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Abstract: This paper describes a new silicon allotrope in the P2/m space group found by
first-principles calculations using the Cambridge Serial Total Energy Package (CASTEP) plane-wave
code. The examined P2/m-Si belongs to the monoclinic crystal system. P2/m-Si is an indirect
band-gap semiconductor with a band gap of 1.51 eV, as determined using the HSE06 hybrid functional.
The elastic constants, phonon spectra and enthalpy indicate that P2/m-Si is mechanically, dynamically,
and thermodynamically stable. P2/m-Si is a low-density (2.19 g/cm3) silicon allotrope. The value of
B/G is less than 1.75, which indicates that the new allotrope is brittle. It is shown that the difference
in the elastic anisotropy along different orientations is greater than that in other phases. Finally,
to understand the thermodynamic properties of P2/m-Si, the thermal expansion coefficient α, the
Debye temperature ΘD, and the heat capacities CP and CV are also investigated in detail.
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1. Introduction

Silicon plays an extremely important role in semiconductor materials [1–9]. In fact, silicon
cannot be substituted in the modern semiconductor industry. Almost ninety percent of semiconductor
components are based on silicon. In addition, silicon is the second most abundant element on earth,
and its processing is most mature at the semiconductor industry level. Moreover, silicon is an optional
material in many electronics applications [10]. In particular, silicon is one of the most important
photovoltaic (PV) materials in the solar cell industry [2,10]. Monocrystalline, polycrystalline, and
amorphous silicon are types of silicon materials used in solar cells. Due to the existing processing
conditions, diamond silicon is the primary material used in the solar cell market. However, diamond
silicon (space group: Fd-3m) is not a direct band-gap semiconductor, and there is a large energy
difference (2.3 eV) between the indirect band gap and the direct band gap, which reduces its solar
energy absorption efficiency [10,11]. Under extreme conditions, a crystal may undergo a phase
transition [10], which may reduce the solar energy absorption efficiency. Besides, the band gap of
silicone monolayers can be tuned from semimetallic to semiconducting by oxygen adatoms [12]. Thus,
researchers continue to search for silicon allotropes with direct band gap or better physical properties.

To meet the needs of industry for materials with efficient solar energy absorption, many silicon
allotropes have been reported. Many semiconductor silicon allotropes have been proposed [2,4,8–11,13].
Wang et al. [4] found six other metastable silicon allotropes with direct or quasi-direct band gaps
of 0.39–1.25 eV utilizing Vienna An-initio Simulation Package (VASP) code. They found that these
six metastable silicon allotropes not only have a direct band gap or quasi-direct band gap but also
have better optical properties than diamond silicon. Recently, Fan et al. [10] investigated four silicon
allotropes, including one quasi-direct band-gap phase (Amm2) with a band gap of 0.74 eV and three
indirect band-gap phases (C2/m-16, C2/m-20, and I-4) with band gaps of 0.56, 0.53, and 1.28 eV,
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respectively. The B/G values indicate that all four phases of silicon are brittle. Moreover, in Ref. [13],
Feng et al. not only report the structural properties of two new allotropes, but also elucidate the
formation of silicone on an Ag (111) surface. In addition, they found that the two phases have quite
similar formation energies and stabilities. Feng et al. [13] obtained silicene by epitaxial growth on
conductive substrates. However, the strong silicene-substrate interaction may depress its superior
electronic properties [14]. Thus, Du et al. [14] improved the growth method of silicone on Ag (111)
by oxygen intercalation and also successfully obtained silicone through the oxidization of bilayer
silicene on an Ag (111) surface. In addition, the interactions between the top layer of silicone and the
underlying silicene oxide or substrate were weakened by oxidization in this method. Oh et al. [15]
presented super-stable pure-silicon superlattice structures that can be applied in solar cell industry
and can lead to the realization of pure Si-based optoelectronic devices. Moreover, the minimum band
gap of the structure is smaller than that of diamond silicon (the experimental value of diamond silicon
1.12 eV [11]) [15]. While the enthalpy of many of the superlattcies is lower than P2/m Si. The enthalpy
is very close to diamond silicon. In addition, Lee et al. [16] reported two inverse design approaches for
the discovery of new photovoltaic materials and successfully predicted favourable structures using the
Conformational Space Annealing algorithm. One of the advantages of this approach is that the crystal
structures do not need to be known. Kim et al. [17] reported a structure in Cmcm space group, and
this structure is an indirect band-gap semiconductor with a band gap of 1.41 eV. Besides, they also
examined the dynamical stability. And the structure is dynamically stable to 10 GPa. Guo et al. [18]
found a missing structure, the h-Si6 silicon phase in the P63/mmc space group, by using silicon triangles
as building blocks. Using first-principles calculations, they confirmed that this structure has thermal,
dynamical, and mechanical stability. In addition, h-Si6 is a direct band-gap semiconductor with a band
gap of 0.61 eV and has remarkably better optical properties than diamond silicon.

