glucose), using shake flasks filled to 80% capacity at 33 °C
at 120 rpm. When the glucose concentration reached approximately 20 to 40 g/L, cells were spun
down at 3840 x g for 10 min at room temperature (RT) and resuspended in either RMG (8% glucose),
RMX (8% xylose), or RMGX (4% glucose, 4% xylose) at 10-fold concentration and used as inocula for
fermentation studies.

Culturing of Y. lipolytica was performed in 125- and 250-mL baffled shake flasks. Seed culture was
first prepared in 10-mL of regular YPD broth in 125 mL flask incubating at 28 °C and 220 rpm. After
24 h, 6 mL of seed culture was inoculated into 50 mL of production media (as described below) in a
250-mL shake flask and incubated in a shaker at 28 °C and 220 rpm. Two types of YPD media were
used for lipid production by Y. lipolytica: one is regular YPD which consists of 20 g/L glucose, 20 g/L
peptone and 10 g/L yeast extract while the other is YPD medium with lower nitrogen, containing
20 g/L glucose, 5 g/L peptone and 5 g/L yeast extract. The composition of the mineral medium is
listed as in Table 1, while the experiment design for nitrogen depletion is illustrated in Figure 5.

Table 1. Minimal medium (MM) recipe used for nitrogen depletion experiments presented in Figure 5.

Chemical MM  High C/N Ratio MM (g/L) Low C/N Ratio MM (g/L)  No Nitrogen MM (N-MM, g/L)
Glucose 30 30 30 30
(NH4),SO4 0.5 0.5 5 0
Yeast extract 0.5 1.5 1.5 0
KH,PO, 7 7 7 7
Na,HPO, 2 2 2 2
MgSO4-7H,O 1.5 1.5 1.5 1.5
CaCl,-6H,0 01 0.1 0.1 0.1

FeCl3-6H,O 0.008 0.008 0.008 0.008

ZnSOy4-7H,0 0.0001 0.0001 0.0001 0.0001
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Figure 5. Experiment design to test the effect of nitrogen depletion on lipid production in
Trichoderma reesei and Yarrowia lipolytica.

3.3. Lipid Determination and Statistical Analysis

The cell biomass was harvested at 5d and then freeze dried for lipid determination using a
one-step procedure as described before [65]: 0.2 mL chloroform-methanol (2:1 v/v) was added to
~10 mg of lyophilized biomass to solubilize the lipids, and simultaneously transesterify the lipids in situ
with 0.3 mL HCL-methanol 95% v /v for 1 h at 85 °C. The resulting Fatty acid methyl esters (FAMEs)
were extracted with 1 mL hexane at room temperature for 1 h and analyzed by gas chromatography
GC-FID (Agilent 6890N) using the DB5-MS column (Agilent, Palo Alto, CA, USA). The FAME was
quantified based on the integration of individual fatty acid peaks in the chromatograms and a 5-point
calibration curve of a mixed, even-carbon chain FAME standard comprised of 14 individual fatty acids
(C8-C24, SIGMA cat# 18918). The total lipid content was calculated as the sum of the even-numbered
FAME contributions. Three technical replicates were used for each sample. One Way Analysis of
Variance (ANOVA) of Holm-Sidak method in SigmaPlot 11.0 (Systat Software, Inc., San Jose, CA, USA)
was used for the pairwise multiple comparison of the total lipid content in different growth conditions.
Factor A (P < 0.001) was selected to compare, and datasets passed both normality test and equal
variance test during analysis.

4. Conclusions

In this study, we demonstrated the existence of a TAG biosynthesis pathway in the genome of
T. reesei. The lipid production of both Trichoderma reesei and Y. lipolytica were examined in different
media, and the results suggested both that nitrogen deficiency strategies enhanced the lipid production
and that the nitrogen depletion strategy was better than natural nitrogen repletion, boosting lipid
production further in both oleaginous yeast and fungal species. Furthermore, the data revealed that
these two species responded differently to the C/N ratio changes and N-depletion when it came to
their lipid profiling. The significant shifts in their proportions of unsaturated fatty acids may indicate
potential applications for downstream lipid extracts for biodiesel and other secondary products.
Further studies are needed to unravel the regulatory networks and genetic targets that play a role
in the responses of yeast and filamentous fungi to nitrogen depletion. These types of studies will
subsequently facilitate rational pathway engineering for lipid-producing strain development.
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