
materials

Article

Fabrication of Composite Filaments with High
Dielectric Permittivity for Fused Deposition
3D Printing

Yingwei Wu, Dmitry Isakov * ID and Patrick S. Grant ID

Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK;
yingwei.wu@materials.ox.ac.uk (Y.W.); patrick.grant@materials.ox.ac.uk (P.S.G.)
* Correspondence: dmitry.isakov@materials.ox.ac.uk

Received: 30 September 2017; Accepted: 20 October 2017; Published: 23 October 2017

Abstract: Additive manufacturing of complex structures with spatially varying electromagnetic
properties can enable new applications in high-technology sectors such as communications and
sensors. This work presents the fabrication method as well as microstructural and dielectric
characterization of bespoke composite filaments for fused deposition modeling (FDM) 3D printing of
microwave devices with a high relative dielectric permittivity ε = 11 in the GHz frequency range.
The filament is composed of 32 vol % of ferroelectric barium titanate (BaTiO3) micro-particles in a
polymeric acrylonitrile butadiene styrene (ABS) matrix. An ionic organic ester surfactant was added
during formulation to enhance the compatibility between the polymer and the BaTiO3. To promote
reproducible and robust printability of the fabricated filament, and to promote plasticity, dibutyl
phthalate was additionally used. The combined effect of 1 wt % surfactant and 5 wt % plasticizer
resulted in a uniform, many hundreds of meters, continuous filament of commercial quality capable of
many hours of uninterrupted 3D printing. We demonstrate the feasibility of using the high dielectric
constant filament for 3D printing through the fabrication of a range of optical devices. The approach
herein may be used as a guide for the successful fabrication of many types of composite filament
with varying functions for a broad range of applications.
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1. Introduction

The development of multiple material 3D printing capability, enabling the fabrication of composite
structures with a broad range of electromagnetic properties, will open up new possibilities for novel
functional structures utilising the principles of transformation optics [1,2], smart microwave devices,
and systems possessing meta-material features [3]. Available techniques for multiple material 3D
printing are mostly limited to extrusion-based and photo-solidification approaches where the printing
material matrix (usually a thermoset polymer or a photoactive resin) is mixed with active particles
(e.g., colour dye [4,5], dielectric [6] and magnetic micro-particles [7,8], carbon nanofibers [9,10],
wood fibers [11], etc.) that bring the desired functionality to the final composite printed component.
3D printing also allows for spatial variations in functionality, such as grading or anisotropy [3].

While a very wide range of composite feedstock materials for additive manufacturing are
commercially available, there are restricted materials with specific properties that might be potentially
used for the 3D printing of functional active devices, and the formulation of such materials and
composites with robust and reproducible high-performance properties remains a challenge.

The stereolithography (SL) process with mixed fine ceramic powders suspended in a liquid
photocurable resin has been used for many years for the fabrication of green parts with arbitrary
final 3D shape [12]. Using photosensitive acrylic resin with piezoelectric micro-particles of
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0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3, and magnetite nanoparticles, SL also has been used for the
fabrication of a green structure for piezoelectric [13] and magnetic flow sensors [8], respectively.
The same method was utilised to demonstrate various 3D structures with excellent capacitive property
and high dielectric constant using Ag-surface-coated nanoparticles of PbZrxTi1−xO3 incorporated into
the photocurable polymer solution [14]. An alumina/UV-cured-resin composite has also been used to
demonstrate a conical insulating spacer with an effective dielectric constant of 6.5 at low frequency [15].

Leight et al. used a polycaprolactone thermoplastic matrix and magnetite nanoparticles to fabricate
feedstock filament (although the volume fraction of magnetite was not reported) for fused deposition
modelling (FDM) printing, and demonstrated a fully 3D-printed flow sensor [16]. A polycaprolactone
matrix was also used for the fabrication of conductive filament using carbon black. The loading of
carbon black within the polymer matrix was optimised (through tests to observe how the composites
performed under extrusion through the printer nozzle) so as to be easily printable by a desktop FDM
machine without modification [10] .

