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Abstract: This study introduces the effect of the thickness of a bacterial cellulose membrane by
comparing the bone regeneration effect on rat skulls when using a collagen membrane and different
thicknesses of resorbable bacterial cellulose membranes for guided bone regeneration. Barrier
membranes of 0.10 mm, 0.15 mm, and 0.20 mm in thickness were made using bacterial cellulose
produced as microbial fermentation metabolites. Mechanical strength was investigated, and new
bone formation was evaluated through animal experimental studies. Experimental animals were
sacrificed after having 2 weeks and 8 weeks of recovery, and specimens were processed for histologic
and histomorphometric analyses measuring the area of bone regeneration (%) using an image analysis
program. In 2 weeks, bone-like materials and fibrous connective tissues were observed in histologic
analysis. In 8 weeks, all experimental groups showed the arrangement of osteoblasts surrounding the
supporting body on the margin and center of the bone defect region. However, the amount of new
bone formation was significantly higher (p < 0.05) in bacterial cellulose membrane with 0.10 mm in
thickness compared to the other experimental groups. Within the limitations of this study, a bacterial
cellulose membrane with 0.10 mm thickness induced the most effective bone regeneration.

Keywords: bacterial cellulose; guided bone regeneration; membrane; resorbable membrane, thickness

1. Introduction

Guided bone regeneration (GBR) is a conventional procedure that places a barrier membrane over
a bone defect either filled with or without bone graft materials [1–3]. An enclosed space is created by
the barrier membrane, allowing only osteogenic cells to populate the bone defect [4,5]. Then, the barrier
membrane excludes surrounding tissues that derive unwanted re-growth of the gingival epithelium
and connective tissue cells [5,6].

Barrier membranes are required to possess properties such as biocompatibility, cell-occlusiveness,
space maintenance ability, tissue integration, and manageability [7]. Numerous barrier membranes
have been introduced, and barrier membranes can be classified as resorbable or non-resorbable
membranes [8–10]. Although non-resorbable barrier membranes draw a predictable result because
of their space maintenance ability, they manifest some disadvantages, including a second surgery
necessary for removal and risk of infection due to external exposure. Expanded-polytetrafluoroethylene
(e-PTFE) and titanium mesh are widely used as non-resorbable membranes [11–14]. As a result,
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resorbable barrier membranes are often used in clinical trials, and collagen membranes are recently
used as biodegradable barriers in GBR [15,16]. Since collagen membranes do not require a second
surgery and display excellent hemostasis, early wound stabilization, chemotaxis for fibroblasts,
and suitable tension, they are widely used [17]. Nonetheless, they possess limitations, such as lack of
space-making ability, unpredictable biodegradation period, and high cost. To date, many studies on
GBR membranes have been carried out in various fields [18].

Cellulose is a polysaccharide macromolecule with β-(1,4) glycosidic bonds, and it is a source of
cytoderms in higher plants [19]. Heteropolysaccharides in plant cellulose become attached with other
polysaccharides that ultimately decrease mechanical strength and absorbability [20,21]. Cellulose can
be produced by bacteria, and bacterial cellulose (BC)—which is produced by the internal bacteria
like Agrobacterium, Pseudomonas, Rhizobium, and Komagataeibacter—does not contain hemicellulose,
pectin, lignin, or biogenic products. Compared to plant cellulose, BC exhibits physicochemical
properties including high purity, high crystallinity, high mechanical strength, high hydrophilicity,
excellent biocompatibility, and outstanding biodegradability [22,23]. Incorporating these advantageous
properties of BC, new materials have been developed in many industries, including pharmaceutical
companies, and one of them was the development of new barrier membrane for GBR [22–24].
A previous study comparing collagen membranes to BC membranes suggested that the BC membrane
can take the role of a barrier membrane [25]. BC membranes demonstrate properties such as swelling
with high hydrophilicity and exchange of oxygen and nutrients through the micropores composed of
microfibers [26]. BC membranes can be synthesized in greater thickness under extended incubation
time. Depending on the thickness of the membrane, it is possible to control the permeability for
sufficient fluid and gas [27–29].

Therefore, in this study, the mechanical properties of BC membranes of various thicknesses
were measured, and a GBR procedure was then performed in rat calvarial defect models in order to
investigate the proper thickness of BC membranes for GBR.