In this work, a new silicon allotrope is proposed. The original structure of P2/m-Si is composed
of a lattice similar to that of carbon, in which Si is substituted for C [19]. The calculated formation
enthalpy (0.08 eV/atom larger than that of diamond silicon [11]) indicates that P2/m-Si has a higher
thermodynamic stability than that of tP16-Si (0.28 eV/atom larger than that of diamond silicon [11]).
Moreover, this paper also examines, in detail, physical properties such as structural properties, elastic
properties and elastic anisotropic properties. In Ref. [20], the authors present a very similar silicon
allotrope with strong absorption in the visible region for photovoltaic applications. In addition,
the structure in Ref. [20] has a total energy that is higher than that of diamond silicon by less than
0.15 eV/atom, while the energy of P2/m-Si is higher than that of diamond silicon by 0.08 eV/atom.
This restriction assures that the experimental synthesis of these structures is energetically feasible [20].

2. Calculations Methods

In this paper, the Si allotrope in the P2/m structure is examined using density functional theory
(DFT) [21,22] using the Cambridge Serial Total Energy Package (CASTEP) plane-wave code [23].
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) [24] minimization scheme is used to optimize the
geometric structure. This work adopts two functionals: the generalized gradient approximation
(GGA) [25] and the local density approximation (LDA) [26,27]. First, we obtained the energy cutoff of
340 eV and k-point of P2/m-Si by conducting structural optimizations. The k-point grid was 0.025 Å−1,
which corresponds to 7 × 3 × 8 for P2/m-Si. Then, the elastic constants were calculated for the
structure optimized by the strain-stress method. To investigate the dynamical stabilities of the obtained
structures, the phonon spectrum was calculated with different pressures using the linear response
approach [28].

3. Results and Discussion

This paper reports a new silicon allotrope in the P2/m space group. The crystal structure of
P2/m-Si is shown in Figure 1. The structure of P2/m-Si is composed of six-membered silicon rings
that are similar to graphite. The zigzag six-membered silicon ring affords P2/m-Si a lower density
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than other silicon allotrope materials. The positions of silicon atoms in P2/m-Si are Si1 (0.1114, 0.5000,
0.8949), Si2 (0.1217, 0.0000, 0.6741), Si3 (0.5411, 0.0000, 0.3330), and Si4 (0.4194, 0.5000, 0.1340). P2/m-Si
can be described as corrugated graphite sheets interconnected by an alternating sequence of odd 5- or
7-membered rings of silicon, when viewed along the [010] direction, as shown in Figure 1b. However,
the structure consists of 6-membered rings of silicon when viewed in the [100] direction. The lattice
parameters of P2/m-Si at zero pressure are shown in Table 1. From Table 1, the calculated lattice
parameters of diamond silicon (a = 5.426Å) are in excellent agreement with the reported experimental
results (a = 5.431 Å) [29]. The values obtained by PBE are closer to the experimental values for diamond
silicon than the other methods. Thus, the following discussion mainly gives results calculated by the
PBE method. In addition, the calculated results in this work for space group P2221 are consistent with
the results of Fan et al. [5].
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Figure 1. (a) Unit cell crystal structures of P2/m-Si; (b) The structural view along the [010] direction;
(c) The structural view along the [100] direction.