Additionally, bespoke composite filaments are also widely used for the 3D printing of structural
composites. FDM with Cu/acrylonitrile butadiene styrene (ABS), and Fe/ABS composites of up to
40 vol % filler have been used to show significant improvements in ABS mechanical and thermal
properties [17]. A 5 wt % tungsten–polycarbonate composite was fabricated as an FDM feedstock
filament for space-based applications, and printed parts showed an improvement in X-ray radiation
shielding [18]. Carbon nanotubes have been used to reinforce thermoplastic polyurethane filaments
and to induce electrical conductivity [19–21]. The use of thermotropic liquid crystalline polymer fibrils
resulted in the improvement of mechanical strength of polypropylene composite feedstock [22].

Magnetized alumina particles’ orientation in a polymer matrix can be effectively controlled by
using a magnetically-assisted 3D printing platform [23]. This approach allows the fabrication of highly
anisotropic structures. For example, a large anisotropy in thermal conductivity was contrived in a
3D-printed 4.3 vol % graphite/ABS composite due to the as-printed alignment of graphite flakes [24].
Duigou et al. also showed that wood fibre-reinforced filaments could be used to achieve mechanical
anisotropy in 3D-printed composite materials [11]. In Ref [25] it was reported that a cellulose blend
with polylactic acid (PLA) resulted in increased crystallinity of PLA and therefore showed an increase
in storage modulus.

Among the many additive manufacturing techniques, FDM remains the most popular due to
its low cost, flexibility, and open community RepRap [26] society support. However, the supply
of composite filaments, for example of functional ceramics in a printable polymer matrix for FDM
usage, is mainly limited by the brittleness of the resulting composite filament as the fraction of
the functional ceramic is increased, which leads to unreliable printing. For example, in [6] the
dielectric characterisation of BaTiO3/ABS filaments was presented, but loadings above 70 wt %
of BaTiO3 were not investigated, as the filament became too brittle to be readily printed, causing
snapping during spooling and/or feeding. This maximum loading threshold may be varied
depending on the specific inorganic oxides material [3], but was given as approximately 27 vol % for
ferroelectric BaTiO3 micro-particles possessing the highest relative dielectric permittivity ε ~ 500 [27]
at microwave frequencies.

The objective of this work is to study and improve the binding mechanism in composite
polymer ABS and BaTiO3 ceramic micro-particles in order to improve the fabrication route of a
continuous uniform filament possessing high dielectric permittivity. The use of an optimal amount of
hydroxylbensoic ester derivative binder (octyl gallate, C15H22O5) and a plasticiser (dibutyl phthalate,
C18H22O4) is shown to facilitate an increase in the maximum volume fraction of filler particles and
simultaneously decreases the stiffness and brittleness of the filament. This results in an increase in the
relative dielectric permittivity of the final composite of approximately 36% over previous work, and
produces long lengths of filament for FDM of commercial quality. These filaments allowed many hours
of uninterrupted 3D printing of complex structures with spatially varying electromagnetic properties
for transformation electromagnetic or smart microwave devices.
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2. Results and Discussion

2.1. Effect of Surfactant

Residual air voids spaces (pores) in extruded ceramic–polymer composite filaments for FDM are
the most serious defects, and limit the bend and/or tensile properties due to reduced load carrying
capability and stress concentration effects. Here, we use a surfactant to act as a bridging agent to create
interphase/interface chemical bonding between the ceramic and polymer phases, thereby providing a
better dispersion of the two components and reducing the air voids that otherwise tend to form in
and around micro-particle clusters [28]. Relatively large organic molecules of surfactant may provide
reduced agglomeration of treated particles by steric hindrance effects. The polar units formed by side
chains of the surfactant may also increase the affinity of the filler particles for the polymer matrix [29].
However, a surfactant with a very large molecular weight may hinder the dispersion of the ceramic
particles because longer chains have lower mobility and become increasingly ineffective in inhibiting
agglomeration [28,30]. For these reasons, octyl gallate (Mw = 282.33 g/mol) was chosen as a surfactant,
which has four side polar groups: three −OH groups that react with the surface of BaTiO3 and one
C=O binding with C=C in the ABS chain.