2. Results

2.1. Thickness Measurement

BC membranes were reprocessed in film form by freeze-drying and irradiating. The dried BC
membranes were then cut into fixed size of 20 mm in length and 15 mm in width (n = 5). Errors in
the length and width of the BC membranes were less than 0.10 mm. However, the thicknesses of BC
membranes were fabricated differently for each sample: they were designed in 0.10 mm, 0.15 mm, and
0.20 mm thicknesses. The thickness of the collagen membrane was measured as 0.317 ± 0.026 mm,
while the thicknesses of the BC membranes were measured as 0.103 ± 0.017 mm, 0.151 ± 0.012 mm,
and 0.207 ± 0.006 mm. This might be caused by differences in BC culture conditions, such as incubation
time, medium conditions, and culture temperature.

2.2. Scanning Electron Microscopy (SEM)

The results from SEM analysis showed that the microstructures of the BC and collagen membranes
were a network structure composed of micro-sized fibers, as shown in Figure 1. In addition,
the structures of the surface and cross-section of BC membranes were similar to those of the collagen
membrane. Therefore, more fibers are exposed to the surface of the BC membrane as the BC membrane
gets thicker.
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Figure 1. Scanning electron microscope (SEM) images of the surface and cross-section of bacterial 
cellulose (BC) and collagen membranes. (a,b) Collagen membrane; (c,d) 0.10 mm BC membrane;  
(e,f) 0.15 mm BC membrane and (g,h) 0.20 mm BC membrane (original magnification: surface, ×5k 
(a,c,e,g); cross-section, ×10k (b,d,f,h)). 

2.3. Mechanical Test of Membranes 

The mechanical properties of artificial matrix in tissue engineering are critical due to the 
necessity of structural stability to withstand stress incurred during implanting in vivo. Such 
properties as tensile strength and elongation percentage can also significantly affect some specific 
biological functions of cells in implanted tissue [30]. Therefore, tensile strengths and elongations of 
BC and collagen membranes were observed as shown in Figure 2. In general, mechanical strengths 
of dried membranes were higher than those of wet membranes. According to the experimental 
measurements of tensile strength and elongation, tensile strengths of the wet membranes were higher 
than those of the dried membranes. In particular, there was a significant difference between 
elongation of the collagen membrane and elongation of BC membranes (collagen: 380% ± 6%, 0.10 mm: 
275% ± 7.5%, 0.15 mm: 246% ± 3%, 0.20 mm: 408% ± 7%) (p < 0.05). Elongation of BC membranes was 
significantly greater compared to that of collagen membrane. In addition, BC membranes showed 

Figure 1. Scanning electron microscope (SEM) images of the surface and cross-section of bacterial
cellulose (BC) and collagen membranes. (a,b) Collagen membrane; (c,d) 0.10 mm BC membrane; (e,f)
0.15 mm BC membrane and (g,h) 0.20 mm BC membrane (original magnification: surface, ×5k (a,c,e,g);
cross-section, ×10k (b,d,f,h)).

