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Abstract: The mechanical behavior of single crystalline, micro-sized copper is investigated in the
context of cantilever beam bending experiments. Particular focus is on the role of geometrically
necessary dislocations (GNDs) during bending-dominated load conditions and their impact on
the characteristic bending size effect. Three different sample sizes are considered in this work
with main variation in thickness. A gradient extended crystal plasticity model is presented and
applied in a three-dimensional finite-element (FE) framework considering slip system-based edge and
screw components of the dislocation density vector. The underlying mathematical model contains
non-standard evolution equations for GNDs, crystal-specific interaction relations, and higher-order
boundary conditions. Moreover, two element formulations are examined and compared with respect
to size-independent as well as size-dependent bending behavior. The first formulation is based on a
linear interpolation of the displacement and the GND density field together with a full integration
scheme whereas the second is based on a mixed interpolation scheme. While the GND density fields
are treated equivalently, the displacement field is interpolated quadratically in combination with a
reduced integration scheme. Computational results indicate that GND storage in small cantilever
beams strongly influences the evolution of statistically stored dislocations (SSDs) and, hence, the
distribution of the total dislocation density. As a particular example, the mechanical bending behavior
in the case of a physically motivated limitation of GND storage is studied. The resulting impact on
the mechanical bending response as well as on the predicted size effect is analyzed. Obtained results
are discussed and related to experimental findings from the literature.

Keywords: cantilever beam bending; size effect; geometrically necessary dislocations;
crystal plasticity; finite element method

1. Introduction

Micromechanical testing of small-scaled single crystals has been excessively practiced in the last
two decades to study the mechanical size-dependence of diverse materials [1–4]. Different intrinsic
(microstructural) effects have been found to be triggered by the interplay of physical size limitation
such as free surfaces and the underlying microstructure in which the initial density of dislocations plays
a crucial role. For example, experiments and 3D-discrete dislocation dynamics (DDD) simulations
indicated that the size-dependent response of Ni single crystals decreases with increasing starting
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dislocation density [5]. Further, stable plastic deformation for crystals of „360 nm size was achieved
and no strengthening effect in the range of 360 nm–1500 nm was observed for Mo alloy microcrystals [6].
In both cases, the crystals were machined from relatively strong pre-strained bulk. Conversely,
a sufficiently low initial dislocation density provokes a rapid starvation of available dislocations [7].
However, this effect becomes dominant if, for instance, the diameter D of micropillar samples falls
below a critical value („1 µm in [7]). In the study of Shan et al. [8], an initial dislocation density of
„1015 m´2 has fallen very fast to zero for D “ 160 nm whereas already larger samples (D ě 250 nm)
were less likely to be dislocation-free after testing. Besides the characteristic sample dimension,
the overall crystal size may additionally be considered as suggested recently by El-Awady [9].

With increasing sample size, other mechanisms will superimpose and start to affect or even
govern the mechanical behavior. Depending on the geometry of deformation induced into the
sample in terms of the applied loading, plastic strain gradients and associated geometrically
necessary dislocations therewith, may increase significantly the plastic work hardening. Bending
represents a typical deformation mode in which plastic strain gradients are induced extrinsically.
Fleck and Hutchinson [10] suggest that the stored density of GNDs is proportional to the curvature
of the bended beam. Experiments have found a strong inverse correlation between beam thickness
and increase in strength of the material. For instance, an increase in the work hardening behavior
with decreasing beam thickness has been reported by Stölken and Evans [11] for thin beams with a
variation in thickness between 12.5 µm and 100 µm. Microbending experiments of Motz et al. [12]
confirmed the strong correlation between flow stress and beam thickness. The investigated beam sizes
varied in thickness between 7.5 µm and 1 µm. In the same work, it was pointed out that a regular
alignment of GNDs (as would be expected in pure bending) is insufficient to explain the size effect.
The responsible mechanism could be dislocation source limitation as a result of a rapid starvation
of initially available dislocations as well as back-stress effects induced by dislocation pile-ups along
the neutral axis. Numerical results of 3D-DDD beam bending simulations with thicknesses between
0.5 µm and 1.5 µm revealed that a combination of pile-up of GNDs and source size limitation mimics
the experimental data quiet well [13]. These findings indicate the complexity of size-dependent
strengthening behavior due to superposition of different mechanisms. Accordingly, it is difficult to
independently estimate the size-dependent hardening contribution associated with each mechanism
based on experimental data. For that reason, a gradient extended crystal plasticity model is used to
investigate the size range (characterized by means of the beam thickness) and the extent to which
GNDs affect the size-dependent bending behavior of small-scaled cantilever beams.

The aim of this work is to examine the size-dependent bending response for a range of sample
sizes. In particular, we focus on three sample sizes with a variation in thickness between 2.5 µm
and 5.0 µm. For this purpose, a higher-order gradient crystal plasticity model is implemented in a
three-dimensional finite element framework. Highlights of the model are non-standard evolution
relations for edge and screw components of the slip system-based dislocation density vector,
crystal-specific interaction relations, and higher-order gradient boundary conditions. The gradient effect
associated with accumulating GND densities is of primary interest. In order to gain additional insights,
the size-dependent impact of GNDs on the evolution of SSDs is investigated as well. The mechanical
response of cantilever beams is further addressed for the case when the evolution of GNDs saturates
due to a physical limitation. The number of dislocations to be stored locally due to compatibility reasons
cannot be arbitrary high. Accordingly, a feasible limit for GND storage is introduced. All results are
discussed and related to experimental findings from the literature.

2. Model Description

2.1. Higher-Order Gradient Crystal Plasticity Theory

The large deformation-based, gradient-enhanced crystal plasticity theory of Bargmann et al. [14]
is followed, see also [15]. As part of this, the multiplicative decomposition of the deformation
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gradient F “ FE ¨ FP into an elastic FE and a plastic part FP is adopted. The state space is specified by
s “ pCE, tγαu, t∇iγαuq, in which CE “ FT

E ¨ FE denotes the elastic right Cauchy–Green strain tensor, tγαu

represents a set of plastic slip variables, and t∇iγαu is the corresponding set of plastic slip gradients.
Both sets scale with the number of admitted slip systems, where α denotes a particular slip system.
In this framework, the plastic slip γα is used as a primary measure for plastic deformation

γα “

ż

|να|dt. (1)

Although the plastic slip rate να may not necessarily represent the material-time derivative of γα,
such an approximation is often applied in practice. This assumption is adopted in the following.

We employ a thermodynamic consistent formulation in which the free energy storage with respect
to the intermediate configuration is expressed by the following additive split

ψi “ ψipCE, tγαu, t∇iγαuq

“ ψe
i pCEq ` ψl

iptγαuq ` ψ
g
i pt∇iγαuq,

(2)

such that ψe
i pCEq represents a hyperelastic contribution, ψl

iptγαuq covers the local energy storage due to
dislocation glide, and ψ

g
i pt∇iγαuq is the gradient related energy storage due to accumulation of GNDs.