Table 1 presents the dielectric characterisation of FDM 3D-printed BaTiO3/ABS composite
coupons with various loadings of surfactant in the range of 0–1.5 wt % measured at 15 GHz. All the
experiments were done repeatedly with three-to-five samples for each coupon. The average measured
volume ratio of BaTiO3 was 32.6 vol %, which was approximately 8% greater than the nominal of
30 vol %. The relative dielectric permittivity increased with increasing surfactant fraction and reached
ε = 11.04 for coupon 3, containing 1 wt % octyl gallate (OG). However, further increases in OG fraction
reduced the dielectric constant by ~10%, which may be caused by the increasing inhomogeneity in the
composite microstructure (see below).

Table 1. Dielectric permittivity of 3D-printed nominal 30 vol % BaTiO3/ABS composites at 15 GHz
with various loadings of surfactant; the measured BaTiO3 fraction was obtained by thermogravimetric
analysis (TGA).

Coupon Surfactant wt % Measured BaTiO3 vol % Permittivity ε′r Loss tan δ× 10−2

1 0 33.2 10.68 ± 0.50 3.25 ± 0.4
2 0.5 32.6 10.88 ± 0.35 2.05 ± 0.1
3 1.0 32.4 11.04 ± 0.21 3.03 ± 0.6
4 1.5 32.7 10.08 ± 0.16 3.43 ± 0.1

Figure 1a,b shows low and high magnification SEM images of the BaTiO3/ABS filament
cross-sections, taken from randomly chosen sections, without any surfactant. Micro-particles of
BaTiO3 were generally not in close contact with the ABS, and the filament contained a considerable
fraction of micro-pores (Figure 1b,c) and bubbles up to 200 µm in diameter (Figure 1a). Additionally,
BaTiO3 micro-particles frequently formed irregularly-shaped and porous clusters.

Typical cross-section SEM images from filaments 2 to 4 (Figure 1d–l) show that the addition of
surfactant was primarily to reduce voids, because BaTiO3 particles were more readily contacted and
embedded more uniformly in the ABS, with less clustering, making it easier for polymer to fill the
gaps between the particles. This reduction of voids in the FDM filaments correlated strongly with
the increase of permittivity in the corresponding FDM printed coupons in Table 1. Coupon 4 with
1.5 wt % OG surfactant had a slightly lower dielectric permittivity due to an excess of surfactant,
and the filler/matrix contact was undermined. Coupon 3 with 1 wt % of OG surfactant showed
qualitatively the best micro-particle dispersion and the lowest porosity; it also showed a maximised
dielectric permittivity and minimised tangent loss.

The 3D-printed coupons (right column in Figure 1) showed less porosity than the corresponding
filament cross-section images (middle column in Figure 1). During the printing process, the
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filament was heated up to 245 ◦C (into the molten state of ABS), where small air bubbles and
voids were mobile and fused together as the composite material was extruded through the heated
nozzle. The trend of printed porosity was similar to that from the filament, with higher porosity in
printed coupons 1 (Figure 1c) and 4 (Figure 1l) and lower porosity in coupons 2 (Figure 1f) and 3
(Figure 1i). Overall, coupons 2–4 (Figure 1f,i,l) showed qualitative improvements in the uniformity of
BaTiO3 micro-particles.

Filament cross-section Filament cross-section x5000 Printed sample x5000

500 µm 5 µm

(a) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(b)

5 µm

Figure 1. Electron micrographs of the cross-section of 30 vol % BaTiO3/acrylonitrile butadiene styrene
(ABS) filaments (left and middle columns) and 3D-printed coupons (right column). (a–c) BaTiO3/ABS
with 0 wt % surfactant; (d–f) 0.5 wt % surfactant; (g–i) 1.0 wt % surfactant; (j–l) 1.5 wt % surfactant.

2.2. Effect of Plasticiser

Plasticisers modify the properties of polymers, typically increasing elongation to failure and
decreasing tensile strength by reducing intermolecular friction between polymer molecules [31].
In effect, when a relatively stiff plastic part is flexed, the polymer molecules move relative to each
other either elastically or plastically, and the plasticiser acts to lubricate the relative movement of the
polymer micellae.
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To study the effect of plasticiser on the morphological, microstructural, and dielectric properties
of the BaTiO3/ABS composites, two additional filaments (5 and 6) were fabricated, comprising the
basic formulation of filament 3 (30 vol % BaTiO3/ABS with 1 wt % surfactant) with 5 wt % and 10 wt %
dibutyl phthalate respectively. Figure 2 shows the resulting SEM cross-section images of the filament.
During extrusion, the addition of plasticiser improved the ceramic–polymer composite flow through
the extrusion die [32] and the filament surface roughness, while the BaTiO3 micro-particles dispersion
remained relatively uniform.