2.3. Mechanical Test of Membranes

The mechanical properties of artificial matrix in tissue engineering are critical due to the necessity
of structural stability to withstand stress incurred during implanting in vivo. Such properties as tensile
strength and elongation percentage can also significantly affect some specific biological functions
of cells in implanted tissue [30]. Therefore, tensile strengths and elongations of BC and collagen
membranes were observed as shown in Figure 2. In general, mechanical strengths of dried membranes
were higher than those of wet membranes. According to the experimental measurements of tensile
strength and elongation, tensile strengths of the wet membranes were higher than those of the dried
membranes. In particular, there was a significant difference between elongation of the collagen
membrane and elongation of BC membranes (collagen: 380% ± 6%, 0.10 mm: 275% ± 7.5%, 0.15 mm:
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246% ± 3%, 0.20 mm: 408% ± 7%) (p < 0.05). Elongation of BC membranes was significantly greater
compared to that of collagen membrane. In addition, BC membranes showed greater strength
properties, even though they were thinner than collagen membrane. These characteristics may be due
to the hydrogen bonds between the fibrils of BC [31].
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2.4. Histological Findings 
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BC membrane group, the new bone formation was observed in the margins of old bone boundaries 
and around bone graft materials, but the newly-formed bone was immature (Figure 3b,d,f). In the 
0.20 mm BC membrane group, membrane expansion and plasma exudation in the upper structure 
were observed, but new bone formation was not observed in the lower membrane structure  
(Figure 4b,d,f). In all experimental groups sacrificed at 8 weeks after surgery, the new bone formation 
was generated greatly and also observed in the peripherals of bone graft materials. Mesenchymal 
cells, fibrous connective tissues, and osteoblasts were observed in the peripherals of the new bone 
substrate (Figures 5 and 6). Comparing the groups with different materials, post-hoc analysis showed 
a significant difference between collagen and 0.10 mm BC groups (p < 0.01) at 2 weeks after surgery. 
There was a significant difference between collagen and 0.15 mm BC groups. A difference among the 
remaining groups was not significant (collagen: 1.54% ± 0.52%, 0.10 mm: 3.45% ± 1.60%, 0.15 mm: 
2.10% ± 0.25%, 0.20 mm: 1.62% ± 0.77%) (p > 0.05). After 8 weeks of healing, the mean value of new 
bone formation in the 0.10 mm BC group (Figure 5b,d,f) was particularly significant among the three 
groups, while there was no significant difference among the collagen group, 0.15 mm BC group, and 
0.20 mm BC group (collagen: 9.08% ± 1.59%, 0.10 mm: 20.16% ± 3.41%, 0.15 mm: 10.70% ± 3.75%, 0.20 mm: 
7.33% ± 2.63%) (p < 0.05, Figure 7). After 2 weeks and 8 weeks of healing, the average neo-tissue (NT)/ 
new-bone (NB) area (%) of sacrificial tissue was measured as presented in Table 1. 

Figure 2. Mechanical properties of BC and Collagen membranes: (a) Tensile strength (MPa) of dry and
wet membranes; (b) Elongation percentage (%) of dry and wet membranes. The “*” symbol indicates a
significant difference (p < 0.05).

2.4. Histological Findings

After 2 weeks of recovery, the defect region was isolated by a membrane, and generations of
fibrous connective tissue and bone-like material were observed through microscope. In the 0.10 mm
BC membrane group, the new bone formation was observed in the margins of old bone boundaries
and around bone graft materials, but the newly-formed bone was immature (Figure 3b,d,f). In the
0.20 mm BC membrane group, membrane expansion and plasma exudation in the upper structure were
observed, but new bone formation was not observed in the lower membrane structure (Figure 4b,d,f).
In all experimental groups sacrificed at 8 weeks after surgery, the new bone formation was generated
greatly and also observed in the peripherals of bone graft materials. Mesenchymal cells, fibrous
connective tissues, and osteoblasts were observed in the peripherals of the new bone substrate
(Figures 5 and 6). Comparing the groups with different materials, post-hoc analysis showed a
significant difference between collagen and 0.10 mm BC groups (p < 0.01) at 2 weeks after surgery.
There was a significant difference between collagen and 0.15 mm BC groups. A difference among the
remaining groups was not significant (collagen: 1.54% ± 0.52%, 0.10 mm: 3.45% ± 1.60%, 0.15 mm:
2.10% ± 0.25%, 0.20 mm: 1.62% ± 0.77%) (p > 0.05). After 8 weeks of healing, the mean value of new
bone formation in the 0.10 mm BC group (Figure 5b,d,f) was particularly significant among the three
groups, while there was no significant difference among the collagen group, 0.15 mm BC group, and
0.20 mm BC group (collagen: 9.08% ± 1.59%, 0.10 mm: 20.16% ± 3.41%, 0.15 mm: 10.70% ± 3.75%,
0.20 mm: 7.33% ± 2.63%) (p < 0.05, Figure 7). After 2 weeks and 8 weeks of healing, the average
neo-tissue (NT)/ new-bone (NB) area (%) of sacrificial tissue was measured as presented in Table 1.
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Figure 3. Collagen and 0.10 mm BC membrane. Histological sections of defect sites at 2 weeks after 
surgery: (a,c,e) collagen membrane; (b,d,f) 0.10 mm BC. Fibrous connective tissues and bone-like 
materials were observed in all groups. NB, Fibrous connective tissue; M, membrane; CT, connective 
tissue; BGm, bone grafting material. Original magnification: ×20 (a,b), ×40 (c,d), ×100 (e,f). 