In addition, the influences of temperature and pressure on the lattice parameters are further
studied, and the results are shown in Figure 2. Figure 2a presents trends in the lattice constants of
P2/m-Si with increasing pressure. As seen in Figure 2a, it is very difficult to compress P2/m-Si in the
c-axis direction, while compression in the a-axis direction is the easiest. In addition, the difference in
the lattice parameters of P2/m-Si and diamond silicon along the a-axis is larger than that along the
other axes. In Ref. [5], P2221-Si is shown to be compressed easily in the b-axis direction. In addition, the
decline in the slope of the lattice parameters lessens when the pressure is larger than 12 GPa. Figure 2b
describes the trend in the volume with increasing pressure at different temperatures. The trend in the
volume at different temperatures remains roughly the same as the pressure increases, indicating that
this material may be used in environments that undergo serious temperature changes.

Table 1. The lattice parameters (Å) of different space groups calculated by different methods.

Method PBE PBEsol CA-PZ

Space Group a b c β a b c β a b c β

P2/m 7.253 3.868 6.294 105.9 7.243 3.861 6.283 105.8 7.136 3.802 6.187 105.8
P2221 5.429 13.112 5.265 - 5.334 12.98 5.211 - 5.349 12.758 5.264 -

P2221
c 5.448 13.017 5.339 - 5.445 12.995 5.327 - 5.364 12.803 5.248 -

P2221 7.495 5.359 5.410 - 7.477 5.432 5.316 - 7.345 5.379 5.258 -
P2221

f 7.487 5.450 5.221 - 7.487 5.446 5.206 - 7.365 5.373 5.123 -
Fd-3m a = 5.426, 5.402 a, 5.429 e, 5.465 b, 5.431 d a = 5.466 a = 5.374, 5.392 a

a Ref. [1]; b Ref. [3]; c Ref. [5]; d Ref. [29]-experimental. e Ref. [30]; f Ref. [31];

The elastic constants Cij, bulk modulus B, shear modulus G and Young’s modulus E of P2/m-Si
calculated by the PBE method are given in Table 2. Table 2 also lists the elastic constants and the elastic
modulus of diamond silicon and other silicon allotropes. Monoclinic symmetry gives 13 independent
elastic constants [32], which are listed in Table 2. If the allotrope is a stable monoclinic structure, the
elastic constants of P2/m-Si should satisfy the mechanical stability criteria of monoclinic symmetry [32].
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Figure 2. (a) The lattice constants a/a0, b/b0, and c/c0 during compression as functions of pressure for
P2/m-Si; (b) The lattice constants a/a0, b/b0, and c/c0 during compression as functions of temperature
for P2/m-Si.

Table 2. The calculated elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E,
and Poisson’s ratio v of different silicon allotropes (GPa) (S.G.: space group).

S.G. Method C11 C22 C33 C44 C55 C66 C12 C13 C15 C23 C25 C35 C46 B G B/G E v

P2/m GGA 159 167 150 63 55 40 29 42 −1 51 9 2 8 80 54 1.48 132 0.22
LDA 171 176 160 61 57 40 35 50 0 58 10 3 8 88 54 1.63 134 0.25

C2/m-16 a GGA 146 146 164 48 53 53 51 47 - 43 - - - 82 51 1.61 127 0.24
C2/m-20 a GGA 184 167 143 55 52 52 36 46 - 46 - - - 83 55 1.51 135 0.23

I-4 a GGA 142 142 145 57 47 55 48 50 - 50 - - - 80 48 1.68 120 0.25
Amm2 a GGA 161 179 131 44 44 51 37 42 - 38 - - - 78 51 1.54 126 0.23
Fd-3m GGA 154 - - 79 - - 56 - - - - - - 88 64 1.38 155 0.21

- LDA 163 - - 80 - - 58 - - - - - - 93 68 1.37 164 0.21
- Exp. b 166 - - 80 - - 64 - - - - - - 102 - - - -

a Ref. [10]; b Ref. [33].