(a) (b)

500 µm

(c) (d)

2 µm

Figure 2. Electron micrographs of the cross-section of filaments. (a,b) Filament 5; (c,d) Filament 6.

Figure 3 shows optical images of the surface of filaments 1 to 5. Filament 1 had the roughest surface,
with an average roughness Ra = 4.26 µm, while filament 5 had a roughness Ra = 0.57 µm—similar to
the original commercial ABS (Ra = 0.55, not shown). Since all filaments were extruded from the same
single screw extruder with the same 1.6 mm diameter nozzle, changes in the surface roughness of
the filaments were ascribed to the different amounts of filament surfactant and plasticiser. Filament 4
(1.5 wt % surfactant) had a similar rough surface as filament 1, due to the greater agglomeration at
excess surfactant fractions as previously shown in Figure 1k.

The addition of plasticiser also reduced the pressure of the extrusion [32], and the composite
filament flowed faster from the nozzle for a constant pressure, and more reliably formed a continuous
filament of smaller diameter. The plasticiser also decreased the ABS glass transition temperature Tg

from Tg = 102 ◦C in filament 3 with no plasticiser to Tg = 53 ◦C and Tg = 20 ◦C for filaments 5 and 6,
respectively (see Figure S1 in the Supplementary Materials). Note also that adding the OG surfactant
also reduced Tg (although less dramatically), suggesting that OG—as intended—was relatively soluble
in ABS [33].
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(a) (b) (c) (d) (e)

Figure 3. Optical images of the surface of composite filaments. (a) Filament 1 (roughness Ra = 4.26 µm);
(b) Filament 2 (Ra = 1.49µm); (c) Filament 3 (Ra = 0.72µm); (d) Filament 4 (Ra = 4.01µm); (e) Filament 5
(Ra = 0.57 µm).

To investigate the effect of various additions on the filament mechanical properties, particularly
filament ability to be coiled/uncoiled and fed robustly during 3D printing, a two-point filament bend
test was devised (see Methods). The commercial ABS filament is typically supplied on a spool with
radius of 4.5 cm, and provided the baseline against which the bend performance of the composite
filaments could be assessed. The curvature of bending filaments just before they fractured was recorded
from a calibrated video image during the bend test (Table 2), and Figure 4 reproduces the filament
shape at this instant. Their sequence of increasing failure radius—namely, filaments 1, 2, 4 and 3—are in
good agreement with tendency for filament pores and micro-particle clustering in the microstructures
presented in Figures 1 and 2.

Table 2. Bending filament curvature at failure.

Filament Distance Travelled, cm Curvature, cm

ABS 21.0 4.5
1 5.8 ± 0.10 10.8 ± 0.2
2 7.0 ± 0.35 9.7 ± 0.9
3 11 ± 1.5 7.7 ± 2.3
4 9 ± 0.5 8.5 ± 1.4
5 21.0 4.5

1
2
3
4
5; ABS 
initial state

Filament

z-
ax

is
, c

m

0

5

10

15

x-axis, cm
0 5 10 15 20 25

Figure 4. Typical bend test behavior of ABS and BaTiO3/ABS composite filaments. In each case,
the left-hand side of the 26 cm filament length was stationary while the right-hand side gripping the
filament along the x-axis slowly moved towards the left. The filament grips permitted only bending in
the xz-plane. The curves describe the filament shape at the point of failure. The composite filament
composed of 32 vol % BaTiO3/ABS with 1 wt % surfactant and 5 wt % plasticiser (filament 5) showed
the same flexibility as pure ABS.