 
Figure 4. BC membranes: 0.15 mm and 0.20 mm. Histological sections of defect sites at 2 weeks after 
surgery: (a,c,e) 0.15 mm BC; (b,d,f) 0.20 mm BC. Fibrous connective tissues and bone-like materials 
were observed in the 0.15 mm BC group. NB, Fibrous connective tissue; M, membrane; CT, connective 
tissue; BGm, bone grafting material. Original magnification: ×20 (a,b), ×40 (c,d), ×100 (e,f). 

Figure 3. Collagen and 0.10 mm BC membrane. Histological sections of defect sites at 2 weeks after
surgery: (a,c,e) collagen membrane; (b,d,f) 0.10 mm BC. Fibrous connective tissues and bone-like
materials were observed in all groups. NB, Fibrous connective tissue; M, membrane; CT, connective
tissue; BGm, bone grafting material. Original magnification: ×20 (a,b), ×40 (c,d), ×100 (e,f).
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Figure 4. BC membranes: 0.15 mm and 0.20 mm. Histological sections of defect sites at 2 weeks after
surgery: (a,c,e) 0.15 mm BC; (b,d,f) 0.20 mm BC. Fibrous connective tissues and bone-like materials
were observed in the 0.15 mm BC group. NB, Fibrous connective tissue; M, membrane; CT, connective
tissue; BGm, bone grafting material. Original magnification: ×20 (a,b), ×40 (c,d), ×100 (e,f).
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Figure 5. Collagen membrane and 0.10 mm BC membrane. Histological sections of defect sites at  
8 weeks after surgery: (a,c,e) collagen membrane; (b,d,f) 0.10 mm BC. New bone formations were 
observed in all groups. NB, Fibrous connective tissue; M, membrane; CT, connective tissue; BGm, 
bone grafting material. Original magnification: ×20 (a,b), ×40 (c,d), ×100 (e,f). 

 
Figure 6. BC membranes: 0.15 mm and 0.20 mm. Histological sections of defect sites at 8 weeks after 
surgery: (a,c,e) 0.15 mm BC; (b,d,f) 0.20 mm BC. NB, Fibrous connective tissue; M, membrane; CT, 
connective tissue; BGm, bone grafting material. Original magnification: ×20 (a,b), ×40 (c,d), ×100 (e,f). 

  

Figure 5. Collagen membrane and 0.10 mm BC membrane. Histological sections of defect sites at
8 weeks after surgery: (a,c,e) collagen membrane; (b,d,f) 0.10 mm BC. New bone formations were
observed in all groups. NB, Fibrous connective tissue; M, membrane; CT, connective tissue; BGm,
bone grafting material. Original magnification: ×20 (a,b), ×40 (c,d), ×100 (e,f).
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Figure 6. BC membranes: 0.15 mm and 0.20 mm. Histological sections of defect sites at 8 weeks after
surgery: (a,c,e) 0.15 mm BC; (b,d,f) 0.20 mm BC. NB, Fibrous connective tissue; M, membrane; CT,
connective tissue; BGm, bone grafting material. Original magnification: ×20 (a,b), ×40 (c,d), ×100 (e,f).
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on their absorption characteristics [8–10]. Non-resorbable membranes provide predictable results due 
to their excellent space-maintenance ability. However, since they are not resorbed in vivo, they 
should be removed 4 to 6 weeks after surgery through a second surgery [32,33]. An immature 
regenerated bone below a barrier membrane proliferates and attaches to the membrane. Therefore, a 
second surgery inevitably causes mechanical damage on the regenerated bone during a healing 
period. In addition, when the regenerated bone cannot be completely covered with a flap after the 
second surgery, the regenerated bone can be also decreased [32,33]. Herein, resorbable barrier 
membranes that do not require a second surgery have interested many clinicians and motivated 
researchers to execute extended research with the purpose of resolving the problem of non-resorbable 
membranes. Resorbable barrier membranes have brought benefits in reducing burdens on both 
patients and surgeons [11,12]. 

Ideal resorbable barrier membranes should not be removed by a second surgery in order to 
maintain their state, even after completing tissue regeneration. They should also block tissue 
penetration effectively and not cause tissue rejection and allergy while displaying infection resistance 
and manageability [34]. Dahlin et al. [5] suggested that resorbable barrier membranes may cause a 
local inflammatory response involving phagocytosis and that cell occlusion and space maintenance 
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Figure 7. Scatter plot and median (the cross) representing (a) 2 weeks after surgery new bone area
percentage; (b) 8 weeks after surgery new bone area percentage. The symbol “*” indicates significantly
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Table 1. Mean (±SD) of neo-tissue (NT)/new-bone (NB) area (%) of groups at 2 and 8 weeks after surgery.

