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Abstract: A review of the research activities and achievements at Shenzhen University is conducted
in this paper concerning the creation and further development of novel microcapsule based
self-resilience systems for their application in concrete structures. After a brief description of
pioneering works in the field starting about 10 years ago, the principles raised in the relevant research
are examined, where fundamental terms related to the concept of resilience are discussed. Several
breakthrough points are highlighted concerning the three adopted comprehensive self-resilience
systems, namely physical, chemical and microbial systems. The major challenges regarding evaluation
are emphasized and further development concerning self-resilience in concrete structures will
be addressed.
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1. Introduction

Being a typical composite material, modern concrete (mostly reinforced by steel) has already been
used as a construction material in civil engineering for more than a century, and it is believed to do so
for another century because of the widespread availability of its constituents, and its cost-effectiveness,
versatility, durability and adaptability. However, there are two major issues that raise serious concern
among civil engineers worldwide [1,2], i.e., issues related to its durability and sustainability.

The first one is related to the performance degradation of a concrete structure under environmental
actions. Over the years, there has been a growing understanding that all concrete structures deteriorate
over time. Deterioration will change the performance of a concrete structure under various actions.
Numerous forms of performance degradation have been observed in concrete structures due to the
attack of corrosive ions, gases and other types of aggressive actions in the marine environment. When
deterioration occurs, expensive repairs and maintenance have to be undertaken in order to maintain
an adequate level of performance and the service life of concrete structures. It has been estimated
that the annual cost of repair of concrete structures in Europe is in excess of $20 billion [3]. In China,
the loss due to corrosion of concrete reinforcement is about 250 billion RMB per year, with the rate of
loss increasing by about 10% annually.

Due to the shortage of natural resources, the increase in population and deterioration of
environmental conditions, the second issue concerning sustainability emerges. It is often the case that
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the large-scale demolition of obsolete structures and their replacement with new ones are out of the
question either due to economic reasons or a shortage of resources [4].

In recent years, so-called self-healing materials have been exploited in civil engineering, which
have the built-in capability to repair structural damage autogenously or with the minimal help of
an external stimulus [5,6]. By application of this new type of advanced material in civil engineering,
the necessity of repair and long-term maintenance of concrete structures can be reduced or even
eliminated, resulting in a durable and sustainable built environment.

A microcapsule based novel intelligent resilience system for concrete structures has been recently
established and further developed at Shenzhen University. Its short history and development will
be briefly reviewed in this paper. Starting from the principles of self-resilience, the logical path of
development of such a system is examined. Fundamental terms related to the resilience concept and
strategy are discussed. Remarkable breakthroughs regarding material systems, design procedures
and numerical models are highlighted. The major challenges and further development concerning
self-resilience in concrete will be addressed.

2. Pioneer Work Since 2008

2.1. Microcapsule Technology

Since 2008, attempts have been made to introduce a novel microcapsule based self-healing system
for concrete at Shenzhen University [7–11]. The first challenge concerning microcapsule technology is to
solve the contradictory point regarding the fundamental performance requirements of a microcapsule
in concrete: namely, a microcapsule should be strong enough to resist mechanical impact without
breaking during mixing of concrete, whereas it must not be too strong for a physical trigger (cracking)
to work effectively. The second challenge is to find a suitable healing material with good fluidity and
low viscosity for proper release. The third one is to ensure that the healing material can efficiently
solidify as the target position is reached.

The urea formaldehyde resin was used for the wall of the microcapsule, and bisphenol—an
epoxy resin E-51 diluted by n-butyl glycidy ether (BGE)—was adopted as the healing-agent inside the
microcapsule. A combination of latent curing agent MC120D and tetraethylene penamine (TEPA)—a
type of liquid curing agent functioning at normal temperature was used for curing the healing product.
There were basically four stages in forming microcapsules as shown in Figure 1 (the details of the
synthesis can be found in reference [7,9]):
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Figure 1. Synthesis stages of microcapsules. (a) Emulsion phase; (b) Acidification phase; (c) Shell 
forming phase and (d) Curing phase [7,9]. Figure 1. Synthesis stages of microcapsules. (a) Emulsion phase; (b) Acidification phase; (c) Shell

forming phase and (d) Curing phase [7,9].
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Results showed that the microcapsule obtained with the adopted production process can be used
for the self-healing system in concrete. Figure 2a shows that the shape of microcapsules is nearly
regularly spherical. Nearby, small amounts of remaining epoxy were also seen, which are irregular
and dispersed around microcapsules. The surfaces of microcapsules are complete and dense. There
are a lot of microspherical objects on the surfaces of microcapsules, resulting in a good interface
with the cement hydration products. A typical diameter distribution of microcapsules is shown in
Figure 2b. The average diameter was 166 µm, and the standard deviation was 47 µm. The maximum
and minimum values were 309 and 73 µm, respectively.
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Figure 2. (a) Microcapsules obtained with the adopted production process; (b) Size distribution of 
microcapsules; (c) Broken surface of concrete with microcapsules; (d) Healing materials in cracks 
after solidification [9–11]. 