The affiliation of a physical quantity ‚ is indicated by the following notation: ‚r (reference space), ‚i

(intermediate space), ‚c (current space). This notation is also applied to differential operators, e.g.,∇i‚,
Divip‚q, and Curlip‚q.

Under quasi-static, isothermal conditions, the dissipation inequality with respect to the
intermediate configuration reads

D “
ż

Bi

”

ρiP ´ Υip 9CE, tναu, t∇iναu

ı

dVi ě 0. (3)

In this, the stress power density P “ PE `PP is decomposed into an elastic part PE “ 1{r2ρisSE : 9CE,
based on the second Piola–Kirchhoff stress tensor SE, and a plastic part PP “ 1{ρiME : LP, in which
ME “ CE ¨ SE is the Mandel stress tensor and LP “ 9FP ¨ F´1

P “
ř

α ναrsα b nαs denotes the plastic velocity
gradient defined as a superposition of individual plastic slip rates on corresponding slip systems. As
usual, sα, nα, and tα “ nαˆ sα are the slip direction, slip plane normal, and transverse direction vectors
respectively. The intermediate configuration is assumed to be isoclinic (Any set of orthonormal vectors
tsα, tα, nαuwhich describes the crystallographic geometry of a slip system does not change between
the reference and the intermediate configuration [16]. Hence plastic deformation is lattice (volume)
preserving, i.e., detpFPq “ 1.). Further, Υi represents the specific energy storage rate

Υi “
Bψe

i
BCE

: 9CE `
ÿ

α

«

Bψl
i

Bγα
να `

Bψ
g
i

B∇iγα
¨∇iνα

ff

. (4)

Following standard thermodynamic arguments, the constitutive relation for the hyperelastic state
results in SE “ 2 Bψe

i {BCE. In accordance to Ekh et al. [17], we introduce the scalar-valued micro-stress
κα “ Bψl

i{Bγα and the back-stress vector (or vector-valued micro-stress) κα “ Bψ
g
i {B∇iγα work

conjugate to γα and ∇iγα respectively. Substituting these constitutive relations into Equation (3)
leads to the reduced dissipation inequality

Dred “

ż

Bi

«

ME : LP ´
ÿ

α

rκανα ` κα ¨∇iναs

ff

dVi ě 0. (5)
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Integration by parts and applying Gauss’s theorem gives

Dred “

ż

Bi

«

ME : LP ´
ÿ

α

rκα ´Divipκαqs να

ff

dVi ´

ż

BBi

ÿ

α

να κα ¨ N(b)
i dAi ě 0. (6)

A more restrictive validity of the dissipation inequality is obtained by its local form. This gives with
respect to the bulk dissipation

DL
red “ ME : LP ´

ÿ

α

rκα ´Divipκαqs να “
ÿ

α

rτα ´ κα `Divipκαqs να ě 0, (7)

and with respect to the boundary dissipation

DL(b)
red “ ´

ÿ

α

να κα ¨ N(b)
i “

ÿ

α

να κ(b)
α ě 0, (8)

where τα “ ME : rsα b nαs represents the resolved shear stress and κ(b)
α “ ´κα ¨ N(b)

i denotes the
micro-hardening stress projected on the outward pointing normal vector N(b)

i —here associated
with an infinitesimal intermediate surface element. The relation between the referential surface
normal vector and the intermediate surface normal vector is given by the cofactor of the plastic
deformation, i.e., N i dAi “ cofpFPqNrdAr. The current rate of dissipating work depends on
the history of plastic deformation in terms of γα but also on the current plastic slip rate να,
cf. Equations (7) and (8). Moreover, for homogeneous plastic deformation, i.e., κα “ 0,
Equation (7) reduces to DL

red “
ř

α rτα ´ καs να ě 0 whereas the boundary contribution in Equation (8)
completely vanishes.

Then, the onset of plastic yielding is regulated by means of a yield function φα for each slip system,
here defined as

φα “ τα ´ κα `Divipκαq ´Yα “ τα ´ Sα, (9)

where Yα defines the initiation of plastic yield in the absence of hardening, i.e., the initial slip
system resistance which is equivalent to the critical resolved shear stress of the system, whereas
Sα “ κα ´Divipκαq `Yα is the current slip system resistance.

In the context of viscoplasticity, overstress states τα ´ Sα ą 0 are generally allowed and typically
regularized via a power law relation. Here, a Perzyna form is chosen as a viscoplastic regularization:

να “ ν0

„

ă φα ą

C0

m
. (10)

The brackets define a ramp function of the form ă φα ą“ 1{2 rφα ` |φα|s and ensure that να ‰ 0 only
for τα ą Sα. Moreover, m denotes the rate sensitivity exponent of the stress ratio, ν0 represents the
reference shear rate, and C0 is the drag stress.

2.2. Governing Equations

The so-called dislocation tensor represents a continuum measurement for GND densities from
which the vector-valued GND vector 9giα is derived, cf. [18]. In extension to [14,15], the evolution of
9giα—here with respect to the intermediate configuration—is taken as

9giα “
ÿ

β

”

να

“

nα ¨ sβ

‰

giβ ` νβ

“

nα ¨ giα
‰

sβ

ı

` | bα |
´1 ∇iνα ˆ nα, (11)

where bα denotes the Burgers vector. This relation accounts for dislocation collision processes,
for instance, interactions between mobile dislocations of active slip systems mimicked by the plastic slip
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rates and stored dislocations on latent slip systems. For most applications, it is sufficient to account for
the edge and screw component of the GND density vector. It is assumed that there is no development
of plastic slip gradients perpendicular to the slip planes, i.e., 9giα ˆ nα “ 0 [19]. With respect to fcc
crystals, modified interaction relations are proposed for the edge and screw components of the GND
density based on moduli for edge–edge ιee

αβ, edge–screw ιes
αβ, screw–screw ιss

αβ, and screw–edge ιse
αβ

dislocation intersections:

ιee
αβ “

ˇ

ˇsα ¨ sβ

ˇ

ˇ

ˇ

ˇnα ˆ nβ

ˇ

ˇ ,

ιes
αβ “

ˇ

ˇsα ¨ tβ

ˇ

ˇ

ˇ

ˇnα ˆ nβ

ˇ

ˇ ,

ιss
αβ “

ˇ

ˇtα ¨ tβ

ˇ

ˇ

ˇ

ˇnα ˆ nβ

ˇ

ˇ ,

ιse
αβ “

ˇ

ˇtα ¨ sβ

ˇ

ˇ

ˇ

ˇnα ˆ nβ

ˇ

ˇ .