Variable Group (n) Mean ± SD Median p-Value

2 weeks ** Collagen (5) 1.54 ± 0.52 1.53 0.003
0.10 mm (5) 3.45 ± 1.60 3.00
0.15 mm (5) 2.10 ± 0.25 2.06
0.20 mm (5) 1.62 ± 0.77 1.25

8 weeks *** Collagen (5) 9.08 ± 1.59 8.91 <0.001
0.10 mm (5) 20.16 ± 3.41 19.41
0.15 mm (5) 10.70 ± 3.75 10.08
0.20 mm (5) 7.33 ± 2.63 7.12

*** p < 0.001, ** p < 0.01, * p < 0.05.

3. Discussion

Barrier membranes can be classified into resorbable and non-resorbable membranes depending on
their absorption characteristics [8–10]. Non-resorbable membranes provide predictable results due to
their excellent space-maintenance ability. However, since they are not resorbed in vivo, they should be
removed 4 to 6 weeks after surgery through a second surgery [32,33]. An immature regenerated bone
below a barrier membrane proliferates and attaches to the membrane. Therefore, a second surgery
inevitably causes mechanical damage on the regenerated bone during a healing period. In addition,
when the regenerated bone cannot be completely covered with a flap after the second surgery, the
regenerated bone can be also decreased [32,33]. Herein, resorbable barrier membranes that do not
require a second surgery have interested many clinicians and motivated researchers to execute extended
research with the purpose of resolving the problem of non-resorbable membranes. Resorbable barrier
membranes have brought benefits in reducing burdens on both patients and surgeons [11,12].

Ideal resorbable barrier membranes should not be removed by a second surgery in order to maintain
their state, even after completing tissue regeneration. They should also block tissue penetration
effectively and not cause tissue rejection and allergy while displaying infection resistance and
manageability [34]. Dahlin et al. [5] suggested that resorbable barrier membranes may cause a local
inflammatory response involving phagocytosis and that cell occlusion and space maintenance abilities
are inferior to those of non-resorbable barrier membranes. Resorbable membranes may be absorbed
early before completing periodontal regeneration.
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Minabe et al. [35] found that the first 3 to 4 weeks of recovery after surgery are critical for tissue
regeneration, and that a barrier membrane should not be absorbed too quickly. The study also reported
that inflammatory response during the absorption process should not interfere with bone formation
or maturation. In addition, the study left no definite conclusion about the optimal timings of barrier
membrane absorption and the degradation of barrier membrane structure. Furthermore, the molecular
weight, composition, surface area, porosity, and cross-linking technique of the barrier membrane were
used to control the absorption rate of the barrier membrane [35].

Currently, the most commonly used collagen membranes (CM) show good biocompatibility,
and they retain great advantages including excellent manageability and no requirement for a second
surgery [15–17]. However, CMs have the disadvantage of high cost, so many studies have been done to
replace CMs in various fields; one of them is BC membrane, which is widely found in nature [36]. BC is
a water-insoluble extracellular polysaccharide with a simple structure [19]. The β-(1,4) glucan chains
form microfibrils, which are crystallized into cellulose fibers [20]. Compared to plant cellulose, BC
demonstrates superior physicochemical properties; e.g., high purity, high crystallinity, high mechanical
strength, high hydrophilicity, and good biocompatibility and biodegradability. In addition, the cost
of producing BC membrane is substantially low, and it also shows high-purity isolation [21–23]. In a
previous study, Helenius et al. [37] conducted an experiment on the biocompatibility of BC, and
Lee et al. [27] investigated the role of BC membrane as a barrier membrane in GBR, comparing it to
collagen membrane. Since BC membrane was developed, various types of BC membranes have been
produced through culture, irradiation, introduction of gelatin into nano-fibers, and freeze-drying or
hot air drying. In addition, many attempts have been made to find the optimal form for GBR [36].
BC membranes have properties such as swelling due to high hydrophilicity and exchange of oxygen
and nutrients through the micropores composed of microfibers [26]. BC membranes can be synthesized
thicker with a longer incubation time [27]. Depending on the thickness of the membrane, it is possible
to control the permeability for adequate fluid and gas exchange [27–29]. Therefore, the purpose of this
study was to investigate the appropriate thickness.