In the broken specimen of concrete after hardening, it could be clearly seen that the 
microcapsules remain undamaged during the producing process (see Figure 2c). The trigger does 
work efficiently (parts of the microcapsule are broken). The healing mechanism is further 
demonstrated in Figure 2c. The healing materials fill in the cracks and solidify afterwards. The 
healing mechanism is further demonstrated in Figure 2d. The healing materials fill in the cracks and 
solidify afterwards. 

It was found that the diameter, shell thickness, and surface texture of the microcapsules play 
major roles regarding the performance of self-healing system [7,9–18]. Therefore, the control of these 
key parameters during the synthesis process is critical. The average diameter and the size 
distribution of microcapsules can be manipulated by varying the stirring/agitation rate during the 
polymerization process (see Figure 3). A possible reason for this can be ascribed to the fact that the 
higher agitation rate provides a larger shearing force which facilitates a good dispersion of oil drops 
and further prevents agglomeration. This was further verified by recent studies [16,17]. 

Figure 2. (a) Microcapsules obtained with the adopted production process; (b) Size distribution of
microcapsules; (c) Broken surface of concrete with microcapsules; (d) Healing materials in cracks after
solidification [9–11].

In the broken specimen of concrete after hardening, it could be clearly seen that the microcapsules
remain undamaged during the producing process (see Figure 2c). The trigger does work efficiently
(parts of the microcapsule are broken). The healing mechanism is further demonstrated in Figure 2c.
The healing materials fill in the cracks and solidify afterwards. The healing mechanism is further
demonstrated in Figure 2d. The healing materials fill in the cracks and solidify afterwards.

It was found that the diameter, shell thickness, and surface texture of the microcapsules play
major roles regarding the performance of self-healing system [7,9–18]. Therefore, the control of these
key parameters during the synthesis process is critical. The average diameter and the size distribution
of microcapsules can be manipulated by varying the stirring/agitation rate during the polymerization
process (see Figure 3). A possible reason for this can be ascribed to the fact that the higher agitation rate
provides a larger shearing force which facilitates a good dispersion of oil drops and further prevents
agglomeration. This was further verified by recent studies [16,17].
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Figure 3. (a) Size distribution of the microcapsules prepared using various stirring rates [16]; (b) Size 
variation by means of two different stirring speeds [9]. 

The shell thickness and the surface texture of microcapsules can be controlled by varying 
core/shell ratio and synthesis temperature, respectively. This is illustrated in Figure 4. 
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Figure 4. Effect of synthesis temperature on the surface texture: (a) 40 C and (b) 60 C; Influence of 
core/shell ratio on the wall thickness of microcapsule: (c) 0.8:1.0 and (d) 1.2:1.0 [7,9]. 

On the basis of the fundamental understanding of characteristics of microcapsules and their 
influences on the performance of a self-healing system, further optimizations and improvements 
have been made since 2008 at Shenzhen University. One way is to narrow the size distribution in 
order to improve the efficiency of the physical trigger [19]. Besides, microcapsules with a narrow 
size distribution can offer many other benefits, including tight control of the release rate of the core 
material. In addition, alternative healing materials were experimented with in order to improve their 
dispersion performance [20]. 
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The shell thickness and the surface texture of microcapsules can be controlled by varying
core/shell ratio and synthesis temperature, respectively. This is illustrated in Figure 4.
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Figure 4. Effect of synthesis temperature on the surface texture: (a) 40 ◦C and (b) 60 ◦C; Influence of
core/shell ratio on the wall thickness of microcapsule: (c) 0.8:1.0 and (d) 1.2:1.0 [7,9].

On the basis of the fundamental understanding of characteristics of microcapsules and their
influences on the performance of a self-healing system, further optimizations and improvements
have been made since 2008 at Shenzhen University. One way is to narrow the size distribution in
order to improve the efficiency of the physical trigger [19]. Besides, microcapsules with a narrow
size distribution can offer many other benefits, including tight control of the release rate of the core
material. In addition, alternative healing materials were experimented with in order to improve their
dispersion performance [20].
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2.2. Feasibility Study and Evaluation

The healing efficiency with respect to the mechanical and permeability related performance of
the adopted self-healing system in concrete was evaluated by experiments [7–12]. Several important
parameters had been studied, such as the size and dosage percentage of microcapsules, loading level,
temperature, etc.

As shown in Figure 5, there is a tendency for the mechanical strength of concrete to reduce
as the dosage of microcapsules increases. However, the impact can be neglected as the dosage of
microcapsule is about 3%, which may be regarded as an optimum value.
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Figure 5. The influence of dosage percentage of the microcapsule on the mechanical behavior of
concrete: (a) flexural strength and (b) compressive strength [10,11].

The two different healing mechanisms were evaluated, namely mechanical performance recovery
(healing) and permeability related performance recovery. Details of evaluation can be found in
references [9–12].

