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Abstract: The purpose of this study was to compare bone regeneration and space maintaining
ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate
(BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium
phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP particulate bone grafts were fabricated using
3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce
collagen-based PCL/PLGA/β-TCP composite block bone grafts. After formation of calvarial defects
8 mm in diameter, PCL/PLGA/β-TCP composite block bone grafts and BCP were implanted into
bone defects of 32 rats. Although PCL/PLGA/β-TCP composite block bone grafts were not superior
in bone regeneration ability compared to BCP, the results showed relatively similar performance.
Furthermore, PCL/PLGA/β-TCP composite block bone grafts showed better ability to maintain bone
defects and to support barrier membranes than BCP. Therefore, within the limitations of this study,
PCL/PLGA/β-TCP composite block bone grafts could be considered as an alternative to synthetic
bone grafts available for clinical use.

Keywords: PCL/PLGA/β-TCP; 3D printing; collagen; bone grafts; BCP

1. Introduction

A sufficient amount of residual bone in an edentulous alveolar ridge is required for successful
implant treatment [1]. The use of bone grafts has been popularized in bone defect reconstruction due
to the development of tissue engineering and regenerative medicine [2]. Bone grafts are classified
into autogenous bone grafts, allografts, xenografts, and synthetic bone grafts depending on donor
tissues and materials [3]. The autogenous bone grafts which are the most ideal bone grafts for
restoring bone defects have all the properties necessary for new bone growth—including osteogenecity,
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osteoconductivity, and osteoinductivity—but some studies have reported their weaknesses such as
additional surgery, donor site morbidity, and limited availability [4–6]. To overcome the limitations of
autogenous bone grafts, allograft and xenograft materials have been developed. However, allografts
and xenografts remain at risk for infection due to donor tissue [4–6]. Therefore, a lot of interest has been
focused on methods and materials for the production of synthetic bone grafts that can be produced on
large scales and utilized without causing immune reactions [4–7].

It is crucial to determine the optimal size and shape of bone grafts in consideration of space
maintenance for bone regeneration, support of periosteum or barrier membrane, and anatomical
structure of bone defects [8]. In the meantime, synthetic bone grafts have been produced in particle
form or block form depending on their size and shape [9,10]. Particle form bone grafts manifest
excellent manageability and rapid re-vascularization. However, it is difficult to maintain their shape
as the particles often disperse or even disappear [9,11]. On the other hand, block form bone grafts
can be effectively used on relatively large bone defects due to their excellent mechanical strength
and shape-retaining ability, but they display some disadvantages: the healing time is prolonged due
to a delayed re-vascularization, and they require complicated techniques while having structural
problems [9,11,12]. Recently, it has become possible to produce a desired specified shape by using a
solid freeform fabrication (SFF) technique, which is a three-dimensional (3D) printing technique where
bone grafts are manufactured in the appropriate size, shape, and pore geometry, ranging from the
micrometer unit to bone defect size [13,14]. Several studies have confirmed that bone grafts made
by SFF technique are easily maintain shape and possess excellent interconnectivity between pores,
thereby increasing cell penetration and increasing nutrient circulation and oxygen supply [5,15,16].

The available materials for SFF technique are polymers such as polycaprolactone (PCL), poly
(lactic-co-glycolic acid) (PLGA), polylactic acid, and polyglycolic acid [8,15,16]. In a recent study,
PCL/PLGA/β-TCP block bone grafts, which were fabricated using SFF technique in a bone defect
scale, were introduced by adding β-tricalcium phosphate (β-TCP) to a mixture of PCL and PLGA [5].
This study showed that the material had excellent mechanical strength and biocompatibility and that
it was excellent in space maintenance ability and useful for new bone regeneration [5]. However, CT
images are essentially required for customized bone graft scaffolding. Moreover, it is necessary to
spend significant amounts of time and effort when the defect size is large or complicated.