(12)

In addition, slip coplanarity moduli χαβ are introduced in accordance to previous works
(e.g., [20–22]) as

χαβ “

#

0 for
ˇ

ˇnα ˆ nβ

ˇ

ˇ ‰ 0 noncoplanar,

1 for
ˇ

ˇnα ˆ nβ

ˇ

ˇ “ 0 coplanar.
(13)

In the case of coplanar slip systems, i.e., slip planes of system α and β are parallel to each other,
all intersection moduli vanish and slip-system interactions are solely determined by coplanarity
moduli. Recall that the GND components are obtained by projecting the plastic slip gradients on
the slip directions sα and the transverse slip directions tα (see Arsenlis and Parks [23], Gurtin and
Anand [24]). Then, under consideration of the above introduced interaction moduli, Equation (11) is
substituted by the following two scalar-valued field equations which read

9ge
iα “

ÿ

β

να

”

ge
iβ

”

ιee
αβ ` χαβ

ı

` gs
iβ

”

ιes
αβ ` χαβ

ıı

´ |bα|
´1∇iνα ¨ sα (14)

and

9gs
iα “

ÿ

β

να

”

gs
iβ

”

ιss
αβ ` χαβ

ı

` ge
iβ

”

ιse
αβ ` χαβ

ıı

´ |bα|
´1∇iνα ¨ tα, (15)

respectively. The first relation in Equation (14) accounts for the impact of stored edge and screw GND
densities (with respect to latent slip systems β) on the evolution of the edge GND density of slip system
α whereas the second term measures the geometrically necessary edge dislocation density by means
of the plastic slip gradient ∇iνα. A similar relation is given for the geometrically necessary screw
dislocation density. The negative sign of the second term in Equation (15) yields a convention in which
the right-handed screw dislocation segment is treated as positive. An equivalent expression is found
in the literature where a positive sign is used together with the line direction vector lα “ ´tα.

For the sake of completeness, we recall the balance of linear momentum for quasi-static and
isothermal conditions and in the absence of body forces

0 “ DivipFE ¨ SEq. (16)

where P “ FE ¨ SE ¨ F´T
P is the relation between the first and second Piola–Kirchhoff stress tensor.

2.3. Constitutive Relations

The hyperelastic energy contribution is postulated in terms of the Neo–Hookean law

ψe
i “

1
2

µrICE ´ 3s `
1
2

λlnpJEq
2 ´ µlnpJEq, (17)
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where JE “ detpFEq “ detpCEq
1{2 is the elastic Jacobian determinant, ICE “ trpCEq the first invariant of

CE, and µ together with λ denote the Lamé parameters. Then, the hyperelastic stress response results in

SE “ 2
Bψi

BCE

“ µI ` rλlnpJEq ´ µsC´1
E . (18)

As observed in various investigations (cf. [12,25,26]), the stress–strain response of copper single crystal
is characterized by a pronounced saturation behavior. In the study of Kleemola and Nieminen [27],
it was found that Voce hardening [28] represents the best choice to describe the hardening behavior of
Cu crystals. Therefore, the local energy contribution associated with dislocation glide (see [29]) reads

ψl
i “

ÿ

α

»

–γα∆Hl
α `

∆Hl
α

csat

»

–exp

¨

˝´csat
ÿ

β

γβ

˛

‚´ 1

fi

fl

fi

fl . (19)

csat is the saturation rate parameter and ∆Hl
α “ Hl

0 ´ Yα is the saturation hardening defined as the
difference between local hardening modulus Hl

0 and initial yield resistance Yα of the slip system. In this
hardening law, latent hardening is addressed in terms of the accumulated plastic slip

ř

β γβ within
the exponential function such that high slip system activity increases the effective local hardening
contribution. The corresponding scalar-valued micro-stress κl

α is derived as

κl
α “

Bψl
i

Bγα
“ ∆Hl

α

»

–1´ exp

¨

˝´csat
ÿ

β

γβ

˛

‚

fi

fl . (20)

Recalling that the free energy increases due to storage of GNDs in the material, edge and
screw dislocation characters associated with distortion and twisting of the crystal lattice respectively,
are introduced into the defect energy by the form

ψ
g
i “

1
2

ÿ

α

l2
α |bα|

2
”

He
0rg

e
iαs

2 ` Hs
0rg

s
iαs

2
ı

. (21)

He
0 and Hs

0 are the gradient hardening moduli related to the edge and screw component
respectively, and lα is a constitutive internal length scale parameter. The relation between the gradient
hardening moduli is taken as

Hs
0 “ He

0 r1´ νs, (22)

according to their elastic strain energy ratio (cf. [30]) where ν “ λ{r2λ` 2µs is the Poisson’s ratio.
Then, the constitutive relation for the back-stress vector is obtained from the chain rule

κα “
Bψ

g
i

B∇iγα
“
Bψ

g
i

Bge
iα

Bge
iα

B∇iγα
`
Bψ

g
i

Bgs
iα

Bgs
iα

B∇iγα
. (23)

Finally, due to the dependence of 9ge
iα and 9ge

iα on να, the scalar-valued micro-stress κ
g
α related to

interaction processes is introduced via the relation

κ
g
α “

Bψ
g
i

Bγα
“
Bψ

g
i

Bge
iα

Bge
iα

Bγα
`
Bψ

g
i

Bgs
iα

Bgs
iα

Bγα
. (24)

In fact, κ
g
α describes a non-local hardening contribution based on GND intersection and collision

effects which are particularly pronounced upon load reversal. In the end, the micro-stress κα is
comprised of a local as well as a non-local contribution, i.e., κα “ κl

α ` κ
g
α .
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2.4. Boundary Conditions

As we study the bending behavior of a single crystal with free surfaces, microfree boundaries are
chosen. They refuse any dislocation pile-ups at the exterior of the crystal and, hence, boundaries appear
to be transparent to dislocation motion

9ge
i “ 9gs

i “ 0 on BBg
i . (25)

This results in zero boundary dissipation according to Equation (8). An alternative approach
based on non-idealized boundary conditions with non-zero boundary dissipation involving the effect
of boundary yielding is presented in Husser et al. [30].

3. Numerical Implementation

The solution algorithm for the highly coupled and strongly non-linear multi-field problem is based
on the dual-mixed finite element method as proposed by Ekh et al. [17]; see also Bargmann et al. [14,31].
In this, GND densities are introduced as nodal degrees of freedom in addition to the displacement.
The basis for implementing the material model into a finite element framework is the variational form
of the underlying governing equations. Applying the principle of virtual work to Equation (16) yields
the variational form

0 “
ż

Bi

1
2

SE : δCEdVi ´

ż

BBi

δu ¨ rFE ¨ SEs ¨ N(b)
i dAi, (26)

where δu is a vector-valued test function and δCE “ rFT
E ¨∇ipδuq `∇ipδuqT ¨ FEs denotes the variation

of the right Cauchy–Green strain tensor. The corresponding mechanical boundary conditions read

FE ¨ SE ¨ N(b)
i “ 0 on BBF

i

and

u “ ū on BBu
i .

