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Abstract: The stainless steel bipolar plate has received much attention due to the cost of graphite bipolar
plates. Since the micro-channel of bipolar plates plays the role of fuel flow field, electric connector and
fuel sealing, an investigation of the deep drawing process for stainless steel micro-channel arrays is
reported in this work. The updated Lagrangian formulation, degenerated shell finite element analysis,
and the r-minimum rule have been employed to study the relationship between punch load and stroke,
distributions of stress and strain, thickness variations and depth variations of individual micro-channel
sections. A micro-channel array is practically formed, with a width and depth of a single micro-channel
of 0.75 mm and 0.5 mm, respectively. Fractures were usually observed in the fillet corner of the
micro-channel bottom. According to the experimental results, more attention should be devoted to
the fillet dimension design of punch and die. A larger die fillet can lead to better formability and
a reduction of the punch load. In addition, the micro-channel thickness and the fillet radius have to be
taken into consideration at the same time. Finally, the punch load estimated by the unmodified metal
forming equation is higher than that of experiments.

Keywords: micro-forming; deep drawing; micro-channel

1. Introduction

Fuel cells are composed of several single-cells, which are serially connected with bipolar plates to
generate sufficient current and voltage. Bipolar plates play the role of fuel input channel as well as of
an electric bridge for reducing contact resistance or impedance when being connected with conducting
wires [1–3]. Bipolar plates therefore become the key to miniaturizing the full cell, where bipolar
plates represent more than 80% by weight and 40% by cost of the fuel cell [4,5]. In addition, both of
the power generation efficiency and the manufacturing cost are determined by this component as
well. In this case, the efficiency of heat radiating and electric conduction, which are highly related
to the design of flow field, materials, and manufacturing methods of bipolar plates, should be taken
into account [6,7]. Graphite and metallic materials are currently the most popular materials for
bipolar plates. A composite bipolar plate made of the graphite/phenol formaldehyde resin was
introduced for fuel cell applications [8]. The interaction between electrical conductivity, the shape
factor and the orientation factor has been investigated. However, for reducing processing difficulty and
manufacturing cost, metallic materials have received much more attention than graphite now [9,10].
The performance and long-term stability of bipolar plates made from Ti metal and stainless steels have
been revealed by Park et al. [11]. The performance of Ti is lower than that of stainless steel due to the
decrease in ohmic loss regions. On the other hand, stainless steels perform better as bipolar plates with
regard to cell performance, cell resistance and durability. In order to produce channels for delivering
fuel on metal sheets as well as reducing costs, numerous metal forming processes have been proposed
such as stamping, drawing, and hydraulic pressure [10,12–14]. A metal bipolar plate manufactured
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by stamping is regarded as an alternative to the graphite bipolar plate [15]. However, the errors of
micro-channel dimensions by stamping are definitely encountered, and lead to performance loss.
An investigation into bipolar plate structural parameters has been carried out by Imanmehr and
Pourmahmod [16]. According to the analysis results, the parameters of micro-channels have a great
impact on outlet voltage at high current densities. For increasing the contact area of gas, the flow
channel number should be increased as much as possible [14]. However, these micro-channels can
hardly be machined by conventional methods due to their dimensions. The effect of micro-channel
width on fuel cell performance has been studied [17]. The best overall performance is from the
narrowest channel width, and a computational fluid dynamics model was developed to study
performance variation against channel width. Similar researches regarding the effects of channel
dimensions were also reported [3,13,18]. As mentioned above, the stainless steel becomes one of the
most popular materials for bipolar plates due to the cost, the power generation performance, and the
corrosion resistance. Though the performance of anti-corrosion for stainless steel is fine, the high strain
hardening exponent of this material leads to difficulty in manufacturing. Since the micro-channel plays
an important role in chemical reaction performance, such as the gas reaction area and the transport
channel of solution and electron, a study regarding the deep drawing of micro-channel arrays for
stainless steel sheets has been accomplished in this work. The differences between macro and micro
effects are studied as well. The purpose of this work is to discuss the parameters of deep drawing
process for metallic micro-channels.

