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1. Introduction

The modelling approach was based on the theory found in References [1] and [2]. The equations
used are explicitly stated here for completeness.

2. Fermi-Dirac Integrals

The Fermi Dirac integrals used in this supplementary information are defined as:

Fj(ε) =
∫ ∞

0

Ej

1 + eE−ε
dE. (1)

They were numerically solved in Matlab using the script in reference [3] using the numerical
approximations referenced within, modified to remove the gamma function.

3. Fermi level

The approach taken was to fix the doping level, Nd, and the material parameters, which can then
be used to determine the Fermi level position. Charge neutrality gives the conduction band electron
concentration, n and the valence band hole concentration, p, as

n = Nd + p (2)

as any additional carriers must have been excited across the band gap. From standard band theory
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p = 4π
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(4)

where m∗
n and m∗

p is the density of states effective mass of the conduction band and valence band
respectively. Eg is the band gap and E f is the Fermi level, with the energy scale zeroed at the bottom
of the conduction band. By combining Equations (2)–(4), these were numerically solved (using the
Matlab function fzero) to find E f .

The Fermi level can be redefined as the reduced Fermi energy for the conduction band, εn, and
valence band, εp respectively:

εn =
E f

kT
(5)

εp =
E f − Eg

kT
(6)

4. Conductivity

The conductivity can be separately calculated for each band as σv, where v = n or p respectively
for the conduction and valence band:

σv = 2
(

2πm∗
vkT

h2

) 3
2

qµvc
Fs+ 1

2
(εv)

Γ(s + 1
2 )

(7)
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where µvc is the temperature dependendent mobility in the limit of low carrier concentration (i.e.
the conductivity formula has already taken into account the mobility’s dependence on doping as
F0(εv)/F1

2
(εv)). The scattering factor is taken as s = − 1

2 in this work, corresponding to acoustic
phonon scattering. For acoustic phonon scattering only (used for the bismuth telluride data):

µvc = µv0 acoustic

(
T0

T

) 3
2

(8)

where µv0 acoustic is the known input value of the acoustic phonon scattering limited mobility in the
limit of low carrier concentration at a temperature T0. For the combination of acoustic and alloy
scattering used for the silicide material:

1
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) 3
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) 1
2

(9)

where µv0 alloy is the known input value of the alloy scattering limited mobility in the limit of low
carrier concentration at a temperature T0.

The total conductivity is then simply given by:

σ = σn + σp. (10)

5. Seebeck coefficient

The Seebeck contribution for each band (v = n or p) is given by:

αv = ∓ k
e
(δv − εv) (11)

δv =
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2 )Fs+ 3
2
(εv)

(s + 3
2 )Fs+ 1

2
(εv)

(12)

where for the conduction band − is used, and + for the valence band. The total Seebeck coefficient, α,
is then given by:

α =
αnσn + αpσp

σn + σp
. (13)

6. Thermal conductivity

The Lorentz number, Lv, is given by:

Lv =

(
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e

)2
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The total electron and hole contribution to the thermal conductivity is then given by

κel = σnLvT + σpLpT +
σpσn

σp + σn
(αp − αn)

2T. (15)

The lattice thermal conductivity for bismuth telluride is given by:

κlat = κ0
T0

T
(16)
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where κ0 is the known value of the lattice thermal conductivity at temperature T0. The lattice thermal
conductivity for the silicide is given by:

κlat = κ1 + κ2(T − T0) (17)

where κ1 is the lattice thermal conductivity at temperature T0 and κ2 is the lattice thermal conductivity
gradient (a negative value). The total thermal conductivity is then given by

κ = κel + κlat (18)

7. Figure of Merit

The figure of merit is then given by:

ZT =
α2σT

κ
(19)
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