(27)

In a similar manner, the variational forms of Equations (14) and (15) are obtained. We further choose
an implicit finite-difference method for the time discretization of the global field relations such that
9ge
iα “ ∆ge

iα{∆t, where ∆t measures the current time increment and ∆ge
iα “ ge

iαpn`1q ´ ge
iαpnq. The

same holds for the screw component, i.e., ∆gs
iα “ gs

iαpn`1q ´ gs
iαpnq. As an approximation, plastic slip

rates are discretized analogically, i.e., να “ ∆γα{∆t, where ∆γα “ γαpn`1q ´ γαpnq. With this at hand,
the variational forms are written as

0 “
ż

Bi

δge
α∆ge

iαdVi ´

ż

Bi

δge
α

ÿ

β

∆γα

”

ge
iβ

”

ιee
αβ ` χαβ

ı

` gs
iβ

”

ιes
αβ ` χαβ

ıı

dVi

´ |bα|
´1

ż

Bi

∆γαDivi pδge
αsαqdVi ` |bα|

´1
ż

BBi

δge
α∆γαN(b)

i ¨ sαdAi,

(28)

and

0 “
ż

Bi

δgs
α∆gs

iαdVi ´

ż

Bi

δgs
α

ÿ

β

∆γα

”

gs
iβ

”

ιss
αβ ` χαβ

ı

` ge
iβ

”

ιse
αβ ` χαβ

ıı

dVi

´ |bα|
´1

ż

Bi

∆γαDivi pδgs
αtαqdVi ` |bα|

´1
ż

BBi

δgs
α∆γαN(b)

i ¨ tαdAi,

(29)

respectively. Here, δgs
α and δge

α are arbitrary test functions.
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The time-discretized versions of the micro-stresses (Equations (23) and (24)) read

κα “
Bψ

g
ipn`1q

B∇iγαpn`1q
“ ´l2

α |bα|He
0 rg

e
iαsα ` r1´ νsgs

iαtαs (30)

resp.

κ
g
α “

Bψ
g
ipn`1q

Bγαpn`1q
“ l2

α |bα|
2 He

0

»

–ge
iα

ÿ

β

ge
iβ

”

ιee
αβ ` χαβ

ı

` gs
iβ

”

ιes
αβ ` χαβ

ı

` r1´ νsgs
iα

ÿ

β

gs
iβ

”

ιss
αβ ` χαβ

ı

` ge
iβ

”

ιse
αβ ` χαβ

ı

fi

fl .

(31)

Both equations are fully implicit. Therefore, it is not explicitly indicated that the time-dependent
quantities are associated with the new time increment tpn`1q “ tpnq ` ∆t.

4. Set-Up of the Numerical Example

4.1. Finite Element Model

The presented gradient-based crystal plasticity model is applied to microbending experiments of
copper single crystal. Three micron-sized cantilever beams with varying thickness t in the range
between 2.5 µm and 5.0 µm are under investigation, see Table 1 for exact sample dimensions.
In order to prevent additional influences on the size-dependent hardening, the momentum arm lb
as well as the edge length in width direction w are kept constant for all geometries. This allows
for a meaningful interpretation of the results for which a strong correlation between the strength
of the material and the thickness of the beam is expected (Evans and Hutchinson [32]). Sample
geometries and crystallographic orientation were exemplary chosen in accordance to the experimental
set-up of Motz et al. [12]. Details regarding sample preparation and fabrication are provided in [33].
In that experimental study, various single crystalline cantilever beam samples were fabricated by the
focused-ion beam (FIB) technique and loaded with an indenter tip at the free end.

Table 1. Sample dimensions and discretization data for the here investigated cantilever beam geometries.

Beam lb [µm] w [µm] t [µm] Elements

#1 (8FI8FI) 15 2.5 2.5 8790
#1 (20RI8FI) 15 2.5 2.5 3864
#2 (20RI8FI) 15 2.5 3.5 4480
#3 (20RI8FI) 15 2.5 5.0 5712

With regard to the finite element model, quadratic serendipity elements (twenty-node) have
been used for geometry approximation whereas displacement and the GND density degrees of
freedom have been solved with a different number of nodes, cf. Figure 1. Here, the solution of the
displacement field is based on a fully quadratic FE-approximation combined with a reduced integration
scheme (2ˆ 2ˆ 2 Gauss points). This approach is known to be well suitable for bending-dominated
problems. In contrast, the GND densities are only evaluated at the corner nodes in terms of a
linear FE-approximation using the full integration scheme, see Figure 1b. This mixed-element
formulation—henceforth denoted as 20RI8FI—was examined by Kuroda [34] for the two-dimensional
case with respect to simple shear and compression problems and was revealed to be well suitable
for applications in the context of higher-order gradient crystal plasticity as it exhibits a reliable
performance. The finite element meshes of the cantilever beams are illustrated in Figure 2 whereas
the corresponding geometry and discretization data is provided in Table 1. Figure 2 includes a mesh
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for which both fields are approximated with trilinear eight-node elements and 2ˆ 2ˆ 2 Gauss points
(full integration scheme), cf. Figure 1a. In the results section, a comparison in performance between
the mixed-element (20RI8FI) and the fully linear formulation (8FI8FI) is carried out for selected cases
concerning cantilever beam #1.

(a) (b)

Figure 1. Schematic illustration of implemented finite element schemes: (a) Eight-node hexahedron
element with full integration scheme (8FI8FI)—displacement fields and GND density fields are
interpolated by trilinear shape functions; (b) Twenty-node brick element with mixed integration
scheme (20RI8FI)—displacement fields are interpolated by quadratic serendipity shape functions
combined with the reduced integration scheme whereas the GND density fields are interpolated by
trilinear shape functions in combination with the full integration scheme.

(a) (b)

(c) (d)

Figure 2. Finite-element meshes, crystallographic orientation, and dimensions of investigated cantilever
beam geometries:(a,b) cantilever beam #1; (c) cantilever beam #2; (d) cantilever beam #3. Mesh (a) is
generated by eight-node hexahedron elements whereas meshes (b–d) are generated by twenty-node
brick elements, cf. Figure 1. Exact dimensions are summarized in Table 1.

4.2. Crystallography and Material

The crystallographic orientation of the crystals is chosen in accordance to the experiments in [12]:
the r11̄0s direction is aligned parallel to the longitudinal beam axis (parallel to X1) and the p111q-plane
is oriented parallel to the X1 ´ X2 plane, cf. Figure 2a. The applied deflection results in the typical
tensile and compressive dominated zones which determine the resolved shear stress on the individual
slip systems and, thus, dominate their activation (at least for the here relevant bending load regime).
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There exist four non-zero Schmid factors fα for the particular crystal orientation as indicated in Table 2
together with the slip system designation of the fcc lattice.