From Figure 6 it can be seen that the average recovery rate is almost proportional to the dosage
of microcapsules (recovery rate = performance index after healing/original performance index),
whereas there is no substantial influence of the other considered factors (preloading and W/C) on the
strength recovery.
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Permeability related recovery was evaluated by means of the RCM (Rapid Chloride Migration)
test. The recovery is calculated as ((Dafterpreloading/Dhealed) − 1) × 100%, where Dafterpreloading and
Dhealed are the diffusion coefficient obtained after the preloading and after healing, respectively.
The tendency of recovery shows a linear increase for the adopted parameters, such as the dosage, size
of microcapsules and the pre-loading level, whereas the healing temperature demonstrates as strong
an effect on the recovery (see Figure 7).
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3. Principle and Strategy Development

It is clearly shown that attempts to introduce a novel self-healing system in cementitious
composites at Shenzhen University have been successful. This encouraged the research team to
further explore a more comprehensive system for concrete structures.

On the basis of research and application experience concerning the service life of concrete
structures, in particular, in marine environments, the required fundamental performances (at three
different levels: namely material, element and structural level) are classified and it is clear that the
degradation of performance of a concrete structure starts at the material level. Anything related to
durability should be implemented at this point. Therefore, degradation-related resilience is paramount
and forms the foundation for the strategy development of the targeted self-resilience system [2,4,21].
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The principle of resilience consists of two important aspects (see Figure 8a): namely, healing
(related to mechanical damage) and recovery (related to the recovery of functionality).
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It has to be emphasized that the self-resilience system is based on the microcapsule technology.
In other words, the container of healing materials is restricted to the microcapsule, however, the type
of materials of microcapsules could be essentially different (e.g., organic or in-organic, life-friendly,
water-proof, etc.), depending on the targeted recovery performance index.

As far as the healing-agent is concerned, there are a large range of options, from organic, bacteria
to in-organic materials.

With respect to the trigger, not only is the physical trigger (mechanical trigger) further explored,
but the so-called chemical trigger has drawn major attention in our current research. This is in turn
related to the resilience principle, namely, healing and recovery at a multi-scale.

In summary, three relatively independent but strategically integrated approaches have been
adopted aiming at the formation of a microcapsule based comprehensive self-resilience system.
The targets are to heal the mechanical damage or to recover lost functionality corresponding to
impermeability or corrosion protection (Figure 8b):

• Physical system (organic or in-organic healing agent, physical trigger, self-healing at micro or
meso level)

• Chemical system (organic or in-organic healing agent, chemical trigger, self-recovery at
multi scale)

• Microbial system (bacteria as healing agent supplier, physical trigger, self-recovery at meso or
macro level)

4. Several Major Breakthroughs

Relying on several cohesive research projects funded by the Nature Science Foundation of
China, several breakthroughs have been made recently at Shenzhen University. They will be briefly
highlighted in the following section.

4.1. A Chemical System with a pH Sensitive Trigger

A microcapsule based self-recovery system with a chemical trigger (in this case pH sensitive) has
firstly been proposed and later on further developed at Shenzhen University [22–27], aimed at the
performance recovery in protecting rebars against corrosion. The fundamental idea behind this system
is outlined in Figure 9.

To prepare the microcapsules, sodium monofluorophosphate and microcrystalline cellulose
were mixed into Polysorbate 80. Then, the small spherical particles were molded by the
extrusion–spheronization method, which is able to control the diameter of a microcapsule. Finally, the
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spray drying method was adopted to fabricate microcapsules, spraying the liquid PS onto the surface
of spherical particles. Three types of microcapsules with different amounts of shell materials were
fabricated; the mass percentages of shell materials were 10%, 20% and 43%. For example, 10% refers
the percentage of increased weight of microcapsules, according to that of spherical particles molded by
the extrusion–spheronization method.Materials 2017, 10, 2  8 of 25 
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Figure 9. The working principle of a microcapsule based self-recovery system with a pH sensitive
trigger for the protection recovery of rebars against corrosion: (a) system in reinforced concrete; and
(b) situations after the trigger of the self-recovery system is excited [24].

The results of studies on the surface damage of microcapsules at different pH values by means
of SEM are illustrated in Figure 10. SEM images indicate the surface changes of microcapsules after
soaking in solutions with different pH values for equal periods of time. For pH = 13, there is no
obvious damage on the surface of the soaked microcapsules. As the pH value is reduced, surface
damage becomes more and more obvious. In a neutral environment with pH = 7, the surface of a
microcapsule is totally destroyed after soaking. This further confirms that the environmental pH can
be used as a trigger mechanism for this type of self-healing system.

The release mechanism is further studied after the trigger is excited [24]. To examine the release
kinetics of the ethyl cellulose/calcium hydroxide microcapsules, a pH meter and a micro-plate reader
were employed to monitor the variation of pH value and the release process of the capsule core,
respectively. The calcium ion calibration curve of OD (optical density) produced at 575 nm is utilized
to determine the amount of Ca2+ released from the capsule cores.