Filament 5 composed of 32 vol % BaTiO3/ABS with 1 wt % surfactant and 5 wt % plasticiser had
a similar failure radius of curvature to spool on which commercial ABS is supplied. A further increase
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in plasticiser fraction to 10 wt % produced a very soft filament that was not rigid enough to support
itself when placed into the fixtures of the bend test (see Supplementary Materials); it could also not be
FDM 3D-printed.

The relative dielectric permittivity and loss of 3D-printed coupons using filament 5 were
ε = 11.0± 0.195 and tan δ = 2.89 ± 0.12 × 10−2, measured at 15 GHz by the split-post dielectric
resonator (SPDR) method. The relative dielectric permittivity of coupon 5 was approximately 0.063
lower than coupon 3, but the actual volume fraction f of BaTiO3 was less in coupon 5 (dielectric
ratio ε/ f = 0.351 for coupon 5, and ε/ f = 0.341 for coupon 3). Figure 5 presents the real part of the
relative dielectric permittivity ε as a function of frequency for 3D-printed coupons using filament 3
(nominal 30 vol % BaTiO3/ABS + 1 wt % surfactant) and filament 5 (same as filament 3 with added
5 wt % plasticiser) measured using a 7.89× 15.79 mm2 rectangular waveguide and the well-known
Nicholson–Ross–Weir retrieval method [34]. In the 12–18 GHz frequency range, the coupons exhibited
relatively little dispersion in relative permittivity, and average dielectric permittivities of 10.85 and
10.10 were in good agreement with the SPDR measurements (Table 1).
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Figure 5. Measured real part of the relative dielectric permittivity as a function of frequency for
3D-printed coupons from filaments 5 (solid red) and 3 (dashed black).

2.3. Demonstration

The 3D-printed coupons using the optimised filament comprising ~32 vol % BaTiO3/ABS
composite with 1 wt % surfactant and 5 wt % plasticiser (filament 5) showed the highest dielectric
permittivity of approximately 11, and had outstanding flexibility and a smooth surface. To demonstrate
the printability of this optimised filament, several cube-like coupons with different printing precision
and fabrication time were 3-D printed, as described in the Materials and Methods section. Due to the
lower melting temperature of filament 5 (although it was not possible to determine this precisely),
the print head temperature was decreased by 20 ◦C compared with pure ABS (230–245 ◦C). Figure 6a
shows a reconstructed X-ray tomography image of a 15 mm side cube 3D-printed with 0.1 mm layer
resolution and 100% infill using a RepRap FDM 3D printer. As seen from the plane cross-sections in
Figure 6b,c, the printed internal structure was dense and with no resolvable voids or interlayer air
gaps/porosity, as is otherwise often found in printed composites [6].

Other examples of more device-like printed structures using filament 5 are presented in Figure 7.
In each case, the devices are versions of a 3D-printed spiral phase plate, which is an optical device
that imparts an azimuthal phase shift onto incident radiation. This azimuthal phase retardation can
be achieved either by continuous variation in thickness, or by a local change in the material relative
dielectric permittivity, and both types are shown. For changes in thickness (i.e., optical length), the total
step height was chosen so that the total phase shift around the axis of the phase plate was 2π. The phase
plates were printed with a 0.2 mm layer thickness and took approximately 3 h using commercial
MakerBot Desktop software with standard settings.
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(a) (b) (c)

Figure 6. X-ray tomography image of the 3D-printed 15 × 15 × 15 mm3 cube using optimized
composite filament 5. (a) Full 3D reconstruction; (b) xy-plane cut; (c) xz-plane cut. The images show
the absence of voids or interlayer/interfilament porosity.

Figure 7. Demonstration of several 3D-printed microwave devices for the generation of orbital
angular momentum.

3. Materials and Methods

High-permittivity filaments were fabricated based on the method described in [6].
Commercially-supplied acrylonitrile butadiene styrene (ABS MFI-22, Styrolution, Germany) was
dissolved in acetone until total dissolution, and then 30 vol% micro-particles of barium titanate powder
(Sigma Aldrich, Dorset, UK) were added and stirred for 12 h in order to achieve a uniform dispersion.