Cii > 0, i = 1...6 (1)

[C11 + C22 + C33 + 2(C12 + C13 + C23)] > 0 (2)

(C33C55 − C2
35) > 0 (3)

(C44C66 − C2
46) > 0 (4)

(C22 + C33 − 2C23) > 0 (5)

[C22(C33C55 − C2
35) + 2C23C25C35 − C2

23C55 − C2
25C33] > 0 (6)

g = C11C22C33 − C11C2
23 − C22C2

13 − C33C2
12 + 2C12C13C23 (7)

2[C15C25(C33C12 − C13C23) + C15C35(C22C13 − C12C23)

+C25C35(C11C23 − C12C13)]− [C2
15(C22C33 − C2

23) + C2
25(C11C33 − C2

13)

+C2
35(C11C22 − C2

12)] + C55g > 0
(8)

From Table 2, as the mechanical stability criteria of monoclinic symmetry are satisfied, it can
be concluded that P2/m-Si is mechanically stable [34]. Meanwhile, the phonon spectra of P2/m-Si
was also investigated under different pressures. The phonon spectra should show no imaginary
frequencies over the entire Brillouin zone, which indicates that the phase is dynamically stable [35].
The phonon spectra of P2/m-Si at different pressures are shown in Figure 3. The phonon spectra of
P2/m-Si shows no imaginary frequencies over the entire Brillouin zone between 0 GPa and 20 GPa,
which indicates that P2/m-Si is dynamically stable up to 20 GPa. Above this pressure, P2/m-Si is
destabilized, indicating that a structural transformation occurs.
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The enthalpy of P2/m-Si is an important factor in the stability, which measures the thermodynamic
stability. The enthalpies of different silicon allotropes as the pressure increases are shown in Figure 4.
It is clear that diamond silicon is the most stable phase over the entire pressure range in Figure 4.
In Ref. [11] and this work, the most unfavourable structure is the tP12 phase (which is higher in
energy than diamond silicon by 0.276 and 0.269 eV/atom at zero pressure in this work and in Ref. [4],
respectively), but tP12-Si is still dynamically and mechanically stable [4]. The curve of tP12-Si is also
shown in Figure 4, while the energy of P2/m-Si is lower than that of tP12-Si by 0.19 eV/atom at zero
pressure and 0.22 eV/atom at a pressure of 20 GPa. Simultaneously, P2/m-Si is higher in energy than
diamond silicon by 0.08 eV/atom at zero pressure. In addition, the enthalpy of P2/m-Si is smaller than
that of Amm2 (−170.23 eV/atom), C2/m-16 (−170.21 eV/atom), C2/m-20 (−170.24 eV/atom), and I-4
Si (−170.24 eV/atom) [10], respectively. The calculated formation enthalpy indicates that P2/m-Si has a
higher thermodynamic stability than that of Amm2 Si, C2/m-16 Si, C2/m-20 Si, I-4 Si, and superlattices.
There are many intermediate phases between P2/m-Si and diamond silicon, and the excess enthalpy of
each structure relative to diamond silicon is shown in Table 3. Most of the structures have enthalpies
higher than diamond silicon (−170.34 eV/atom). Although the energies of M-Si, Cco-Si, P2221-Si, Z-Si,
tP12-Si, and P2/m-Si are higher than that of diamond silicon, while their enthalpies are very close to
that of diamond silicon. The order of enthalpy from high to low is tP12-Si > P2/m Si > M Si > Pmmn Si >
Cco Si > Pbam Si > P2221 Si > P42/ncm Si > Cmcm Si > P21/m Si > Lonsdaleite Si. The enthalpy of many
of the superlattcies is lower than P2/m Si. However, tP12-Si is still thermodynamically dynamically
and mechanically stable. So the P2/m Si is thermodynamically stable.Materials 2017, 10, 441  6 of 14 
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Table 3. The excess formation enthalpy of different silicon allotropes relative to diamond silicon
under 0 GPa. (eV). And n represents the Si (111)n/Si(SC) superlattices with the cubic- and
hexagonal-stacking sequences of Si (111) layers (SM: simple monoclinic, SO: simple orthorhombic, and
BCO: base-centered orthorhombic).

Diamond Si a Lonsdaleite a M a Cco a P2221
a P42/ncm a Z a tP12 a P2/m P21/m b

0.00 0.02 0.08 0.06 0.05 0.04 0.06 0.28 0.09 0.02
Imma b Pbam b Pmmn b Cmcm b P-1 c P21/c c C2/m-16 a C2/m-20 a I-4 a Amm2 a

0.07 0.06 0.08 0.04 0.13 0.14 0.13 0.10 0.10 0.11
n = 1

(BCO) d
n = 2

(SM) d
n = 3

(SM) d
n = 4

(SM) d
n = 5

(SM) d
n = 6

(SM) d
n = 7

(SM) d
n = 8

(SM) d
n = 9

(SM) d
n = 10
(SM) d

0.09 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.01
n = 2

(SO) d
n = 3

(SM) d
n = 4

(SO) d
n = 5

(SM) d - - - - - -

0.07 0.05 0.03 0.03 - - - - - -
a Ref. [10]; b Ref. [35]; c Ref. [20]; d Ref. [15].