Table 2. C.s.s. of copper (fcc): slip direction sα, transversal slip direction tα, slip plane normal
nα, and initial Schmid factor fα. Slip activation is mainly determined by the bending stresses as
an accommodation of plastic deformation by slip systems with an initially zero Schmid factor is
rather unlikely.

?
2sα

?
6tα

?
3nα fα

r011̄s r211s r11̄1̄s 0.4082
r101s r1̄2̄1s r11̄1̄s 0.4082
r1̄1̄0s r1̄12̄s r11̄1̄s 0
r01̄1s r21̄1̄s r111s 0
r101̄s r1̄21̄s r111s 0
r1̄10s r1̄1̄2s r111s 0
r011s r2̄11̄s r1̄1̄1s 0
r1̄01̄s r12̄1̄s r1̄1̄1s 0
r11̄0s r112s r1̄1̄1s 0
r01̄1̄s r2̄1̄1s r1̄11̄s 0.4082
r1̄01s r121s r1̄11̄s 0.4082
r110s r11̄2̄s r1̄11̄s 0

In the flow rule (see Equation (10)), each slip direction is associated with a stand-alone slip system.
In fcc crystals, there are generally 12 edge and six screw dislocation characters as each screw dislocation
line is shared by two slip planes, cf. [35].

The elasticity parameters for copper, i.e., Young’s modulus E “ 126.9 GPa and Poisson’s ratio
ν “ 0.35, are taken from [12], respectively. Further, the initial yield limit is chosen to be Yα “ 1.5 MPa in
agreement with experiments of single crystals, see for instance [36,37]. The magnitude of the Burgers
vector is taken as b “ |bα| “ a{

?
2 “ 0.2552 nm, based on a lattice constant of a “ 0.3609 nm [38].

In order to minimize rate effects, the rate-sensitivity parameter is chosen to be m “ 20 and the reference
slip rate is put on a level with the macroscopic (quasi-static) load rate, i.e., ν0 “ 9εben. The drag stress
parameter is assumed to be C0 “ 10 MPa. Moreover, the same constitutive length-scale parameter
l “ lα is applied to all slip systems in analogy to the Burgers vector magnitude. In [11], l was found to
be 4 µm for highly pure Ni. Since a similar magnitude was obtained for torsion tests of copper wires,
cf. [39], this value is adopted here. The values for the hardening moduli and the saturation rate are
discussed in Section 5.1. All material parameters are summarized in Table 3.

5. Numerical Results: Microbending of Cu Single Crystal

5.1. Element Choice: Eight-Node Hexahedron Element with Full Integration (8FI8FI) vs. Twenty-Node Brick
Element with Mixed Integration (20RI8FI)

As a starting point, the size-independent response is studied, i.e., the bending response in the
absence of gradient effects which is obtained when l{t « 0. By setting l “ 0, the computations
mimic the response of bulk samples independent of the actual sample dimensions. A macroscopic
bending test from [12] serves as a reference in order to calibrate the local hardening modulus Hl

0
as well as the saturation rate csat. All numerical bending tests were loaded up to 10% normalized
deflection (applied deflection/initial momentum arm). Optimal values are identified as Hl

0 “ 77.5 MPa
and csat “ 103. The final results are shown in Figure 3. As seen, this choice results in a good
saturation behavior with rapid hardening behavior for all three sample sizes associated with the
20RI8FI-formulation. All curves yield the reference flow stress of «227 MPa, i.e., the bending response
is clearly size-independent (independent of the beam thickness).
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Table 3. Material parameters of Cu single crystal used for numerical computations.

Young’s modulus E 126.9 GPa

Poisson’s ratio ν 0.35 -

Microscopic yield stress Yα 1.5 MPa

Local hardening modulus Hl
0 77.5 MPa

Gradient hardening modulus He
0 1 GPa

Saturation rate csat 103 -

Reference slip rate ν0 10´3 s-1

Rate sensitivity parameter m 20.0 -

Drag stress C0 10.0 MPa

Length scale l 4.0 µm

Length of Burgers vector b 0.2552 nm

Figure 3. Size-independent bending response for Hl
0 “ 77.5 MPa and csat “ 103. Simulations with all

three sample sizes (20RI8FI) yield the reference data of [12]. The FE-mesh with linear elements (8FI8FI)
overestimates the stiffness as well as the strength due to volumetic locking in case of bending-dominated
loading for the size-independent as well as the size-dependent case.

By comparing the bending response of cantilever beam #1 of the two element formulations,
it is clearly seen that the 8FI8FI-element formulation overestimates the strength and the bending
stiffness. A deviation in the stress–strain curve is already obvious after «1% normalized deflection.
Further, the saturation level as well as saturation behavior are not captured correctly. This is due to
a bending-dominated deformation mode which cannot be properly captured by the linear element
formulation due to locking effects.

Next, the size-dependent material behavior is investigated. Exemplarily, cantilever beam #1
is studied as the strongest impact is expected for the beam sample with the smallest thickness.
A linear-like hardening behavior is observed (cf. Figure 3) which is associated with a continuously
increasing (plastic) strain gradient during bending. The strain gradient scales the higher-order
gradient hardening in terms of the back-stress Divipκαq. Hence, the gradient hardening contribution
constantly increases which in the end prevents a saturation of the overall hardening response. As in the
size-independent case, the 8FI8FI-formulation overestimates the bending response. Yet, the difference
at the final deformation state appears to be not that pronounced which indicates that the computational
accuracy of the GND field is not affected by the 8FI8FI-element formulation.
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In the following, a qualitative comparison with regard to the GND density and the plastic slip is
carried out. For that reason, the effective GND density geff

i is introduced as a function of the admitted
edge and screw GND components

geff
i “

d

ÿ

α

“

gtot
iα
‰2
“

d

ÿ

α

“

ge
iα
‰2
`
“

gs
iα
‰2, (32)

where gtot
iα is the total GND density associated with slip system α. In analogy, the effective plastic slip

γeff “
c

ÿ

α

γ2
α, (33)

serves as a representative variable in order to compare the distribution of plastic deformation.
Exemplarily, Figure 4 depicts the distribution of the effective GND density geff

i along the central
middle axis for both element formulations. The results are within the same order of magnitude or
even identical, i.e., the GND density field is well captured by both formulations. This holds true for
both, the qualitative distribution along the middle central axis as well as the quantitative distribution
within the X1 ´X3-plane. Consequently, the bending response (but not the GND evolution) is affected
by volumetric locking in case of the 8FI8FI-element formulation. The contour plot for the case of
20RI8FI-elements is not presented as only marginal differences are present compared to the contour
plot in Figure 4. Nevertheless, the contour plot of geff

i can be found in Figure 7 (Section 5.2) where the
pile-up characteristic of GNDs is analyzed in more detail. The distribution of the effective plastic slip
γeff is qualitatively compared along the highest and lowest central path parallel to the beam axis, see
Figure 5. In addition, a quantitative comparison is provided on the basis of the effective plastic slip
distribution within the central X1 ´ X3-plane. As seen, differences are found near the supporting end,
i.e., close to a normalized position of « 0. Here, the 20RI8FI-element formulation resolves a higher
magnitude of γeff which is confirmed by the contour plots. Slightly higher values of γeff are also
computed in regions where both formulations are close to each other. Besides, it can be seen that plastic
deformation is only accommodated within the first third/half of the beam sample (referred to the
fixed side) whereas the rest of the beam finger remains straight. Such a localized plastic deformation is
characteristic for cantilever beam bending.