Various amounts (see Table 1) of octyl gallate (C15H22O5) and dibutyl phthalate (C18H22O4) (both
Sigma Aldrich) used as surfactant and plasticiser, respectively, were added to alter the binding and
mechanical properties of the BaTiO3/ABS composite. The suspension was spread out on a tray in a
fume cupboard and then placed in an oven for 8 h at 70 ◦C to ensure the acetone had fully evaporated.
The dried composite was then mechanically blended and extruded (at a temperature in the range
160–180 ◦C) through a desktop single screw extruder (Noztek, London, UK) with a 1.6 mm die orifice
to form a continuous filament of approximately 1.75 mm in diameter. The coupons, cubes, and optical
devices were printed using either a RepRap Mendel90 or MakerBot Replicator 2X desktop 3D printers
using public domain software and standard operational conditions.

Cross-sections of the filaments and the printed coupons for electron microscopy were prepared
using a rotary microtome diamond blade Reichert-Jung Ultracut (Leica Microsystems, UK). Scanning
electron imaging was carried out using a JEOL JSM-6500F (JEOL Ltd.) electron microscope operated
at 5 kV. Optical microscope images were obtained using a µsurf (NanoFocus AG, Germany)
digital microscope with a ×10 lens. The surface roughnesses of the filaments were determined
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as Ra = 1
L
∫ L

0 |Z(x)|dx, where L is the evaluation length and Z(x) is the profile height function;
the surface roughness was calculated as the arithmetic average of a set of individual measurements.

Thermogravimetric analysis (TGA) of the filament feedstock in which the polymer fraction
was fully volatilized at high temperature was used to measure the remaining weight fraction of
inorganic particulates in the filaments, and was performed using a PerkinElmer thermogravimetric
analyzer. Samples were heated from 40 ◦C to 600 ◦C at a heating rate of 10 ◦C/min, under a flowing air
atmosphere. Differential scanning calorimetry (DSC) of the filament feedstock was performed using a
PerkinElmer Diamond DSC with alumina as the reference, from 0 ◦C to 300 ◦C at a heating/cooling
rate of 20 ◦C/min.

The complex dielectric properties of 3D-printed coupons were obtained using a Rohde & Schwarz
ZNB20 vector network analyser (Rohde & Schwarz UK Ltd., Fleet, UK) and split-post dielectric
resonator (SPDR) (QWED, Warsaw, Poland) and a Ku-band waveguide technique. The SPDR is
designed for a nominal 15 GHz frequency and the actual measurements were taken at a frequency
close to nominal.

Filament bend testing was performed using an in-house designed rig. Briefly, the two ends of
filament length of 26.5± 0.5 cm were clamped in holders free to rotate in the vertical xz-plane only.
While one holder was fixed at x = 0 cm, the other end slid smoothly along a rail with a constant
velocity of 4.7 cm/s toward the origin, starting from x = 26 cm, so that the filament was progressively
bent in the vertical xz-plane. The process was digitally videoed normal to the xz-plane and the filament
curvature at the point of failure retrieved. The curvature was calculated by best fit of the filament
shape to a dome where the radius of curvature was calculated from R = [(d/2)2 + h2]/2h, where d is
the diameter of the dome and h is the height from the base to the highest point in the dome.

4. Conclusions

An optimised formulation of a high relative dielectric permittivity, low loss BaTiO3/ABS
composite filament for FDM 3D printing has been demonstrated. The optimised filament had a
commercial quality surface finish and an effective relative dielectric permittivity εr = 11 in printed
coupons, which was typically 30% to 40% higher than previously reported for a similar composite
system. Critical to the printability and dielectric performance was the use of optimised concentrations
of surfactant (1 wt %) and plasticiser (5 wt %), which facilitated an acceptably uniform micro-particle
distribution and reduction of void fraction, and enhanced elastic/plastic properties. Several 3D-printed
structures were fabricated and demonstrated the applicability of the bespoke filament for robust
long-time printing without interruption. These types of composites with enhanced and spatially
controlled electromagnetic properties will widen the application range of 3D printed parts in the radio
communication sector, including direct 3D-printing of antennas, microwave horns, and compact lenses.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/10/10/1218/s1:
Figure S1: Differential scanning calorimetry measurements in filaments. Video S1: Bend testing of composite
filaments in comparison to commercial ABS.
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