Table 2 lists the bulk moduli, shear moduli, Young’s moduli, and Poisson’s ratios of P2/m-Si,
diamond silicon and other silicon allotropes. The bulk modulus and shear modulus are both important
characteristics of a material. The bulk modulus and shear modulus represent the resistance to fracture
and plastic deformation, respectively [34]. The bulk modulus of P2/m-Si is slightly smaller than that
of diamond silicon. The shear modulus of P2/m-Si is also slightly smaller than that of diamond silicon
but is the greatest among those of P2/m-Si, C2/m-16 Si, C2/m-20 Si, and I-4 Si [10]. The hardness of
a material can determine the plastic and elastic properties to some extent and can be predicted by
following formula [34]:

HV = 2(k2G)
0.585

− 3 (9)

In the above formula, k is equal to G/B. The calculated hardness of P2/m-Si is 10.0 GPa, while
the hardness of diamond silicon is 12.4 GPa. However, the hardness of P2/m-Si is slightly larger
than that of the C2/m-16, C2/m-20, I-4 and Amm2 phases (C2/m-16: 8.4 GPa, C2/m-20: 9.8 GPa, I-4:
7.6 GPa, Amm2: 9.1 GPa) [10]. In P2/m-Si, there are eight different bond lengths: 2.3945, 2.4582, 2.3365,
2.3420, 2.3274, 2.3522, 2.3008, and 2.4099 Å, and the average bond length is 2.3652 Å, which is slightly
smaller than that of diamond silicon (2.3729 Å) [10]. The bond lengths of P2/m-Si are very close to
that of diamond silicon, indicating that the bond energy of the Si-Si bonds should be as high as that of
diamond silicon. P2/m-Si has the smallest average bond length among the C2/m-16, C2/m-20, I-4, and
Amm2 phases, and thus the hardness of P2/m-Si is the greatest. On the other hand, there is only one
bond length in diamond silicon, but in the other silicon allotropes, including P2/m-Si, there are seven,
eight, and even nine or more bond lengths in which the extra bond lengths are all larger than that of
diamond silicon. Thus, the bond energy of these extra Si-Si bonds is weaker than that of diamond
silicon, making the hardness of the other silicon allotropes, including P2/m-Si, lower than that of
diamond silicon.

The B/G ratio of P2/m-Si is 1.48, as calculated by the PBE method, meaning P2/m-Si is a brittle
material, according to the theory proposed by Puge in which the B/G value of a brittle material is less
than 1.75 [36,37]. The B/G ratio of P2/m-Si is slightly greater than that of diamond silicon (1.38); that
is to say, diamond silicon is more brittle. The B/G ratio of C2/m-16 Si is 1.60, C2/m-20 Si is 1.50, I-4
Si is 1.68, Amm2 Si is 1.54 [10], and P2221 Si is 1.54 [5]. Therefore, P2/m-Si is the most brittle among
C2/m-16 Si, C2/m-20 Si, I-4 Si, Amm2 Si, and P2221 Si. In addition, Poisson’s ratio v, which gives the
ratio of the fraction of expansion and the fraction of compression, can be obtained by the following
equation [26]:

v =
3B − 2G

2(3B + G)
(10)

According to Ref. [38], the Poisson’s ratio v of a ductile material is usually larger than 0.26, while
brittle materials usually have a small v (v < 0.26) [38]. Moreover, the Poisson’s ratio v of P2/m-Si is
consistent with its B/G, and P2/m-Si is characterized as a brittle material via its Poisson’s ratio v. At the
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same time, the Poisson’s ratio of Amm2 (0.23) is slightly larger than that of P2/m-Si. The Poisson’s
ratio of I-4 Si is the largest (0.25), and that of diamond silicon is the smallest (0.21) by only a difference
of 0.04 [10].