5.2. Bending Size Effect—Influence of Sample Thickness

Experiments show that the bending size effect is strongly correlated to the beam thickness. For that
reason, the ability of the model to predict a strengthening effect as a result of thickness reduction is
studied. This investigation allows in turn to quantify the role of GNDs within cantilever beam bending
experiments. All subsequent computations are based on the 20RI8FI-element formulation. All three
sample sizes are loaded up to 10% normalized deflection using a gradient hardening modulus of
He

0 “ 1 GPa, which corresponds to Hs
0 “ 650 MPa via Equation (22). A relatively high value is chosen

in order to obtain a rather strong size effect such that the impact of the characteristic sample dimension
is immediately recognizable. The length scale parameter l is involved in all subsequent computations
with the value stated in Table 3.
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Figure 4. Distribution of the effective GND density geff
i for the cantilever beam sample #1 along the

middle beam axis (from left to right) for the particular case He
0 “ 1 GPa. The corresponding contour plot

within the central X1 ´X3-plane is additionally shown for the 8FI8FI-element formulation (cf. Figure 7
for the 20RI8FI-element formulation). Both formulations yield very similar results, indicating that the
GND density field is not affected by the choice of element formulation.

The results in terms of stress–strain curves for all three cantilever beam samples are presented
in Figure 6. A clearly recognizable increase in strength is obtained for all three beam sizes compared
to the reference saturation stress, i.e., the size-independent response measured in [12]. The smallest
sample (cantilever beam #1, thickness of t “ 2.5 µm) exhibits the stiffest response. With increasing
beam thickness, the bending response becomes softer. Accordingly, the response of cantilever beam #3
(thickness of t “ 5 µm) is the softest and for t “ 3.5 µm (cantilever beam #2), the response is
located in between. The obtained size effect is well captured by the non-local crystal plasticity
model. The slop in the elasticity-dominated regime shows the exact opposite trend. Here, the slope
is determined by the second moment of area and, hence, by the beam thickness t. At a later stage of
deformation, the back-stress effect resulting from the storage of GNDs becomes dominant in terms of
the work-hardening rate.

By considering the distribution of GNDs within the central cross section of the beams, i.e.,
within the X1 ´ X3-plane as displayed in Figure 7, it is seen that high densities of GNDs are
accumulated at the supported end of the beams where the deformation is concentrated. In this
region, GNDs pile up along the neutral plane (zero stress isoline), which does not necessarily coincide
with the middle beam line. In fact, a shift of the stress field towards the bottom is caused to some
extent by the supported end of the cantilever beam.

For all three sample sizes, a similar distribution of the effective GND density is found with a
maximum value of geff

i « 7.0ˆ 1013 m´2, located at the lower half of the clamped side. In other words,
the population of GNDs directly scales with the deformation gradient imposed by the normalized
deflection as this is the same for all three beam geometries. Nevertheless, the resulting back-stress
contributes differently for the samples leading to higher bending stresses σben for thinner beam samples.
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This can be partially explained by the fact that the computed bending stress. σben “ Mp
b{S

p depends
on the plastic section modulus Sp “ wt2{4 which is a pure geometrical information. It is assumed that
plastic deformation dominates which holds true at least in the most relevant strain regime εben ą«0.35,
i.e., in the regime where the bending stress is saturating (cf. [12]). Further, Mp

b “ Flb denotes the plastic
bending moment. Thus, the resulting flow stress scales inversely proportional to the square of the
beam thickness t. Accordingly, there must be a scaling effect resulting from the beam width w, even if
this effect is expected to be smaller. As w is kept constant in the present study, a pure dependence on
the sample thickness is obtained. In the experiments, however, an influence of the beam width w is
likely due to dimensional deviations caused by the fabrication process.

Figure 5. Distribution of the effective plastic slip γeff for the cantilever beam sample #1 along
the indicated paths of the central cross section. In addition, the distribution is shown within the
central X1 ´ X3-plane. Results show some noticeable differences between both element formulations,
in particular, close to the supported end, which refer mainly to the magnitude of γeff.

The role of GNDs is further assessed by means of the statistically stored dislocation density.
To do so, we introduce the effective SSD density ζeff

i as a function of γeff and the effective free path of
moving dislocations Leff

9ζeff
i “

νeff

bLeff , (34)
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where

Leff “
K

b

ρeff
i

, (35)

ρeff
i “ ζeff

i ` geff
i is the total (effective) dislocation density, and K is a material constant. Equation (34)

represents a modified version of the originally proposed relation by Essmann and Mughrabi [40,41].
Corresponding interaction processes are intrinsically considered via the calculation of γα and giα,
respectively. K “ 10 ([42]) and ζeff

0 “ 2.0ˆ 1012 m´2 ([13]) are given in the literature.

Figure 6. Bending response of cantilever beam samples with different thicknesses. The strengthening
effect associated with the accumulation of GNDs is the strongest for cantilever beam #1, having
the smallest thickness of t “ 2.5 µm. The softest response is obtained for cantilever beam #3 with
t “ 5 µm. The general trend in terms of smaller is stronger is captured well by the underlying model.
All computations refer to the 20RI8FI-element formulation.

In Figure 8, the contour plots illustrate that the density of SSDs is naturally concentrated within
highly deformed zones. More interestingly, the magnitude of ζeff

i reduces considerably with decreasing
thickness of the cantilever beam. This indicates that the impact of GNDs on the evolution of SSDs is
increased for smaller samples. In other words, the magnitude of SSDs approaches the magnitude of
GNDs with decreasing sample dimensions, leading to a more pronounced influence on the bending
response in case of smaller beams coming from accumulated GNDs. This indicates that the location of
most prominent dislocation accumulation, for instance in terms of the total dislocation density ρeff,
shifts from the beam surface towards the beam center with decreasing beam thickness.