BC membranes of different thickness were irradiated to make resorbable membranes, and then
a mechanical experiment was performed. SEM analysis showed that the thicker the membrane,
the greater the amount of fiber. However, BC membranes and collagen membranes were similar in
cross-section images. In the tensile strength test, the dry tensile strength of the BC membrane was
smaller than that of collagen, but the wet tensile strength was higher than that of collagen. It had
sufficient operability for clinical use. In addition, the elongation percentage of BC membrane was
larger than that of collagen, although it was thinner than the collagen membrane. This may be due to
the hydrogen bonds of BC membrane fibrils [38].

At 2 weeks of in vivo experiment, plasma exudate and inflammatory cells were observed in the
0.20 mm BC membrane group, and new bone formation was not observed in the lower part of the
membrane. Among the 8 week sacrificed tissues, the new bone formation percentage was significantly
higher in the 0.10 mm BC membrane group than in the other three groups (p < 0.001). In addition,
there was no significant difference among the collagen membrane group, 0.15 mm, and 0.20 mm BC
membrane groups. Previous studies suggested that the barrier membrane used in GBR should be
permeable enough to allow transfer of nutrients and air. Hurley et al. [39] reported that in the animal
study involving vertebrae fusion, the site with impermeable rubber silicon membrane was not healed
by bone formation, whereas the site with microporous cellulosic acetate membrane was completely
recovered through bone formation. The cellulose acetate membrane could transfer tissue fluid into
bone marrow, feeding nutrients through the membrane and providing a better environment for bone
remodeling. Membrane permeability was decreased as swelling was increased in the 0.20 mm BC
membrane group. The 0.10 mm BC membrane group showed the highest level of new bone volume
(mm3) and new bone area percentage (%).

Histological sections of the 0.20 mm BC membrane group exhibited swelling of the membrane,
which may be responsible for decreased nutritional supply, fluid permeability, and bone regeneration
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ability. Moreover, the 0.10 mm BC membrane group demonstrated the greatest permeability, while it
shielded the defect area successfully without getting absorbed until 8 weeks after surgery, ultimately
manifesting the greatest level of new bone volume (mm3) and new bone area percentage (%). Along
with biomolecule transport and revascularization, cell adhesion and permeability play crucial roles
in new bone formation. Therefore, further studies are required to study cell proliferation and the
mechanical properties of the membranes.

4. Materials and Methods

4.1. Preparation of Bacterial Cellulose Membrane

PThe initial thicknesses of the BC membranes were 5 mm, 7 mm, and 9 mm, respectively. BC
membranes were provided from Jadam Co. (Jeju, Korea). The bacterial strain Komagataeibacter hansenii
TL-2C was incubated for 7, 9, and 12 days in a static culture containing 0.3% (w/w) citrus fermented
solution and 5% (w/w) sucrose. The pH was adjusted to 4.5 with acetic acid. The obtained BC pellicles
were purified by immersion in deionized water at 90 ◦C for 2 h and then boiled in a 0.5 M aqueous
solution of NaOH for 20 min to remove bacterial cell remains. The BCs were then washed with
deionized water several times and soaked in 1% NaOH for 2 days. Finally, the BC pellicles were
washed free of alkali. All the other reagents and solvents were of analytical grade and used without
further purification. The BCs in distilled water were irradiated in room temperature with an electron
beam linear accelerator (10 MeV, 0.5 mA) at the Korea Atomic Energy Research Institute (Jeongup,
Korea) for preparation of BC resorbable membrane, at irradiation doses up to 100 kGy with a dose rate
of 5 kGy/min. After the irradiation, the BCs were washed with deionized water and then freeze-dried
at −80 ◦C for 48 h after being fixed between the stainless steel wire meshes in order to remove water.

4.2. Thickness Measurement

In this study, the thicknesses of BC membranes were measured with vernier calipers (Mitutoyo
Co., Kawasaki, Japan) and thickness gauge (Mitutoyo Co., Kawasaki, Japan), respectively. Collagen
membrane (Ossix plus, Lod, Islael) was measured as the control. The thickness of each membrane was
tested at three different points by the same observer (n = 5). The results were expressed as the mean
values of three determinations of the BC membrane.