According to the calibration curve, the amount of healing material released from the microcapsules
at every designated pH level was calculated, as the pH value was measured. Figure 11a plots the
change of pH value over time for different initial pH values. After a 60-day test, the pH value tended
to be stable at approximately 12.5 for all adopted initial pH values, although fluctuations appeared
during the middle period in some cases. The dramatic change of pH value at the beginning of the
tests suggests that healing materials were released from microcapsules due to the gradual breaking
down of microcapsules induced by low pH level. The accumulative amount of calcium ion released at
different pH values as a function of time is illustrated in Figure 11b. The release amount significantly
increased with time for all adopted initial pH values, except for the case of pH = 13 which exhibited
almost no change in the considered release amount. Details over the release mechanism can be found
in reference [24].
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To evaluate the recovery efficiency, a self-recovery system with sodium monofluorophosphate
(Na2PO3F) as the healing material was adopted. The system is triggered by pH value variation.
The study focused on examining the healing mechanism of the system for chloride-induced corrosion
of rebar in a simulated concrete environment [26]. The microcapsules were then put into the simulated
concrete environment in order to evaluate their protection performance against steel corrosion by
means of electrochemical impedance spectroscopy established in early studies [25].

The controlled-release testing, according to the description in Ref. [24], is performed to compare
the simulated concrete pore solution without any defense and the solution with microcapsules.
Figure 12a demonstrates the relationship between time (day) and pH value. It seems that the two
types of solution experience a constant drop in pH value. It is during the sixth day that the pH
self-regulating ability of microcapsules starts to appear. Afterward, remarkable differences can be
observed. Moreover, the pH value of the solution with the microcapsule slightly increases after the
14th day. This feature may be attributed to the pH-sensitive capsule which is able to regulate the
concentration differences of OH between inner and outer microcapsules. However, in the case of
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the solution without a microcapsule, a consistent drop occurs. The same conclusion can be drawn
from the sample photographs (Figure 12b) of steel rebar corrosion after 100-day exposure to Cl− at a
concentration of 3000 mg/L. Extensive corrosion is observed for the sample without microcapsule, in
clear contrast to that with a microcapsule based sample for which no obvious corrosion is evident [26].Materials 2017, 10, 2  10 of 25 
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Very recently, a kind of microcapsule based self-recovery system with ethyl cellulose (EC)/calcium
hydroxide was used to recover the protection ability against corrosion based on increasing hydroxyl
content in concrete [27]. The capacity to lift the threshold value of [Cl]/[OH] in this system is evaluated.
Different dosages of microcapsules are placed in the sodium chloride solution with a concentration of
3.5 wt % to characterize the corrosion protection by means of linear sweep voltammetry (LSV) and
electrochemical impedance spectroscopy (EIS). The working mechanism of this system consists of the
chemical triggering (pH sensitive shell) and releasing (healing material) processes when a microcapsule
is exposed to a decreasing pH condition, and the release of healing materials in turn restores the alkaline
environment to protect against steel bar depassivation. The test results of environmental scanning
electron microscopy (ESEM) equipped with texture element analysis microscopy (TEAM) reveal that
the capsule shell sensitive to the [Cl]/[OH] ratio forms an excellent low-pH trigger mechanism.

4.2. A Chemical System with a Chloride Sensitive Trigger

A novel idea related to the performance self-recovery was first proposed and patented by
Shenzhen University. By means of a chemical trigger (chloride sensitive), a self-resilience system based
on the microcapsule technology has been proposed and developed, where the capacity to resist the
penetration of harmful agent (chloride ion) into concrete will be restored. As the concentration of
this harmful agent reaches a certain level, the microcapsule will be broken and the healing material
inside the microcapsule will take action to remove the harmful agent. A remarkable breakthrough
was made in 2015 related to this [28]. Various attempts have been made since then and progress has
been realized [29–34]. Up to now, various types of chloride sensitive microcapsules were obtained and
further optimization is needed before this can be fully implemented in concrete.

A chloride sensitive microcapsule was first fabricated by using a silver alginate hydrogel
that disintegrates upon contact with chloride ions which provide a stable trigger for responsive
microcapsules [28]. A facile method is to fabricate responsive wall materials of microcapsules
containing metal ions (such as Ag+, Pb2+). When these microcapsules come into contact with chloride
ions, the metal ions will be extracted to disintegrate microcapsules (see Figure 13a). Alginate is a
natural anionic polymer acquired from brown algae and has been extensively utilized for biomedical
applications. Sodium alginate can be cross-linked with many metal ions (such as Ca2+) to form hydrogel.
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In our first try, Ag+ is chosen to be coordinated with alginate to form the wall of microcapsules. Silver
alginate (Ag-alg) can also form a characteristic “egg-box” structure. Each alginate molecular chain can
be linked with other chains, forming a three-dimensional gel network (see Figure 13b), which is strong
enough to form the wall of microcapsules.Materials 2017, 10, 2  11 of 25 
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Figure 13. (a) Schematic of capsules triggered by chloride ions; (b) The structure of alginate chelated
with Ag+ [28].