Therefore, in order to overcome these problems, this study has developed a micro-sized
PCL/PLGA/β-TCP particulate bone grafts through SFF technique, mixed with a collagen matrix
in order to fabricate a customized-composite block form. These composite block form graft materials
present excellent plasticity, enabling to cutting or compaction into a desired shape. Furthermore,
the collagen matrix located among the bone grafts prevents them from disappearing while improving
structural stability [12]. The purpose of this study was to develop block bone graft that was composed
with collagen and PCL/PLGA/β-TCP composite particles which were 3D-printed with SFF technique,
and to evaluate space maintenance ability and new bone formation capability, comparing to biphasic
calcium phosphate (BCP) which is widely used as calcium phosphate ceramics in dental practice.

2. Materials and Methods

2.1. Preparation of Blended PCL/PLGA/β-TCP

PCL (19561-500G, MW 43,000–50,000; Polysciences Inc., Warrington, PA, USA), PLGA (430471-5G,
MW 50,000–75,000; Sigma-Aldrich, St. Louis, MO, USA), and β-TCP (average diameter 100 nm;
Berkeley Advanced Biomaterials Inc., Berkeley, CA, USA) were admixed using a thermal melting
process [15–17]. Briefly, granular PCL (0.4 g) and PLGA (0.4 g) were melted and blended in a glass
container at 160 ◦C for 10 min, and then β-TCP (0.2 g) powder was added to the molten PCL and
PLGA and then was mixed for 5 min [15].
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2.2. Fabrication of PCL/PLGA/β-TCP Particulate Bone Grafts Using 3D Printing Technology

The PCL/PLGA/β-TCP mix was transferred into a 10 mL steel syringe attached to an
extrusion-based 3D printing system and dispensed at 135 ◦C [15]. Cubical PCL/PLGA/β-TCP
particulate bone grafts (1 × 1 × 1 mm3) were fabricated. The line width, pore size, and line height
were fixed at 200, 200, and 100 µm, respectively. Therefore, the calculated porosity was approximately
32%, and the pores were fully interconnected (Figure 1).
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Figure 1. Schematic drawing of PCL/PLGA/β-TCP particulate bone grafts. The line width, pore size,
and line height were fixed at 200, 200, and 100 µm, respectively.

2.3. Fabrication of Collagen-Based PCL/PLGA/β-TCP Block Bone Grafts

Fabricated particulate bone grafts were mixed with 3% atelocollagen (TheraFill®, Sewon
Cellontech, Seoul, Korea), and the mixed solution was poured into a PDMS mold to make a definite
shape. The molded collagen was incubated at 37 ◦C for 15 min followed by deep freezing (6 h) and
freeze drying (12 h), and cross-linked by immersing in ethanol/water (90% v/v) co-solvent containing
50 mM of 1-ethyl-3-(3-dimethyaminopropyl) carbodiimide (EDC) and 20 mM of N-hydroxysuccinimide
(NHS) for 24 h at room temperature. The cross-linked collagen block was freeze-dried again with the
same conditions described above. The block form specimens with a diameter of 8 mm and a height of
2 mm were fabricated (Figure 2).
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2 mm in height.

2.4. Components Analysis for PCL/PLGA/β-TCP Particulate Bone Grafts

The components ratio of PCL and PLGA in PCL/PLGA/β-TCP particulate bone grafts were
measured with FT-IR (Fourier transform infrared spectroscopy). 1 g of fabricated PCL/PLGA/β-TCP
particulate bone grafts were dissolved in 100 g of 99.5% chloroform (C0584, Samchun Pure Chemical
Co., Pyeongtaek-si, Korea). The solution was filtered with circulation aspirator system (DH.WEV0003S,
Daihan scientific, Wonjoo-si, Korea) and 0.45 µm filter papers (MTF045047H, CHMLAB Group,
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Barcelona, Spain). After filtration, the spectrum of solution was recorded using a FT-IR (Frontier MIR,
PerkinElmer Inc., Waltham, MA, USA) by KBr pellet technique (L1271192, PerkinElmer Inc.).

The β-TCP in PCL/PLGA/β-TCP particulate bone grafts were confirmed with energy dispersive
X-ray spectroscopy (EDS). The filtered powders were well collected in petri dishes, rinsed with pure
water three times and dried until fully dried. After the drying process, the powder was sputter
coated with platinum for measuring the calcium and phosphorus ratio using an EDS equipment
(NORAN system 7, Noran Instruments Inc., Middleton, WI, USA).