4.3. Mechanical Properties

BC membranes and collagen membrane (Ossix plus, Lod, Islael) were evaluated for their
mechanical properties using a Universal Testing Machine (UTM, TO-101, Siheung, Korea) with a
10 kgf/mm2 and crosshead of 1 mm/min. The BC and collagen membrane specimens were cut into
5 mm width × 20 mm length sizes. The specimens were tested in both dry and wet states after being
immersed in distilled water for 48 h. Tensile strength measurement of membranes was analyzed by
calculating the average maximum tensile strength of each sample (n = 5).

4.4. Experiment Animals

Forty male Sprague-Dawley rats (9 weeks old and body weight of 250–300 g) were used for
the experiment. Prior to surgery, the experimental animals were randomly divided into four groups
(n = 10/group). After surgery, five animals from each group had a healing period of 2 weeks, and the
remaining five animals had a healing period of 8 weeks. The rats were acclimated in their individual
plastic cage under laboratory conditions for 1 week before the experiment. This study followed
the guidelines from the Pusan National University Institutional Animal Care and Use Committee
(PNUIACUC-2015-0919).
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4.5. Surgical Procedures

All surgical procedures were performed under general anesthesia, which involved intramuscular
injection of xylazine (Rumpun, Bayer Korea, Korea) and tiletamin-zolazepam (Zoletil, Vibac
Laboratories, Carros, France). The rats were disinfected with betadine at the cranium site of surgery,
and 2% lidocaine HCL (Yu-Han Co., Gunpo, Korea) containing 1:100,000 epinephrine was administered.
The surgical site was incised, and a full-thickness flap of skin was reflected. The aneurysmal defect was
formed in the central part of the cranium by using 8 mm trephine bur (3i Implant Innovation, Palm
Beach Garden, FL, USA) under the injection. The defect sites were filled with 0.12 mg hydroxyapatite
(HA)/Tricalcium phosphate (TCP) bone graft material (Bio-C, Cowellmedi Co., Ltd., Busan, Korea) and
then covered with 10 × 10 mm collagen membrane or bacterial cellulose membrane (Figure 8). Twenty
rats were sacrificed after 2 weeks of healing, and the rest were sacrificed after 8 weeks of healing.
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4.6. Histomorphometric Analysis

After the animal were sacrificed, block sections of calvarial bone containing the membrane and
surrounding tissues were dissected free and fixed in 10% neutral-buffered formalin. The specimens
were demineralized with rapid acid clearing reagent and 14% EDTA, embedded in paraffin, and
sectioned to a thickness of 5 µm. The central portion of each block was sectioned and stained with
hematoxylin and eosin, respectively. Histologic slides were observed with an optical microscope (BX51,
Olympus, Tokyo, Japan) and digitally captured with a CCD camera (SPOT Insight 2Mp, DIAGNOSTIC
Instruments Inc., Sterling Heights, MI, USA). The captured images were analyzed using an image
analysis program (IMT i-Solution, Inc., Vancouver, BC, Canada). For histometric analyses, ×20,
×40, and ×100 magnifications were used. The histometric analysis was conducted by the same
professionally trained and blinded investigator. New bone area percentage (%) was analyzed and
recorded within the area of defect (the area occupied by the new bones/the area of defect × 100 (%)).

4.7. Statistical Analysis

The null hypothesis set for this study was “There will be no difference in the bone regeneration
ability according to the thickness of BC membrane, and the BC membrane will not be different
even when comparing the bone regeneration ability with the existing collagen membrane”. The
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experimental data are presented as mean ± standard deviation. To examine the significances of
thickness and tensile strength, Student’s t-test was applied (p < 0.05). In the in vivo study, the statistical
software R (version 3.1.3) was used for statistical analysis. Nonparametric analysis introduced by
Brunner and Langer was used for the group difference tests [38]. The analysis was conducted at a 5%
significance level.

5. Conclusions

According to the histomorphometric analysis and mechanical experiment, the 0.10 mm bacterial
cellulose membrane group manifested the highest level of new bone volume (mm3) and new bone area
percentage (%). There was no significant difference among the other groups. Within the limitations
of this study, these results may be used as a reference for determining efficient thickness of bacterial
cellulose barrier membrane in guided bone regeneration procedure.
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