X-ray computed tomography (X-ray CT) was employed to detect concrete specimen embedded
with Ag-alg microcapsules. Figure 14a shows the concrete specimen embedded with Ag-alginate
microcapsules, but is not soaked with NaCl solution. Figure 14b depicts the concrete specimen exposed
to the chloride environment. It is clear that the microcapsules near the surface of concrete specimen
disappeared. In X-ray CT 3D model, heavy metals like Ag have a strong absorbency for X-ray, and
appear as bright objects in 3D images. In comparison with X-ray CT 3D images (Figure 14c,d), the
microcapsules near the surface of concrete specimen also disappeared. This means that the adopted
microcapsule system is sufficiently chloride sensitive.
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4.3. Microbial Self-Healing System

Self-healing of concrete cracks by bacteria is based on microbial-induced calcium carbonate
(CaCO3) precipitation, which is a common phenomenon in the natural environment. Certain
mineralization bacteria can make use of carbon source to produce CO2 or CO3

2−, which subsequently
reacts with calcium ions to form calcium carbonate precipitate on the surface of concrete cracks, thus
sealing the concrete cracks. At the same time, the metabolism of mineralization bacteria creates an
alkaline environment, which is further in favor of the process of calcium precipitation. Moreover,
bacteria also provide nucleation sites for calcium precipitation. In addition to the ability to induce
calcium precipitation, self-healing bacteria should be alkaliphilic and spore-forming due to the harsh
environment inside concrete.

The proposed microbial self-healing system at Shenzhen University is a microcapsule based
system. It has clear advantage in comparison with other types of microbial self-healing systems. The
spore has to be untouched during mixing of concrete. In addition, it cannot unintentionally come
into contact with water, which will result in premature bacteria mineralization. Therefore, it is ideal
to encapsulate bacteria in microcapsules to safeguard spores and to introduce a trigger system for
smart healing.

In the last few years, several tough issues have been dealt with and some of the achievements
will be briefly introduced in the following sections.

4.3.1. The Calcium Precipitation Activity (CPA) Related Issues

The CaCO3-mineralizing bacteria from different taxonomic groups have shown potential in
restoration of construction material such as concretes, cements and stone materials. However, these
strains do not meet the demands of practical applications due to some shortcomings, including low
mineralizing capacity.

The first step is to select the most efficient bacteria species in order to obtain a high-efficiency
calcium-precipitating bacterium [35–38]. An integrated high-throughput screening (HTS) strategy
was developed for the determination of calcium precipitating activity (CPA) of bacteria. The isolates,
mutagenized by ultraviolet radiation (UV), were cultivated in the suitable media containing calcium ion
by using 96-deep-well microliter plates. The residual calcium in supernatants from micro-cultivation
plates was determined by O-Cresolphthalein Complexone method to evaluate the CaCO3-producing
activity. On the other hand, the activity of carbonic anhydrase of the isolates, which is responsible
for the formation of CO3

2−, was also monitored to further evidence the bacteria-induced calcium
mineralization process. It is proved that this novel HTS strategy is a promising procedure for selecting
highly efficient calcium mineralizing microorganisms [35].

In addition, 13 morphologically different strains were obtained from mangrove sediment and
soda lake sediment. The calcium precipitating activities (CPA) of the strains were evaluated [36],
and strainH4 (a type of bacteria strain identified as bacillus species) exhibited the highest CPA value
(see Figure 15). Strain H4 was identified as bacillus species based on the 16S rDNA sequence analysis.
Further, effect of variable factors on calcium precipitation of strain H4 was evaluated. The result
showed that sodium lactate and sodium nitrate were the best carbon source and nitrogen source for
the precipitation of calcium ion, respectively.
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The features of the precipitated products were further studied [37]. As shown in the SEM images
(Figure 16a,c), a large amount of crystals grew in the bacteria-inoculated medium. Two types of
morphological crystals were observed, single irregular spheres and irregular branches/aggregates
of spheres (Figure 16a). Both types of crystals had rough surfaces with many deformed lamellar
rhombohedra (Figure 16c). Single irregular spherical crystals with a size of 20–40 µm agglomerated
into irregular branches. Moreover, the crystals showed evidence of bacterial involvement. Rod-shaped
and round holes (1–4 µm) were found on the surface of the crystals (Figure 16c), which presumably
occurred in the space occupied by the bacterial cells or spores. These holes in the crystals also
suggested that bacteria served as nucleation sites during the mineralization process. For comparison,
in bacteria-free medium, only fusiform and amorphous crystals were formed, and the amount of
formed crystals was much smaller than that in bacteria-inoculated medium (Figure 4b,d). Furthermore,
no sign of bacteria involvement was observed during the production of crystals.
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Element composition analysis via energy dispersive spectroscopy (EDS) revealed that the crystal
is primarily composed of calcium, carbon and oxygen with a weight ratio closely matching that of
CaCO3, indicating that the crystal is CaCO3. Furthermore, the XRD analysis confirmed that the crystal
induced by H4 is calcite [37].