2.5. Scanning Electron Microscope (SEM) Observation

The dried PCL/PLGA/β-TCP particulate bone grafts were sputter–coated with platinum and
observed by a field emission scanning electron microscope (FE-SEM) (S-4700, Hitachi, Tokyo, Japan)
operated at an accelerating voltage of 10 kV [14].

2.6. Experimental Animals and Surgical Procedure

Thirty-two male Sprague-Dawley rats (250-300 g in weight) were used, and all rats were isolated
and kept in standard laboratory conditions. All experimental procedures were carried out using
an animal selection management method and a surgical protocol approved by the Pusan National
University Animal Experimental Ethics Committee (PNU-2015-0919).

A mixture of Xylazine (Rumpun, Bayer Korea, Seoul, Korea) and Tiletamin-zolazepam (Zolethyl,
Vibac Laboratories, Carros, France) was injected intramuscularly, and general anesthesia was
performed. After depilation of the surgical site of the cranium, it was disinfected with betadine
and locally anesthetized with 2% lidocaine HCL (Yu-Han Co., Gunpo, Korea) including 1:100,000
epinephrine, after then an incision was performed about 2 cm along the midline. After removal of
the periosteum, a circular defect with a diameter of 8 mm was created with a trephine bur (3i Implant
Innovation, Palm Beach Garden, FL, USA) (Figure 3).

BCP group implanted 0.125 mg of BCP (Bio-C, Cowellmedi Implant, Seoul, Korea), which was
a mixture of HA and β-TCP (3:7 ratio; Ca/P ratio 1.55), to bone defects. The amount of BCP was
measured using a micro-spoon (Karl Hammacher, Solingen, Germany) in an amount similar to the
average weight of PCL/PLGA/β-TCP particulate bone grafts used in PCL/PLGA/β-TCP composite
block bone grafts. The PCL/PLGA/β-TCP group were implanted PCL/PLGA/β-TCP composite
block bone grafts, and all groups were covered with collagen membrane (GENOSS, Suwon, Korea).

The periosteum was sutured with the 4-0 absorbable suture (Vicryl®, Ethicon, Somerville,
NJ, USA), and the skin was layered and sutured using the 4-0 non-absorbable suture. BCP group and
PCL/PLGA/β-TCP group were sacrificed by CO2 gas at two and eight weeks after surgery.
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2.7. Histomorphometric Analysis

After sacrifice, the specimen containing the bone graft was fixed with neutral formalin solution
(Sigma Aldrich, St. Louis, MO, USA) for two weeks and then removed calcium using the EDTA solution
(10%, pH 7.0) after cleaning by distilled water. After calcium removal was confirmed, the ethanol
concentration was increased for dehydration. Then, dealcoholization, paraffin infiltration, and paraffin
embedding were performed in order. The paraffinized specimen block was sectioned longitudinally
in the center of each defect using a microtome, and then mounted on the slide. The thickness of the
slides produced was 4 µm. Hematoxylin-eosin (H-E) staining and Masson’s trichrome staining were
performed to observe the newly regenerated bone tissues. The most central area was selected from each
block for histologic and histomorphometric evaluation. The images on selected slides were saved using
an optical microscope connected to a computer (BX51, OLYMPUS, Tokyo, Japan) and a CCD camera
(SPOT Insight 2Mp scientific digital camera system, DIAGNOSTIC Instruments Inc., Sterling Heights,
MI, USA). The saved images were analyzed by i-Solution ver. 8.1 (IMT i-Solution, Inc., Coquitlam, BC,
Canada). Typical specimen images were observed at ×12.5 magnification. For histomorphometric
analysis, ×40 and ×400 magnifications were used. New bone area percentage (%) in the defect was
analyzed and recorded.

2.8. Statistical Analysis

In order to investigate the time-dependent changes and the amount of new bone in each group,
SPSS ver. 20 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis. It compared the difference
in the amount of new bone in each group through Mann-Whitney test. Statistics were verified at a 5%
significance level.