5.3. Bending Size Effect—Impact of a Saturating GND Density

The plastic deformation is strongly localized at the supported end of the beam. In this region,
the number of GNDs increases with increasing bending load due to compatibility reasons. Accordingly,
the hardening contribution from the higher-order gradient Divipκαq continuously increases which is
reflected by the slope in the hardening behavior, cf. for instance Figure 6. However, from a physical
point of view, the number of dislocations stored locally cannot be arbitrary high [43]. For that reason,
the impact of a maximum permissible GND density on the bending response is investigated for
cantilever beam #1 by setting up two different saturation values which are applied to each slip system
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independently: gmax
iα “ 1ˆ 1013 m´2 and gmax

iα “ 2ˆ 1013 m´2, respectively. Hence, the evolution
equations for edge and screw GND densities are exposed to the following case differentiations:

9ge
iα “

$

&

%

Equationp14q, for ge
iαpn`1q ă gmax

iα ;

0, for ge
iαpn`1q ě gmax

iα ,
(36)

and

9gs
iα “

$

&

%

Equationp15q, for gs
iαpn`1q ă gmax

iα ;

0, for gs
iαpn`1q ě gmax

iα .
(37)

Figure 7. Distribution of the effective GND density geff
i for all three sample sizes within the central

cross section (X1 ´ X3-plane) after 10% normalized deflection. GNDs pile up along the neutral plane
indicated by the dashed line. Although the distribution of geff

i appears to be similar with respect to all
three beam sizes, their impact on the bending response is strongly correlated to the beam thickness via
the plastic section modulus Sp. In view of the effective SSD density shown in Figure 8, a strong effect
on the evolution is found due to the impact of GNDs.
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Figure 8. Distribution of the effective SSD density ζeff
i for all three sample sizes within the central cross

section (X1 ´ X3-plane) after 10% normalized deflection. The density of SSDs approaches the density
of GNDs with reducing beam thickness, leading to a more pronounced influence on the mechanical
bending response coming from accumulated GNDs.

As in the previous cases, all computations are based on the 20RI8FI-element formulation and
are performed up to 10% normalized deflection. The resulting stress–strain curves are presented in
Figure 9 together with the size-independent reference and the response of an unrestricted GND density
evolution. Those cases represent the lower resp. upper bound of the mechanical bending behavior in
terms of strength. The bending response in case of a limited GND evolution shows a saturation-like
hardening behavior where the increase in strength relative to the size-independent case is related to
the applied GND density limit. Hence, the stress saturation level is steered by the magnitude of gmax

iα
in the way that a higher saturation limit causes a delayed deviation from the unrestricted case. In fact,
once the saturation limit of gmax

iα is reached, the size-dependent micro-hardening stresses become
decoupled from the gradient of plastic slip. Accordingly the size-dependent hardening contribution
coming from Divipκαq is limited.

In related experiments, the bending response for a cantilever beam of size 2.5ˆ 5.0ˆ 16.3 µm
(tˆwˆ lb) was found to show a stress saturation already at about 3.5% normalized deflection [12].
Thus, a saturation limit for GNDs around 1ˆ 1013 m´2 appears to be reasonable with respect to the
current problem (cf. Figure 9). In comparison to the size-independent case, this yields an increase
of about 118 MPa in flow stress which is solely related to the geometrically necessary storage of
dislocations. Furthermore, it can be seen from Figure 9 that the bending size effect is conserved when
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comparing the bending response between the differently sized cantilever beams for the particular case
if gmax

iα “ 1ˆ 1013 m´2. The resulting effective back stress τeff
b , defined as

τeff
b “

c

ÿ

α

Divipκαq
2, (38)

is compared in Figure 10 for selected magnitudes of gmax
iα and sample thicknesses t. As can be seen,

the size-dependent hardening contribution is much higher for the higher GND density limit which
is consistent with the determined bending response in Figure 9. At the same time, the impact of the
thickness is negligible for a particular gmax

iα value.

Figure 9. Impact of a maximum permissible GND density gmax
iα on the mechanical bending response

of Cu single crystals. As seen for cantilever beam # 1, the resulting saturation level is steered by the
magnitude of gmax

iα . Furthermore, the bending size effect is conserved when comparing the response
between the differently sized cantilever beams for a GND saturation limit of gmax

iα “ 1ˆ 1013 m´2.

6. Discussion

The bending size effect is characterized by an increasing strength with decreasing sample thickness.
A strong correlation between flow stress and beam thickness was found by Motz et al. [12] for
thicknesses in the range 7.5 µm to 1 µm. A similar trend was found by Demir et al. [26] for alternative
single crystal geometries with average thicknesses in the range 4.23 µm to 1.02 µm. In this size
regime, the bending size effect is associated with a combination of different mechanism. Besides the
geometrically necessary storage of dislocations, dislocation starvation and dislocation source limitation
are known to affect the plastic deformation behavior. Dislocation source limitation plays a dominant
role for very small beam sizes as the statistical distribution of dislocation sources becomes then
more and more crucial, cf. [44]. As a consequence of a limited availability of source density within
the localized region of plastic deformation (supported beam end), the yield limit of the material
may increase significantly. In this respect, the storage of GNDs imposes an additional resistance
to dislocation nucleation, yielding an increasing nucleation strength. Last but not least, plasticity
is strongly controlled by the initial dislocation density of the crystal [8]. In the particular case of
microbending of single crystals, dislocations are able to leave the crystal through the free surfaces
at some point [12]. This process of starving or escaping dislocations finally leads to the extinction
of initially available dislocations [4]. Hence, with a sufficiently small number of obstacles in the
single crystalline sample, the size-dependent flow stress is additionally governed by the applied
deformation rate relative to the dislocation nucleation rate which determines the required stress level
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for continuing operation of individual dislocation sources, see also Balint et al. [45]. Keeping in mind
that an accurate fabrication of micro-cantilever samples is a challenging task, there is currently no
sufficient data available allowing for a meaningful interpretation of the impact of each of the sample
dimensions—thickness, width, and length—independently. For that reason, strengthening effects
mentioned above are neglected in the current numerical study. Instead, the focus is solely on the
micromechanical role of GNDs and their impact on the mechanical bending response as a function of
the beam thickness t.

Figure 10. Effective back stress τeff
b for selected gmax

iα values and cantilever beam sizes.
The size-dependent resistance to bending deformation increases with increasing GND density limit.
The sample thickness has a negligible impact on the back-stress evolution for a fixed gmax

iα .

The numerical results correctly capture the commonly observed trend ‘smaller is stronger’.
In fact, the size-dependent strengthening effect due to the back-stress effect induced by the storage
of GNDs is predicted very well for two different cases: (i) unrestricted evolution of GND densities
and (ii) physically limited GND densities. In case (i), GND densities evolve with increasing plastic
slip gradients which, for the particular case of cantilever beam bending, continuously grow within
the deformation-localized region. In contrast, the evolution of GND densities is limited in case (ii)
and completely vanishes if a certain saturation limit is reached, i.e., if the plastic strain gradient
becomes very large. This mimics a more realistic micromechanical behavior as is supported by the
characteristics of related experimental force–deflection curves. Moreover, the local number of GNDs to
be stored locally cannot be arbitrary high (cf. [43]). The numerically determined flow stresses for the
here investigated beam thicknesses and for the particular case of gmax

iα “ 1ˆ 1013 m´2 are illustrated
in Figure 11 along with available experimental data from the literature. The simulation data is solely
a function of the beam thickness t while experimentally determined data sets might (undesired) be
affected by the reduction of the other sample dimensions (lb and w) or by varying dimension ratios
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(lb{t and lb{w). Apparently, changing sample dimensions and their ratios add substantially to the
complexity of the superimposed effect associated with the mechanisms discussed above. This might
be one explanation for the deviations between the experimental data sets of [12,26]. A meaningful
discussion regarding the impact of the initially available dislocation density is not possible due to the
lack of data.