Influential factors in the process of bacteria-induced calcium precipitation such as the carbon
source, nitrogen source, pH and Ca2+ concentration were also studied [37]. Experimental results
revealed that sodium lactate and sodium nitrate were the best carbon and nitrogen sources for H4.
Moreover, pH poses a significant impact on the bacteria-induced calcium precipitation, and H4 could
effectively induce calcium precipitation in the pH range of 9.5–10.5. Although it is difficult to determine
the actual pH inside a crack of concrete after ingress of water or moisture, the inner microenvironment
will be alkaline to a great extent due to the existence of Ca(OH)2. Therefore, H4 is a promising
bacterium for self-healing of concrete cracks, considering that its CPA can remain at greater than
80% even if the pH reaches 11.0. In addition, it was found that the presence of excessive Ca2+ not
only inhibits the bacterial-induced calcium precipitation process but also results in waste of the Ca2+

resource, and maintenance of a Ca2+ concentration lower than 30 mM is a good strategy. Fortunately,
due to the poor solubility of calcium hydroxide, the free Ca2+ concentration of the pore solution inside
the concrete is normally less than 30 mM [23], making bacterial-induced calcium precipitation feasible.
Furthermore, introduction of an extra Ca2+ source into concrete for the microbial self-healing process,
as used in selected previous studies, might not be necessary from this point of view.

It was observed that there exists a major drawback in the current microbial self-healing system,
i.e., the calcium precipitation seems to only happen on the concrete surface area nearby the crack.
The reason why CaCO3 cannot be precipitated deep inside the crack might be because of the shortage
of oxygen. It is well known that both water and O2 need to be present inside the crack to activate
the bacterial self-healing concrete. While water is sucked into the tiniest microcracks due to capillary
suction, the question may arise as to whether adequate oxygen will be available deep inside the cracks.
Given that both bacterial spores and nutrients were provided in the self-healing system, lack of oxygen
inside the concrete structure might be a major inhibition factor.

To deal with the problem mentioned above, a pioneer attempt at Shenzhen University has been
made to develop a strategy to supply oxygen for the microbial calcium precipitation performance [39].
Firstly, a suitable peroxide was screened to develop an oxygen-releasing tablet (ORT) that can provide a
stable oxygen supply. Then, the effect of oxygen provided by the selected ORT on the microbial-induced
self-healing process, including the germination of dormant spores and calcium precipitation activity of
the bacteria, was evaluated. Furthermore, a binary self-healing system which contains bacteria and
ORT was established and the overall calcium-precipitating activity of the system was investigated.
Details can be found in the reference [39].

The calcium precipitation of the binary self-healing system was evaluated in bacteria medium
solution, and the result was shown in Figure 17 [39].

From Figure 17, it can be seen that during the first 5 days, no calcium precipitation was observed.
It might be because spores need time to germinate and grow in the vegetative cells. After 5 days,
CaCO3 started to form in the tubes where bacteria were incubated. In the beginning stage of calcium
precipitation, no difference in the formation of CaCO3 could be found between the tubes with or
without oxygen supply. However, for the tubes with oxygen supply, the amount of insoluble Ca2+

increased sharply from 7 days. After 32 days, insoluble Ca2+ reached 27.5 mM (Figure 17c). Conversely,
for the samples without oxygen supply, no visible increase of insoluble Ca2+ was obtained by H4 after
7 days. Only 6.9 mM of insoluble Ca2+ was achieved at 32 days, which is almost 25% of that with
oxygen supply. Furthermore, more Ca2+ that was precipitated by H4 in the presence of CPL1 can be
further confirmed by the result in Figure 17d that the presence of oxygen led to a smaller increase of
soluble Ca2+ concentration than that without oxygen supply. Figure 17a exhibits the DO (dissolved
oxygen) change in the process. It was clear that CPL1 provided a stable oxygen supply. The DO
maintained more than 15 mg·L−1 during the whole process with no bacteria involved. However,
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the presence of H4 resulted in a huge decrease of DO from more than 15 to less than 4 mg·L−1.
Furthermore, it can be noticed that the DO of the control (MCC/H4) was very low, which might
account for the lower calcium precipitation by the bacteria in the absence of oxygen supply (Figure 17c).
From Figure 17b, it can be found that involvement of the bacteria alleviated the fluctuation of pH
during calcium precipitation [39].
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Figure 17. DO and pH change during calcium precipitation process of binary microbial self-healing
system. MCC and CPL1 represent the microcrystalline cellulose and oxygen release compound with
the ratio of CaO2 and lactic acid being 9:1, respectively: (a) DO and (b) pH; Calcium precipitation
performance of binary microbial self-healing system. MCC and CPL1 represent the microcrystalline
cellulose and oxygen release compound with the ratio of CaO2 and lactic acid being 9:1, respectively:
(c) Insoluble Ca2+ and (d) soluble Ca2+ [39].

The primary experimental results demonstrated that bacterial spores in binary self-healing system
(bacteria/ORT) are able to germinate, grow, and induce calcium precipitation effectively, and the stable
oxygen supply is important for microbial calcium precipitation. Further study will be related to the
longevity issues of the adopted bacteria/ORT system.

4.3.2. Special Issues Related to the Microcapsule Technology for Microbial Self-Healing System

Generally speaking, natural polymers are biocompatible while synthetic polymers are deleterious
in various degrees for microorganisms like bacteria. That is why most of the existing biological
microcapsules are walled by natural polymer materials. However, natural polymers are usually
hydrophilic, i.e., they take up water and cause the shell of the microcapsule to swell. It is clear that this
is not suitable for self-healing systems for concrete.

Various attempts were made at Shenzhen University to find harmless and waterproof
microcapsules which are suitable for application in microbial self-healing systems [40–43].