Young’s modulus, which is calculated from the bulk modulus and shear modulus in
Formula (11) [39], is the physical attribute describing the resistance of the material to deformation.

E =
9BG

3B + G
(11)

According to the listed values of E in Table 2, the Young’s modulus of P2/m-Si is smaller than that
of diamond silicon and larger than that of C2/m-20, I-4, Amm2 and C2/m-16 Si. That is, the mechanical
properties of P2/m-Si are the greatest among C2/m-20, I-4, Amm2 and C2/m-16 Si.

It is well known that the elastic anisotropy is an important parameter in engineering science
and crystal physics. Crystals show different physical and chemical properties in different directions.
In addition, the anisotropy represents the extent of this property. The universal anisotropic index AU

and percentage of elastic anisotropy for the bulk modulus and shear modulus can be calculated by the
following equations [39,40]:

AB =
BV − BR

BV + BR
(12)

AG =
GV − GR

GV + GR
(13)

AU = 5
GV

GR
+

BV

BR
− 6 (14)

where BV represents the bulk modulus found using the Voigt method and BR represents the bulk
modulus found using the Reuss method. In addition, GV and GR represent the shear modulus found
using the Voigt and Reuss method, respectively. AU takes both bulk and shear effects into consideration,
and the extent of anisotropy increases with larger values of AU [4,26,41]. The interrelated factors of
elastic anisotropy for P2/m-Si are shown in Table 4. From Table 4, the AU of P2/m-Si is smaller than
that of diamond silicon. The order from large to small according to AU in Table 4 is diamond silicon
> P2/m Si > C2/m-20 Si > C2/m-16 Si > Amm2 Si > I-4 Si [10]. AB and AG of the P2/m phase are the
smallest among the listed allotropes, which indicates that it has least anisotropy in its shear modulus
among these silicon allotropes [34]. The AB values of P2/m-Si and I-4 Si are almost the same as that of
diamond silicon, which indicates that they have the least anisotropy in the bulk modulus, similar to
diamond silicon.

Table 4. The compression and shear anisotropy percent factors (AB and AG), universal anisotropy
indexes (AU) and shear anisotropy factors (A1, A2 and A3) of different structures.

Space Group AB AG AU A1 A2 A3

P2/m 0.000 0.028 0.269 1.056 1.036 0.578
Amm2 a 0.641 1.359 0.151 0.839 0.750 0.766

C2/m-16 a 0.128 1.475 0.152 0.881 0.940 1.111
C2/m-20 a 0.347 1.971 0.208 0.937 0.954 0.752

I-4 a 0.014 0.691 0.070 1.006 1.006 1.167
Fd-3m a 0.000 3.500 0.336 0.773 0.773 0.773

a Ref. [10].

The shear anisotropy factors are calculated in this work to verify the P2/m-Si elastic anisotropy
along different orientations (shown in Table 4). In addition, Table 4 also lists the compression anisotropy
factors and the shear anisotropy factors of P2/m-Si and the C2/m-20, C2/m-16, Amm2, I-4, and Fd-3m
phases. The value of the shear anisotropy factors represents the level of anisotropy in the bonding
between atoms in different planes. The three formulas defining the shear anisotropy factors are as
follows [34,42]:
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A1 =
4C44

C11 + C33 − 2C13
(15)

A2 =
4C55

C22 + C33 − 2C23
(16)

A3 =
4C66

C11 + C22 − 2C12
(17)

where A1 is the factor for the (100) shear plane between the [011] and [010] directions, A2 is for the
(010) shear plane between the [101] and [001] directions, and A3 is for the (001) shear plane between
the [110] and [010] directions. A value with a larger offset than 1 implies that the crystal behaves more
like an anisotropic material, and a value in the vicinity of 1 indicates an isotropic crystal. The results
in Table 4 indicate that P2/m-Si shows more distinct performance. The shear anisotropy factors of
P2/m-Si along different directions are very different. In particular, there is a larger offset between A3

and 1, while the other two directions are close to 1. The value for the three directions of diamond
silicon are the all smaller than 1 by 0.227 (diamond silicon: A1: 0.773). It is clear that P2/m-Si exhibits a
larger anisotropy in A3 than that of diamond silicon, while P2/m-Si exhibits a smaller anisotropy in A1

and A2 than diamond silicon. Meanwhile, the Amm2 and C2/m-20 phases exhibit a larger anisotropy
in A3 than diamond silicon, while the I-4 phase exhibits the smallest anisotropy in A1 and A2.