Figure 11. Experimentally and numerically determined relation between flow stress σben and
beam sample thickness t in microbending of Cu single crystals together with associated power
fits. The deviations between the two experimental data sets might be explained by the different
sample geometries: cantilever beams with rectangular cross section and high lb{t as well as lb{w
ratios ([12]); cantilever beams with trapezoidal cross section, high lb{tavg ratios, but low lb{w
ratios ([26]). The numerically determined flow stress values show a reasonable strengthening effect
in the regime where GNDs dominate the micromechanical behavior of the crystal, i.e., in the range
t Á 3 µm. For t À 3 µm, the impact of dislocation starvation and source limitation become crucial,
leading to an even more pronounced increase in flow stress with decreasing beam thickness t. The data
of Demir et al. refers to a flow stress measurement at 0.06 strain.

Both experimental data sets were fitted by a power function of the form at´b ` c using the
Levenberg–Marquardt algorithm, see Figure 11. Then, an error analysis is conducted for the data
set of Motz et al. [12] in order to draw final conclusions regarding the statistical representativeness
of the measurements. The standard deviation is calculated for each fitting parameter a, b, and c.
The maximal and minimal standard deviation of each fitting parameter is considered independently
to compute upper and lower confidence bounds while the other two parameters are kept constant
in each case. The resulting confidence intervals are embedded in Figure 11 and are interpreted
independently. The overall fit sensitivity associated with the prefactor a is small due to its narrow
confidence interval over the entire beam thickness range. With respect to the exponent b, it is found
that the power function is governed by the exponent b in the regime t ă 2 µm. As here, one would
expect rather large experimental scatter, the power fit appears less sensitive compared to the regime
t ą 2 µm. In fact, the confidence interval associated with the exponent b vanishes if t approaches
«1 µm. Hence, we conclude that the determined exponent describes the experimentally measured
relation between σben and t fairly well. The offset parameter c indicates a similar tendency as the
exponent, i.e., for t ą 2 µm the power function becomes more sensitive with respect to c. In comparison
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to the simulation data which reflects a pure dependence on the beam thickness t, a good agreement is
found for t Á 3 µm as the predicted data lies very close to the actual fit. Consequently, it is concluded
that the mechanism associated with the geometrically necessary storage of dislocations governs the
mechanical bending behavior in this range. For t À 3 µm, the impact of dislocation starvation and
source limitation becomes obviously non-negligible. These findings fit also to DDD predictions of
Hussein et al. [46] where single crystals with D ď 1.0 µm were found to be almost free of dislocations
due to the limiting size whereas crystals with D ě 5.0 µm show pronounced dislocation activities.

7. Conclusions

Based on an extended gradient crystal plasticity model, the role of GNDs in the mechanical
bending response of micron-sized, single crystalline Cu was investigated. The underlying model
contains non-standard evolution relations for the edge and screw components of the slip system-based
dislocation density vector, crystal-specific interaction relations, and higher-order gradient boundary
conditions. The cantilever beam geometries considered in the numerical study allowed the examination
of the strengthening effect associated with the geometrically necessary storage of dislocations solely
as a function of the beam thickness which is a non-trivial task from an experimental point of
view. Other size-dependent mechanisms such as dislocation starvation and source limitation were
disregarded at the current stage. In particular, the influence of the beam thickness as well as the
impact of a maximum permissible GND density was of primary importance. Besides, in relation to the
coupled field problem between displacement and GND density degrees of freedom, a quantitative
comparison between two different finite element formulations has been carried out. On the basis of
our findings, we conclude:

• The bending dominated deformation is captured more accurately by the mixed FE-formulation
denoted as 20RI8FI. In contrast, the commonly applied linear FE-formulation (8FI8FI)
overestimates the bending response for the size-independent as well as the size-dependent case.
The locking phenomenon only influences the predicted bending behavior (and not the predicted
GND density) in the case of the 8FI8FI-element formulation.

• The bending size effect is captured by the theory to the extent caused by geometrically necessary
storage of dislocations. This size-dependent strengthening effect can be explained as follows:
(i) Similar dislocation pile-ups have been found around the neutral plane where dislocations get
stuck rapidly and lose the ability to accommodate the beam bending, independent of the beam
size. The impact of the resulting back-stress effect on the bending response is nevertheless higher
for the smallest beam as the bending stress is inversely proportional to the square of the beam
thickness. The same holds for the flow stress computation in related cantilever beam bending
experiments; (ii) In contrast to the distribution of the GND density, a much higher population of
SSDs was found for the largest cantilever beam sample which indicates that the bending behavior
is here mainly governed by random trapping processes. However, with decreasing beam thickness,
these processes become less pronounced. This is supported by the fact that the magnitude of
the SSD density becomes comparable to the one of the GND density in the case of the thinnest
beam sample. Consequently, the impact of GNDs on the mechanical bending response is most
pronounced in the thinnest beam sample. Accordingly, the location of maximum dislocation
storage was found to shift from the sample surface towards the beam center when decreasing the
beam thickness.

• A physically motivated limitation of the GND density was incorporated into the model by
modified evolution equations for the edge and screw GND density components. In the current
crystal plasticity framework, this was done at the nodal level as GND densities were treated as
additional degrees of freedom. This leads to a bending response with saturation-like hardening
behavior—which is in accordance with experimental findings. At the same time, the smaller is
stronger trend was conserved in accordance to the unrestricted case. In the end, a saturation limit



Materials 2017, 10, 289 22 of 24

of «1 ˆ1013 m´2 was found to match well the characteristics in the bending response of related
experimental data where a flow stress saturation was obtained at about 3.5% normalized deflection.

• Numerically determined flow stresses using a saturation limit of«1ˆ 1013 m´2 show a reasonable
strengthening effect in the beam thickness range t Á 3 µm. The predicted flow stress of cantilever
beam #3 is in great accordance with experimental data. The flow stress associated with cantilever
beam #2 still shows an acceptable accuracy as it lies within the confidence interval of the related
experimental data. For the thinnest beam sample, a considerable contribution from another
size-dependent mechanism occurs. Based on this, it can be argued that GNDs dominate the
micromechanical bending response in the thickness range t Á 3 while other mechanisms such
as dislocation starvation and source limitation become crucial for t À 3 µm where an even more
pronounced increase in flow stress is experimentally measured.
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