A typical example will be given in this section concerning the abovementioned research. In one
study, Koch’s bacillus DSM6307 was encapsulated in polydimethylsiloxane with hydrophobic epoxy
resin [40]. The process is anhydrous to avoid the germination of spores. All the materials used were
harmless. To confirm this, a biocompatibility test was carried out by taking the same amount of spores
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mixed with epoxy E-51, KH-792 and water, respectively, resting for 160 min, isolating and collecting the
spores which were then cultured for 24 h. Afterwards, the culture medium was extracted to determine
the optical density by 490 nm-ultraviolet absorption value. OD490 are positively correlated with the
bacterial concentration. After encapsulation, the fraction of surviving spores is over 90%, indicating
the process has a mild effect on spores’ viability (see Figure 18a,b). The water tightness was tested by
soaking microcapsules in water for 10 days. No change in shape, size and color of microcapsules was
observed. The time was prolonged to 1 month, with no further change. So, it can be concluded the
microcapsules have excellent waterproof performance (see Figure 18c,d).
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4.3.3. Feasibility Study on the Microcapsule Based Microbial Self-Healing System

The realization of a real microcapsule based microbial self-healing system in concrete is regarded
as an essential step towards the application of such technology in civil engineering. To prove this
idea from paper to reality, it is mandatory to carry out a feasibility study. A first attempt was made
to fabricate a microbial system in concrete by encapsulating microcrystalline cellulose (MCC) mixed
with spores. The shell material was ethyl cellulose (EC) in the first attempt [44] and later on it was
changed to a type of water-proof material [45]. The encapsulation process is illustrated in Figure 19a.
The encapsulation process comprised: (a) forming the grafted skeleton by using microcrystalline
cellulose (MCC); (b) mixing alkaliphilic spores with high mineralizing activity with MCC; and
(c) encapsulating MCC + spores in ethyl cellulose (EC) or epoxy resin (ER).

The survivability of the encapsulated bacteria was studied, together verifying the protection
functionality of the microcapsule. It was found that pure spore has the highest mineralizing activity.
Broken microcapsules have higher mineralizing activity than non-broken ones, which indicates that
EC microcapsules can effectively protect microorganisms in this system (Figure 19b,c).

The trigger mechanism and the working process was further studied by means of the optical
microscopy and the high resolution X-ray Computed Tomography (XCT) [44]. The crack-introduced
specimen with a crack width from 20 to 50 µm was carefully studied to determine the working
mechanism of the trigger. It was shown in Figure 20a–c that some microcapsules were fractured
upon the formation of a crack, indicating that the desired trigger system actually works. Subsequent
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production of calcium carbonate confirmed by EDS indicated activation of encapsulated mineralization
bacterium. The crack-healing process, mechanism and healing effectiveness were studied to evaluate
the feasibility of the microbial self-healing system. Compared with the specimens without embedded
bacterium, the cracks in the specimens embedded with bacterial microcapsules were largely filled
(Figure 20d), which suggests that self-healing of concrete cracks can be achieved by introducing
encapsulated mineralization microorganisms into concrete structures.
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Figure 20. (a,b) Breakages of microcapsules upon cracking and subsequent healing procedure
monitored by XCT in 3D; (c) SEM images and XCT results of the microcapsule before and after
exciting of the trigger; (d) Formation of crack and subsequent healing procedure monitored by optical
microscopy [45].

4.4. Evaluation of a Microcapsule Based Self-Resilience System

The behavior and performance of the microcapsule based self-resilience system have to be
evaluated through effective and meaningful ways (either experimentally or numerically). Up to
now, various techniques have been applied to appraise the obtained system with success to some
extent. In addition to the traditional macro test methods (for determination of mechanical and
transport properties of concrete) [26,46–48], the more advanced technology, such as the X-ray computed
tomography (XCT) and the image analysis technique, has been adopted in the evaluation process [49].

The whole healing process and healing effect of a microcapsule based self-healing system in
concrete was monitored and qualitatively as well as quantitatively evaluated by means of XCT and an
image analysis technique. The experimental procedures are illustrated in Figure 21A. A microscopic
compression testing instrument was integrated into the XCT system to obtain a real-time compressive
loading. Sample 1 and Sample 2 were put in the built-in loading device and pre-loaded with 1100 N
and 900 N, respectively. As shown in Figure 22A, microcapsules are broken by the formation of cracks
(working mechanism of a physical trigger) and healing materials are released from microcapsules.
Then, the samples with initial cracks were cured in different curing conditions, in which Sample 1
was submerged and Sample 2 was cured in a standard curing condition (95% RH, ±20 ◦C). XCT was
applied to monitor the variation of inner microstructures at different healing times (see Figure 21B).
Based on the raw data measured by XCT, the reconstruction of the inner microstructure was carried
out by means of an image analysis technique.
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The crack-healing process and healing effect were evaluated with the help of the reconstruction
of inner microstructures (including 2D slices, 3D digital image) and quantitative analysis. With the
help of an image analysis technique, the total volume of air void (cracks and pores) was labeled and
calculated. As shown in Figure 22B, the total volume of air void (cracks and pores) of both samples
was decreased as the healing time increased. With further calibration, the adopted method could help
to evaluate the healing effect in a quantitative way.
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5. Challenges and Further Development

The evaluation of performance characterization of self-resilience system remains to be a major
challenge. Due to the inhomogeneity and randomness, bulk behavior of the concrete after resilience is
difficult to experimentally evaluate at a macro level. The only feasible way to do this is to examining
the individual behavior of a single unit in the randomly distributed system on a fundamental level. The
relevant material properties are then determined experimentally with the help of specific facilitated test
set-ups. Afterwards, numerical methods have to be exploited by means of the obtained key parameters
at the micro level to simulate the bulk behavior of the resilient system.