2. Basic Theory

2.1. Stiffness Equation

The Lagrangian formulation can be employed to explain the properties of plastic flow.
According to the Lagrangian formulation the rate equation for virtual work is as follows [19]:∫

VE
(
◦

σij − 2σik
•

εkj)δ
•

εijdV +
∫

VE
σjkLikδLijdV =

∫
S f

•
f δvidS (1)

where vi is the velocity, the rate of nominal traction is ti, and V and Sf are referred to the material
volume and the surface respectively. Since both the virtual work rate equation and the constitutive
relation are linear, they can be replaced with increments defined with respect to any monotonously
increasing measures, such as the increase in the displacement of the tool. The complete global stiffness
matrix can be stated as follows:

[K]{∆u} = {∆F} (2)

in which:
[K] = ∑

<E>

∫
VE

[B]T([Cep]− [Q])[B]dV + ∑
<E>

∫
VE

[E]T [Z][E]dV (3)

The term {∆u} in Equation (2) is the increment of nodal displacement and the increase of nodal
force is {∆F}. [K] and [Cep] indicate the global tangent stiffness matrix and the elemental elastic-plastic
constitutive matrix, respectively. The strain rate velocity matrix and the velocity gradient matrix
are [B] and [E] respectively. [Q] and [Z] correspond to the stress correction matrices against each
deformation stage respectively.

2.2. Selective Reduced Integration Formulation

The plastic medium volume is incompressible. Therefore, over-strong constraint for thin plates
will be engaged when the full integration technique is applied for finite elements. This situation is due
to the setting of no shear strain γxz and γyz during the deformation [20]. For solving such problems,
in which the volumetrically in stiff contribution is involved, the selective reduced integration has been
verified as an effective method [21]. The generalized formulation of selective reduced integration
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proposed by Hughes [22] has been employed in this work. In addition, the four-node quadrilateral
degenerated shell element [23] is utilized in the intensive analysis.

2.3. Scale Factors for Micro-Forming Process of Sheet Metal

Generally, the size effect can be neglected for the thickness of sheet metal within 1.0 mm. However,
the metallic sheet thickness in micro-forming process is of micron range and the traditional material
model is therefore no longer suitable for analyses under this condition. A modified model without
considering size effect has been employed in this work. A traditional material model can be defined
as follows:

σ = K(ε0 + εp)
n (4)

The thickness of the metallic sheet in the following analysis is 50 µm. As a result, the size effect
should be taken into account for the amendment of stress-strain relations. Consequently, Equation (4)
is further amended as follows:

σ(t, ε) = aKebt(ε0 + εp)
n(cedt−1) (5)

where a, b, c, d are the correction coefficients. t is the metallic sheet thickness. These correction
coefficients can be given according to Ref. [24] and Equation (5) therefore becomes

σ(t, ε) = 0.73667Ke0.3152t(ε0 + εp)
n(1.0106e−0.01029t−1) (6)

Both the traditional material model, Equation (4), and the modified material model, Equation (6),
are enclosed in the following finite element analyses. Experiments are conducted for the performance
verification of these two models.

3. Numerical Analysis for Micro-Channel Array Forming Process

Four-node quadrilateral degenerated shell elements are utilized in this work for deriving the
stiffness matrix, and Finite Element Analysis (FEA) [25] is employed for the pre-processing and
post-processing. Since the die and stainless steel plates are supposed to be symmetric, the simulation
is performed against a 1/4 figure to effectively reduce the analysis time for arithmetic processing.
The die and the metallic plate are then meshed with quadrilateral elements. These meshed data are
transformed to the 3D elastic-plastic FEA program for the following simulation analysis.

Since the die is too small to be manufactured by conventional methods, electric discharge
machining is utilized for the die fabrication. The micro-channel array forming process is illustrated in
Figure 1. The dimensions of tools for the micro-channel array forming process are listed in Table 1,
where the die gap is set to be 1.1 times the plate thickness, in accordance with traditional empirical
rules. Since the thickness of the stainless steel sheet used in this study is 0.05 mm, the die gap is
designed to be 0.055 mm. The mechanical properties of the stainless steel sheet is illustrated in Table 2.
The die and the metallic plate are meshed into quadrilateral elements (see Figure 2). These meshed data
are then loaded into the 3D elastic-plastic FEA program for the following numerical analysis. Figure 3
is the cross-section schematic diagram of the processed plate. L1 and L2 sections are the main objects for
the following investigation, including the thickness distribution and the contour. In the micro-channel
array deep drawing process, the die will directly contact the blank surface. That means the node
for die contact and separation should be defined. Nodes are therefore divided into two categries:
contact node and free node. The boundary conditions of the material meshing quadrilateral elements
are demostrated in Figure 4.
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Table 1. Dimensions of tools.