3. Results

3.1. Components Analysis

The actual amounts of PCL and PLGA in fabricated PCL/PLGA/β-TCP particulate bone grafts
were measured by comparing the spectrum of fabricated bone grafts–chloroform solution with
standard linear curve. Measured amounts of PCL and PLGA were matched (PCL = 44.4 ± 0.69 wt %,
PLGA = 39.81 ± 1.06 wt %) with those of raw blended PCL/PLGA/β-TCP (Figure 4a). The result
confirmed that the ratio between PCL and PLGA remained the same in the product as intended. In the
EDS spectrum of filtered powder in 1 wt % PCL/PLGA/β-TCP particulate bone grafts-chloroform
solution, the atomic ratio of Ca/P was 1.38, similar to the theoretical Ca/P value of β-TCP of 1.5
(Figure 4b). Thus, β-TCP was not denatured during blending and the 3D printing process.
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3.2. SEM Observation

The shape and pore structure of micrometer sized PCL/PLGA/β-TCP particulate bone grafts
fabricated with SFF technique were confirmed by FE-SEM (Figure 5a). Due to the addition of β-TCP,
rough surfaces of PCL/PLGA/β-TCP particulate bone grafts were observed (Figure 5b).Materials 2017, 10, 421  6 of 12 
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Figure 5. SEM images of PCL/PLGA/β-TCP particulate bone grafts. (a) Well-defined
PCL/PLGA/β-TCP particulate bone grafts were confirmed at a magnification of ×100; (b) Rough
surface of PCL/PLGA/β-TCP particulate bone grafts were observed at a magnification of ×800.

3.3. Histological Analysis

As a result of observing the tissue specimens of the BCP group, a large amount of fibrous
connective tissue was formed in the space between bone grafts at two weeks, and a small amount of
immature new bone was observed around the bone grafts and adjacent bone defect. The particle size
of the residual bone grafts varied and showed an irregular distribution throughout the defect. At eight
weeks, the amount of new bone was greater than at two weeks, and more mature bone morphology
was observed (Figures 6 and 7).
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Figure 6. BCP group. Histological sections of defect sites at two weeks after surgery (H&E stain; a–c.
Masson’s trichrome stain; d–f). Original magnification: ×12.5 (a,d), ×40 (b,e), ×400 (c,f). A large
quantity of fibrous connective tissue was formed in the space between the bone grafts, and an immature
small amount of new bone was observed around the bone grafts and adjacent bone defect.
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Figure 8. PCL/PLGA/β-TCP group. Histological sections of defect sites at two weeks after surgery
(H&E stain; a–c. Masson’s trichrome stain; d–f). Original magnification: ×12.5 (a,d), ×40 (b,e),
×400 (c,f). The space of the bone grafts was observed due to demineralization, and the fibrous
connective tissue was observed around the bone grafts. New bone formation was limited, and giant
cells and inflammatory cell infiltration were found.
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Tissue specimens of the PCL/PLGA/β-TCP group at two weeks displayed a space formed
after PCL/PLGA/β-TCP particulate bone grafts were removed by demineralization, and the particle
size was bigger and more uniform than the BCP group. Fibrous connective tissues were formed
around the bone grafts, new bone formation was subtle, and giant cell and inflammatory cell
infiltration were observed. At eight weeks, the surrounding bone tissue was more mature than
at two weeks while neovascularization and new bone formation were observed around the bone grafts.
There was no evidence of inflammation. When compared to BCP group, PCL/PLGA/β-TCP group
presented unabsorbed bone graft materials and showed excellent space maintenance ability on defects
(Figures 8 and 9).
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Figure 9. PCL/PLGA/β-TCP group. Histological sections of defect sites at eight weeks after surgery
(H&E stain; a–c. Masson’s trichrome stain; d–f). Original magnification: ×12.5 (a,d), ×40 (b,e),
×400 (c,f). When compared with the two weeks, more mature peripheral bone tissue was observed,
and neovascularization and osteogenesis were observed around the bone grafts. No inflammation was seen.

3.4. Histometric Analysis

The average and standard deviation of the amount of new bone by each group and period are
shown in Table 1. The amounts (%) of new bone in average (±SD) of BCP group were 1.07 (±0.55) and
4.19 (±0.59) at two and eight weeks respectively, and the amounts (%) of new bone in average (±SD)
of PCL/PLGA/β-TCP group were 0.98 (±0.43) and 3.51 (±1.38) at two and eight weeks, respectively.
There was no significant difference in the amounts of new bone between the PCL/PLGA/β-TCP group
and the BCP group at two and eight weeks after applying grafts to the rat calvarial defects (Figure 10).