The behavior of a single microcapsule in concrete was numerically studied at Shenzhen
University [50]. The effect of the physical trigger (cracking) on mechanical behaviors of the single
microcapsule was simulated, whereas the size and the thickness of microcapsule wall, the strength of
the microcapsule wall, the bonding strength between the microcapsule and concrete and the direction
of the crack approaching the microcapsule were considered as the key parameters (Figure 23a).
The criterion surface for determination of a microcapsule rupture or de-bonding is shown in Figure 23b.
A point under the surface means that a microcapsule ruptures. Otherwise, the microcapsule is
de-bonded. With this criterion, the behavior of a microcapsule can be judged by using the parameters
without need for FEM computation every time.

It is evident that the key parameters have to be experimentally determined numerically to obtain
a realistic picture. To realize this, the following working activities have to be fulfilled: (a) working
out feasible and workable micro testing facilities; (b) quantifying the relevant key parameters
for various components (such as the material properties of microcapsule, healing agent, interface
between microcapsule and cement matrix, static and kinetic performance of the healing process, etc.;
(c) quantifying the physical and chemical trigger mechanism; and (d) examining the healing and
recovery performance of a single microcapsule system.

An attempt in this direction was made recently at Shenzhen University [51–53]. A single
microcapsule with different diameter and shell thickness were selected under an optical stereoscopic
microscope and then bonded on the test platform. The micromechanical properties of single
microcapsule such as Load-Displacement curve, E-modulus and rupture force were obtained by
a nanoindentor (see Figure 24). The elastic modulus can be indirectly calculated. However, the strength
of the shell material itself needs to be further determined. The total mechanical behavior of a single
microcapsule should be simulated if the correct parameters are adopted.
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6. Concluding Remarks  

A comprehensive self-resilience system was developed protecting against attacks in aggressive 
environments, resulting in concrete structures with durable and sustainable properties that far 
exceed those of conventional ones. Multi-scale self-healing and self-recovery systems, embedded in 
concrete, will provide the required resilience. Research at Shenzhen University will focus on the 
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(i) establish the relationship between the multi-actions and the action effect for concrete;  
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mechanisms;  
(iii) incorporate existing self-healing and self-recovery systems to enhance the long-term 

performance of concrete structures by creating resilience to physical and chemical attack, 
through the addition of agents within microcapsules, that are able to mitigate the action effects 
in a range of aggressive environments;  

(iv) set up facilities and procedure to evaluate self-healing and self-recovery effects at the micro 
level;  

(v) quantify key parameters related to fundamental material properties in order to supply the basic 
input for numerical simulations;  

(vi) validate the design procedure and numerical model using data from bespoke tests at 
multi-scales; 

(vii) demonstrate the self-resilience system by using experimental and numerical data. 
(viii) realize applications in practice. 
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Figure 24. (a) Load-displacement curve of the microcapsule; (b) the image of ruptured microcapsule
after test [52].

The evaluation of a self-resilience system plays a paramount role as far as the successful
application of such a system in concrete structures is concerned. Current approaches and
methodologies are strongly based on the traditional macro level methods, which make it difficult
to appraise newly created systems in an appropriate way. To deal with this challenge, a new
RILIEM TC SHE was set up recently (in June 2016), which aims at solve this problem through
international cooperation.

6. Concluding Remarks

A comprehensive self-resilience system was developed protecting against attacks in aggressive
environments, resulting in concrete structures with durable and sustainable properties that far exceed
those of conventional ones. Multi-scale self-healing and self-recovery systems, embedded in concrete,
will provide the required resilience. Research at Shenzhen University will focus on the following key
issues to address the major challenges related to the development and application of a microcapsule
based on self-resilience systems in concrete structures, namely to:

(i) establish the relationship between the multi-actions and the action effect for concrete;
(ii) link resilience requirements with environmental action and the related degradation mechanisms;



Materials 2017, 10, 2 22 of 25

(iii) incorporate existing self-healing and self-recovery systems to enhance the long-term performance
of concrete structures by creating resilience to physical and chemical attack, through the
addition of agents within microcapsules, that are able to mitigate the action effects in a range of
aggressive environments;

(iv) set up facilities and procedure to evaluate self-healing and self-recovery effects at the micro level;
(v) quantify key parameters related to fundamental material properties in order to supply the basic

input for numerical simulations;
(vi) validate the design procedure and numerical model using data from bespoke tests at multi-scales;
(vii) demonstrate the self-resilience system by using experimental and numerical data.
(viii) realize applications in practice.
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