The fundamental physical and chemical properties of materials depend on the electronic structure.
However, the DFT method typically underestimates the electronic band structure [36]. The true band
gap is usually larger than the simulation result. The Heyd-Scuseria-Ernzerhof (HSE06) functional was
examined in consideration of this problem. The results of HSE06 are relatively accurate. The hybrid
functional HSE06 was used in the following form [36,43,44]:

EHSE
xc = µEHF,SR

x (ω) + (1 − µ)EPW91,SR
x (ω) + EPW91,LR

x (ω) + EPW91
c (18)

where the HF mixing parameter µ is 0.25 and the screening parameter ω is 0.207 Å−1 [44,45].
The electronic band structure of P2/m-Si was calculated using the GGA-PBE and HSE06 functionals,
and the electronic band structures of P2/m-Si are shown in Figure 5a. Figure 5a clearly shows that
P2/m-Si is an indirect-band-gap semiconductor with a band gap of 1.51 eV, as determined by the
HSE06 hybrid functional. The result calculated by the HSE06 hybrid functional is much larger than the
result from the GGA-PBE functional (0.87 eV). In addition, the band gap was found to be higher than
that of diamond silicon by 0.23 eV using the same calculation method (diamond silicon: 1.28 eV [11,44]).
Moreover, the band gap of diamond silicon calculated by HSE06 is very close to the experimental value
(1.12 eV [11,30]). The charge effective mass, which is also a key physical property for applications,
can be obtained by the formula m* = h2/(d2E/d2k) in which h is the planck constant, E is energy, k is
wave vector. (m*

n = 0.023m0, m*
p = 0.019m0.). The effective mass reflects the carrier mobility indirectly

(µ = qτ/m∗). The experimental effective mass at the Γ valley for a-GaN is 0.2m0 [46], while the effective
mass for a hole in a-GaN at the valence band is 0.6m0. Besides, the effective mass at the Γ valley for
GaAs is 0.0635m0 at the temperature 300 K [47]. The effective mass at the Γ valley for Ge is 0.038m0 at
the temperature 300 K. The averaged light-hole mass in [001] is 0.046m0 [48]. The calculated effective
mass of P2/m-Si is much smaller than that of GaN. Therefore, the mobility of P2/m-Si is larger than that
of GaN, because the mobility is inversely proportional to the effective mass (µ = qτ/m∗). The electronic
mobility of P2/m-Si is close to Ge. The density of states of P2/m-Si is displayed in Figure 5b, and the
inset figure illustrates the local features at the Fermi level in detail. The dashed line represents the
Fermi level. The DOS is divided into three regions: −13.5 eV to −5 eV, −5 eV to 0 eV and 0 eV to
7 eV. The lowest band ranging from −13.5 eV to −5 eV is characterized by the Si1-s, Si2-s, Si3-s and
Si4-s orbitals. The middle band ranging from −5 eV to 0 eV is characterized by the Si1-p, Si2-p, Si3-p
and Si4-p orbitals, and the upper band is also characterized by the Si1-p, Si2-p, Si3-p and Si4-p orbitals.
In addition, the energy of the upper band is above 0.86 eV.
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Figure 5. (a) Electronic band structure and (b) density of states of P2/m-Si. 
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parameter γ and heat capacity were calculated. Figure 6 shows the thermal expansion coefficient α 
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the thermal expansion coefficient and pressure at different temperatures. The reduction in the amplitude 

decreases as the pressure increases, as shown in Figure 6a, and the difference in α is small at the same 

temperature. The reduction in amplitude at lower pressure is larger than that at higher pressure. 
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Figure 5. (a) Electronic band structure and (b) density of states of P2/m-Si.