Table 1. Histomorphometric analysis (mean ± SD).

Groups 2 Weeks 8 Weeks

n NB (%) a n NB (%) a

BCP 8 1.07 ± 0.55 8 4.19 ± 0.59
PCL/PLGA/β-TCP 8 0.98 ± 0.43 8 3.51 ± 1.38

p-value b 0.674 0.345
1 Newly formed bone. 2 p-values are computed by Mann-Whitney test.
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Figure 10. Mean percentage distribution of new bone in defects grafted with the two different bone
grafts. At two and eight weeks, there was no significant difference in the amount of new bone between
the BCP group and the PCL/PLGA/β-TCP group.

4. Discussion

This study was conducted to compare bone formation ability of PCL/PLGA/β-TCP composite
block bone grafts made via SFF technique to BCP which is widely used in the clinical practice. As a
result, the amount of new bone formation in PCL/PLGA/β-TCP composite block bone grafts was not
significantly different from that in BCP implantation, but the space maintenance ability was better than
BCP graft. The requirements for an ideal bone graft material include rapid osteogenesis, promotion of
re-vascularization, support of new bone space, biocompatibility, and adequate absorption rate [7,18].
Although the best bone graft material satisfying these requirements is autogenous bone, there are
various disadvantages such as additional operation for harvesting, and only a limited amount of bone
graft material is available [4–6]. Herein, studies on bone graft materials that can replace autogenous
bone have been actively conducted [2,4–6]. In recent years, 3D printing technologies have been
attracting attention in the field of tissue engineering [15,16]. In this study, bone graft materials were
fabricated using multi-head deposition system (MHDS) among 3D printing techniques. In MHDS,
polymers are melted by heating without using toxic solvents, and pore sizes and fiber thickness can be
effectively controlled. [16,19].

Representative synthetic polymeric materials that can be used for SFF technology include PCL
and PLGA [14,19]. Among these materials, PLGA is used for regeneration of various tissues due to
high biocompatibility [14,19]. However, in the case of a material composed of PLGA alone, it is difficult
to maintain shape due to its weak mechanical strength and rapid degradation [14,16]. In contrast,
PCL has a degradation rate that is slower than the rate of bone regeneration. In addition, it has
excellent mechanical properties and can be used to maintain structure [14,16,20]. Therefore, by mixing
PCL and PLGA, bone grafts with superior biologic and mechanical advantages can be produced by
complementing weaknesses of each other [14,16,17]. On the other hand, bone grafts made of only
ceramic materials such as β-TCP or HA have excellent osteoconductivity, but they can be easily broken
due to brittleness of the materials [5]. Therefore, several studies have attempted to produce bone
grafts with excellent osteoconductivity and biocompatibility by mixing β-TCP to PCL and PLGA
mixture [5,21]. However, such previous studies customized a block-form bone graft based on CT data,
requiring much time and effort. In this study, micrometer size particulate bone grafts were prepared
by mixing PCL, PLGA, and β-TCP. In order to compensate for the disadvantage of particulate graft
materials, which is the difficulty in maintaining shape, collagen matrix was added to make composite
block bone grafts.

Collagen is the main structural protein for tissue support and remodeling upon recovery
from physical trauma [22]. It also plays an important role in providing biological support for
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cellular activities associated with cell attachment, migration, and differentiation [22]. Collagen is
a tropocollagen structure that is not soluble in its natural state, and although it has low antigenicity in
this state, the telopeptide component at the N and C terminal of tropocollagen can act as a heterologous
antigen [23]. To solve this problem, telopeptide of both ends was removed by using enzyme pepsin
and processed into atelocollagen [22]. Atelocollagen has advantages of excellent biocompatibility,
lower molecular weight, and faster absorption rate than collagen [24]. Composite block bone graft
materials based on collagen have excellent biocompatibility and stretchability, but it is necessary
to combine hard materials such as inorganic particles due to their weak mechanical strength [12].
Among the previous attempts, the composite block bone graft using bovine bone particles showed
excellent new bone conduction and space maintenance, but the bovine bone particles had low
biodegradability which was a disadvantage wherein they remained in the new bone tissue for a
long time. [12,25]. The previous studies on composite block-type bone graft materials with β-TCP
particles showed excellent osteoconductivity and adequate degradation rate, but the mechanical
strength was low [12,26]. In this study, bone graft materials were prepared using PCL and PLGA,
which have excellent biodegradability and mechanical properties.