Items Dimensions (mm)

Width of channel (W) 0.75
Height of channel (h) 0.5

Radius of die (Rd) 0.25
Radius of punch (Rp) 0.2

Table 2. Mechanical properties of stainless steel SUS304.

Material (SUS304) E (GPa) ν σy (MPa) K (MPa) n ε0

Tradition 207 0.3 341 1819 0.576 0.077
Scale Factor 198 0.3 306 1361 0.582 0.077

Remarks: E: Modulus of elasticity; ν: Poisson’s ratio; σy: Yield stress.
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4. Experimental Results and Discussion

The micro-channel array deep drawing process for stainless steel plate is shown in Figure 5.
In total, there are five steps in this geometric deformation process. The plate is gradually deformed
during micro-channel forming until the unloading state. Throughout the entire micro-channel forming
process, the contact, separation, and friction conditions can be accurately estimated by the r-minimum
(rmin) rule. The rmin rule is mainly for the definition of boundary conditions for degenerated four-node
shell elements during deformation analyses. Figure 6 is the prototype of tools employed in the
micro-channel array drawing experiment, including punch, die bottom, and blank holder. The test
rig and the electro press (JANOME JP-5004, JANOME Sewing Machines Co., Ltd., Tokyo, Japan) for
micro-channel array forming process are shown in Figures 7 and 8 respectively.
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4.1. Comparisons between Experimental Results and Simulation Results

Two models, i.e., macro and micro, are employed in the simulation of the micro-channel array
deep drawing process for stainless steel plate. Since the thickness of the stainless steel plate for
experiments is merely 50 µm, the contour measurements of the finished workpieces is accomplished
by using a laser displacement system, as shown in Figure 9 (Keyence LC-2430, Osaka, Japan). Some of
the processed workpieces are shown in Figure 10.
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Figure 11 is a comparison between theoretical estimations and experimental results for the L1

section contour. The channel depth is about 0.5 mm. However, the effect of material springback results
in an upward curl of the peripheral part of the stainless steel plate. Namely, the channel will deviate
from the center of stainless steel plate and move downward. As a result, the deformation trend could
be predicted more precisely by the material model of modified scale factor than by traditional material
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models. A comparison between theoretical estimations and experimental results for the L2 section
contour is shown in Figure 12. Similarly, the difference in channel depth between these three results
(experimental results, traditional material model and modified scale-factor material model) is mainly
due to the peripheral curvature of the stainless steel plate. The maximum depth error between these
two material models is about 0.035 mm. The performance of the modified scale factor material model
is still better than that of traditional material model for L2 section contour estimation.
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The thickness of the L1 section is shown in Figure 13. The range of thickness variation is
0.0264~0.033 mm. Based on Figure 13, the experimental result is between the results of the two theoretical
models. In addition, among all the processed channels in one plate, the first channel is the thinnest.
The thickness variations for these three results (experimental results, traditional material models and
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modified scale-factor material model) are similar, and no significant error is observed. The thickness
of the L2 section is shown in Figure 14. The L2 section is thicker than the L1 section. The thickness
difference is about 0.003 mm.Materials 2017, 10, 423  9 of 14 
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The relationship of punch load and stroke is revealed in Figure 15. The curve variations for these
three results (experimental results, traditional material model and modified scale-factor material model)
are similar; namely, the punch load increased with increasing stroke. However, significant errors are
observed once the stroke exceeds a threshold. The large error is due to the increase in contact area
between die and blank. According to Figure 15, the simulation results for the modified scale-factor
material model is much better than those of traditional material model.
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4.2. Effect of Tool Radius on the Micro-Channel Array Forming Process of Stainless Steel Plates