The thermodynamic properties of semiconductor materials at higher temperatures and pressures
are interesting [38]. In this work, the highest pressure examined is 10 GPa, and the highest temperature
is 1000 K. In the above conditions, the thermal expansion coefficient α, Grüneisen parameter γ and heat
capacity were calculated. Figure 6 shows the thermal expansion coefficient α for P2/m-Si as functions
of temperature and pressure. Figure 6a presents the relationship between the thermal expansion
coefficient and pressure at different temperatures. The reduction in the amplitude decreases as the
pressure increases, as shown in Figure 6a, and the difference in α is small at the same temperature.
The reduction in amplitude at lower pressure is larger than that at higher pressure. However, the
thermal expansion coefficient is constant when the temperature is 0 K (α = 0 × 10−5/K), and the
difference in α between 600 K and 900 K (0.04 × 10−5/K at 0 GPa) is smaller than that between 300 K
and 600 K (0.24 × 10−5/K at 0 GPa). As seen in Figure 6b, the thermal expansion coefficient increases
quickly with increasing temperature, especially when the temperature is below 500 K. The increase in
amplitude becomes very small when the temperature is over 500 K. Moreover, the thermal expansion
coefficient increases less at increased pressure. Thus, by comparing Figure 6a with Figure 6b, it can be
determine that the expansion coefficient α is more sensitive to the temperature when the temperature
is below 500 K. From Figure 6, it is clear that the effect of pressure on the expansion coefficient α is not
as significant as the effect of temperature over calculated pressure and temperature ranges.
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Figure 7 shows the change in the Grüneisen parameter γ with temperature and pressure, where
the Grüneisen parameter γ is expressed as γ = −(dlnΘ(V)/dlnV) [49], where Θ is the Debye temperature
and V is the volume. This parameter describes the anharmonic effects in the lattice vibrations [38].
As seen in Figure 7a, the γ parameter reduces by 0.045 per GPa, and the values are very close at
different temperatures. In other words, the effect of pressure on the Grüneisen parameter γ is greater
than that of temperature. As seen in Figure 7b, the γ parameter is not very sensitive to temperature.
As the temperature increases to 1000 K, the Grüneisen parameter γ only increases by 0.02 at 6 GPa and
0.01 at 7 GPa or more.
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This study also examined the heat capacity at constant volume (CV) and constant pressure (CP)
(Figure 8), which were calculated by the following formulas [38]:

CV = 3nk
[

4D
(

Θ

T

)
− 3Θ/T

eΘ/T − 1

]
(19)

CP = CV(1 + αγT) (20)

where n is the number of atoms per formula unit, Θ is the Debye temperature, k is Boltzmann constant
and D (Θ/T) represents the Debye integral [38]. As seen in Figure 8, the difference between CP and
CV is very small. In addition, the trend is basically consistent with the trend at different pressures.
Both plots increase as the temperature increases. It is obvious that the heat capacity is sensitive to
temperature when T < 500 K; however, the magnitude of the increasement becomes very small when
the temperature is over 500 K. In addition, the effect of pressure on the heat capacity is very small.
CV stays close to constant at the Dulong-Petit limit (24.92 J·mol−1·K−1) [38] at high temperature and
high pressure. Thus, the heat capacity of P2/m-Si is mainly affected by the temperature, and the effect
of the pressure is small compared to that of the temperature.
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4. Conclusions

This study predicts a new silicon allotrope with space group P2/m. The crystal structure,
mechanical properties, elastic anisotropy, stability, electronic properties, and thermal properties of
P2/m-Si were systematically studied. P2/m-Si is an indirect-band-gap semiconductor with a band gap
of 1.51 eV, and Si in the P2/m phase is also mechanically, dynamically and thermally stabile at ambient
pressures. The hardness was calculated to be 10.0 GPa, which is very close to that of diamond silicon.
In addition, P2/m-Si is more brittle than the other allotropes of C2/m-16 Si, C2/m-20 Si, I-4 Si, and
Amm2 Si. P2/m-Si also has larger anisotropy factors in different planes, especially for A3. P2/m-Si
has the least anisotropy in its shear modulus, which is similar to diamond silicon, and the universal
anisotropy of P2/m-Si is smaller than that of diamond silicon. High pressure leads to a smaller thermal
expansion and a smaller Grüneisen parameter at ambient temperatures. Moreover, the lattice constants,
Grüneisen parameter and the heat capacity have very small changes at different temperatures with
increasing pressure. In addition, the heat capacity is nearly stable, showing value of 25 J·mol−1·K−1

when the temperature is higher than 800 K.
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