The mechanical properties and degradation rate of synthetic bone grafts may vary depending on
composition ratio of each material [27]. Stiffness is increased with an increase in PLGA ratio [27,28].
In the previous study in which the barrier membrane was fabricated with PCL/PLGA/β-TCP at a
ratio of 2:6:2, the stiffness was similar to that of titanium membrane [27,28]. In this study, the ratio of
PCL/PLGA/β-TCP was set to 4:4:2, which increased the proportion of PCL with flexible properties
and improved the operability and formability [21]. In addition, it can maintained a proper shape in
the defect site and is considered to be superior to the BCP group in terms of space maintenance for
bone regeneration. The space maintenance ability of bone grafts that can support barrier membrane
for implant or periodontal operations is an essential factor [18]. This can be avoided by the collapse of
immature soft tissue or the growth of soft tissues on teeth or implants [18]. In this study, structural
integrity was successfully restored upon PCL/PLGA/β-TCP composite block bone graft application as
it was before forming the rat calvarial defects. PCL/PLGA/β-TCP composite block bone grafts were
useful in supporting barrier membranes. In contrast, in the BCP group, the collapse of the existing
shape and the distribution of irregular grafts have been shown in the recovery phase. When considering
that the mechanism of osteogenesis of synthetic bone is osteoconduction, volume stability that can act
as a scaffold until new bone formation is an important factor.

In the present study, we compared the bone regeneration ability of PCL/PLGA/β-TCP composite
block bone graft made by 3D printing to that of BCP, which is a synthetic bone graft mainly used
in clinical practice. In PCL/PLGA/β-TCP group, a lot of collagen was produced, which led to the
active proliferation of surrounding cells and blood vessels as well as cell migration at two weeks.
At eight weeks, through bone conduction process, we could observe bone remnants formed from the
adjacent bone. In histomorphometric analysis, there was no significant differences in the amount of
new bone between the PCL/PLGA/β-TCP group and BCP groups. In this experiment, the amount of
bone formation around the bone grafts was lower compared to the amount of bone formation from
the defect boundary in the PCL/PLGA/β-TCP group. It might be due to the improper absorption
rate of bone grafts. The rate of absorption of bone grafts should be similar to that of new bone
replacement. Many studies have reported that, in case of a faster rate of absorption, the supporting
ability gets weaker while in a slower rate of absorption it may interfere with the formation of new
bone [12,29,30]. The factors affecting bioabsorbability of bone grafts include their shape, size, surface
area, and porosity [31]. Generally, it is known that the larger particle size may result in a longer
residual period in vivo since it could interfere with new bone formation [32]. It has also been reported
that higher bone formation rate was observed in the case of smaller particle sizes and larger porosity
in BCP with similar composition [20,33]. In this study, the PCL/PLGA/β-TCP composite block bone
grafts applied to the rat calvarial defect had a relatively large particle size, so it would be better if the
particle size was reduced. In addition, collagen matrix used in fabricating composite block bone grafts
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may have affected new bone formation. In a previous study of composite block bone grafts based
on polysaccharides, such as carboxymethyl cellulose (CMC) and hyaluronic acid, higher new bone
formation was reported in BCP mixed with crosslinked CMC compared to the particle type BCP [34].
In the future, further studies using various types of matrix such as polysaccharides will be needed for
better bone regeneration. Furthermore, the optimal shape, size, and composition of the bone grafts
needs to be determined, and growth factors such as bone morphogenic proteins can also be applied to
promote bone growth.

5. Conclusions

Although 3D printed PCL/PLGA/β-TCP composite block bone grafts were not superior in bone
regeneration ability compared to the conventional BCP, the results showed their relatively similar
performances. Therefore, PCL/PLGA/β-TCP composite block bone grafts have potential to be applied
in synthetic bone grafts clinically.
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