The dimensional effect of punch fillet radius on the thickness of stainless steel plate is
demonstrated in Figure 16. The parameters of the micro-channel array forming process are as follows:

* Punch fillet radius: 0.05 mm, 0.1 mm, 0.15 mm, 0.2 mm, and 0.25 mm
* Stroke: 0.5 mm
* Coefficient of friction: 0.2
* Blank thickness: 0.5 mm
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in Figure 16. The parameters of the micro-channel array forming process are as follows: 

* Punch fillet radius: 0.05 mm, 0.1 mm, 0.15 mm, 0.2 mm, and 0.25 mm 
* Stroke: 0.5 mm 
* Coefficient of friction: 0.2 
* Blank thickness: 0.5 mm 
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The thickness increases linearly when the fillet radius is increased. The minimal thickness is 
0.0201 mm against a punch fillet radius of 0.05 mm. The thickest sheet thickness is 0.0278 mm 
against a punch fillet radius of 0.25 mm. Apparently, an acute angle of channel would be formed 
more easily by a small punch fillet radius than by a large one, and may lead to material fracture. 
The punch load against stroke under various punch fillet radiuses is reported in Figure 17. It should 
be noticed that a small punch fillet radius leads to a large punch load; e.g., the maximal load (about  

Figure 16. The relationship between sheet thickness and punch fillet radius.

The thickness increases linearly when the fillet radius is increased. The minimal thickness is
0.0201 mm against a punch fillet radius of 0.05 mm. The thickest sheet thickness is 0.0278 mm against
a punch fillet radius of 0.25 mm. Apparently, an acute angle of channel would be formed more easily
by a small punch fillet radius than by a large one, and may lead to material fracture. The punch load
against stroke under various punch fillet radiuses is reported in Figure 17. It should be noticed that
a small punch fillet radius leads to a large punch load; e.g., the maximal load (about 5000 N) is induced
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by a tool radius of 0.05 mm. As a result, the punch load can be reduced by increasing the punch
fillet radius.
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Figure 17. Punch load against stroke under various punch fillet radiuses.

Figure 18 shows the relationship between the mean channel height of the L1 section and the
punch fillet radius. A large punch fillet radius leads to a high channel height of the L1 section,
e.g., the maximum mean channel height is achieved by a punch fillet radius of 0.25 mm. Since the
flowability of material is regulated by the fillet radius, the deep drawing process can be performed
more smoothly when a large fillet radius is applied. The mean channel height of the L2 section against
fillet radius is shown in Figure 19. The variation trend of the L2 section height is similar to that of the
L1 section height, but the measured height of the L2 section is a little bit higher than the height of the
L1 section (about 0.02 mm). This is due to the reducing of the peripheral contact area of the channel
by buckling.
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The practically processed workpieces are shown in Figure 20. In total, five kinds of strokes
have been applied in the experiments, including 0.4 mm, 0.45 mm, 0.5 mm, 0.55 mm and 0.6 mm.
Significant fractures have been observed in the plates at strokes of 0.55 mm and 0.6 mm. As a result,
the stroke limitation for micro-channel array deep drawing processes in this work is about 0.5 mm.
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Figure 20. Processed stainless steel plate (a) stroke of 0.5 mm; (b) stroke of 0.55 mm; (c) stroke of
0.6 mm.

5. Conclusions

3D elastic-plastic finite element analysis has been employed in this work to analyze the
micro-channel array deep drawing process for stainless steel plate. The r-minimum rule is applied to
simplify the calculation during the non-linear process. The main results are summarized as follows:

(1) The maximum channel depth for a 50 µm stainless steel sheet is about 0.5 mm. This is verified by
both of the simulation results and the experimental results.

(2) On the basis of the finished workpieces, the material fracture is mainly located in the contact area
between the punch and the bottom die fillet. As a result, more attention should be devoted to
fillet radius design.

(3) The deep drawing process can be performed more smoothly when a large fillet radius is applied.
In other words, a small tool fillet radius may lead to an increase of fracture.

(4) The simulation performance of the modified scale-factor material model is better than that of the
traditional material model.
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