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Abstract: Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent
magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is
greatly weakened due to the random distribution of crystallographic orientation. Microstructure
optimization and texture control are of great significance and challenge to improve the functional
behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the
microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun
ribbons and thin films, based on the detailed crystallographic characterizations through neutron
diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected
to offer some guidelines for the microstructure modification and functional performance control of
ferromagnetic shape memory alloys.
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1. Introduction

Conventional shape memory alloys (SMAs) can generate large output strains as a result of
reversible martensitic transformation. However, a major inconvenience for the practical application of
SMAs is their low working frequency (less than 1 Hz), since thermal activation is necessary. Recently,
a significant breakthrough in the research of high performance SMAs came about with the discovery of
ferromagnetic shape memory alloys (FSMAs) [1], where the magnitude of output strain is comparative
to that in conventional shape memory alloys [2–8]. Moreover, the possibility of controlling the shape
change by the application of magnetic field enables relatively higher working frequency (KHz) than
that of conventional shape memory alloys. With the integration of large output and fast dynamic
response under the external magnetic field, FSMAs are conceived as the promising candidates for
a new class of actuation and sensing applications.

Among FSMAs, Heusler type Ni-Mn-Ga alloys are the most representative prototype [9,10], which
combine the properties of ferromagnetism with those of a reversible martensitic transformation. Due to
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the strong coupling between the magnetic and structural orders, these alloys can demonstrate giant
output strains under the actuation of the magnetic field through the reorientation of ferromagnetic
martensite variants [1–14], i.e., magnetic shape memory effect. On cooling, Ni-Mn-Ga alloys undergo
the martensitic transformation from austenite with cubic L21 structure to the low symmetry martensitic
phase with several possible structures. Depending on the composition [15], the product phase
could be five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM)
martensite [16–25]. Among them, the NM martensite has a simple tetragonal crystal structure [25],
whereas the 5M and 7M martensite possess the monoclinic superstructure with lattice modulation that
is reflected by the satellite spots between two main spots in electron diffraction patterns [16–24].
In addition to the martensitic transformation, there also exists a first-order intermartensitic
transformation from one type of martensite to another in some alloys [26–31].

During the last two decades, numerous experimental studies have been conducted on the
composition-dependent magnetic shape memory behavior in Ni-Mn-Ga alloys. Thus far, the field
induced output strains have almost reached the theoretical limit in single crystals, i.e., ~7%, ~11% and
~12% in single crystals with 5M, 7M and NM martensite [6–8], respectively. It should be noted that the
high-cost for the fabrication of single crystals represents a severe obstacle for practical applications.
In contrast, the preparation of polycrystalline alloys are much simpler and of lower cost. However,
a more or less random distribution of crystallographic orientation in polycrystalline alloys greatly
weakens the field controlled functional behavior. To improve the functional properties in polycrystalline
alloys, microstructure optimization and texture control are of great significance and challenge. In this
paper, we present our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys
in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic
characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction
(EBSD). For the bulk alloys, which were prepared by directional solidification, the thermo-mechanical
treatment (compressive load applied during the martensitic transformation) was introduced in order to
redistribute the variants. For the melt-spun ribbons with strong preferential orientation, the orientation
inheritance between austenite and 7M martensite was analyzed. For the thin films deposited on
MgO(1 0 0) substrate, the preferential orientation and variant distribution were illustrated.

2. Experimental

Bulk polycrystalline alloys with the nominal composition of Ni50Mn30Ga20 (at. %) and
Ni50Mn28.5Ga21.5 (at. %) were prepared by directional solidification. In order to obtain a composition
homogenization, the directionally solidified Ni50Mn30Ga20 and Ni50Mn28.5Ga21.5 bulk alloys were
homogenized at 1173 K for 24 h in a sealed vacuum quartz tube, followed by the quenching into
water. A part of homogenized alloy was ground into powder and then the powder was annealed at
873 K for 5 h in vacuum to release the internal stress for the subsequent powder X-ray diffraction
(XRD) measurements.

Ribbons with the nominal composition of Ni53Mn22Ga25 (at. %) and Ni51Mn27Ga22 (at. %) were
produced through single-roller melt-spinning with a Cu wheel rotating speed of 15 m/s. Thin films
with nominal composition of Ni50Mn30Ga20 (at. %) and nominal thickness of 1.5 µm were deposited
from a cathode target of Ni46Mn32Ga22 (at. %) by DC magnetron sputtering with a sputtering rate of
~0.2 nm/s. A Cr buffer layer of 100 nm thick was pre-coated on the MgO(1 0 0) monocrystal substrate.

The room-temperature crystal structure was determined by X-ray diffraction (XRD) with Cu-Kα

radiation. The martensitic transformation temperatures were measured by differential scanning
calorimetry (DSC, TA Q100) with a heating and cooling rate of 10 K/min. The microstructural
characterization was performed in a field emission gun scanning electron microscope (SEM, Jeol JSM
6500 F) with an EBSD acquisition camera and Channel 5 software.

The neutron diffraction measurements were performed using the materials science diffractometer
STRESS-SPEC operated by FRM II and HZG at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching,
Germany, with a monochromatic wavelength of 2.1 Å [32]. The uniaxial compressive load
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was applied by a rotatable multifunctional (tension/compression/torsion) load frame installed at
STRESS-SPEC [33], with the “constant load” mode to ensure a fixed load. The experimental setup
for in-situ neutron diffraction is shown in Figure 1. For the in-situ neutron measurements on the
directionally solidified alloys during thermo-mechanical treatment process, the sample was firstly
heated to austenite temperature region, where a certain uniaxial compressive load was applied along
the solidification direction. Then, the sample was cooled to room temperature at a cooling rate of
2 K/min under the constant load, during which the neutron diffraction patterns were continuously
recorded at an interval of 60 s by a two-dimensional (2D) detector. During the in-situ neutron diffraction
measurements, the macroscopic strain changes of the tested samples were measured by the clip-on
extensometers in the load frame. Besides, the global crystallographic textures of both the initial
sample (without thermo-mechanical treatment) and the sample after thermo-mechanical treatment
were examined by neutron diffraction. The incoming beam sizes for the in-situ neutron diffraction and
the pole figure measurements were 5 mm×5 mm and φ15 mm, respectively.

Materials 2017, 10, 463  3 of 20 

 

STRESS-SPEC [33], with the “constant load” mode to ensure a fixed load. The experimental setup for 
in-situ neutron diffraction is shown in Figure 1. For the in-situ neutron measurements on the 
directionally solidified alloys during thermo-mechanical treatment process, the sample was firstly 
heated to austenite temperature region, where a certain uniaxial compressive load was applied 
along the solidification direction. Then, the sample was cooled to room temperature at a cooling rate 
of 2 K/min under the constant load, during which the neutron diffraction patterns were continuously 
recorded at an interval of 60 s by a two-dimensional (2D) detector. During the in-situ neutron 
diffraction measurements, the macroscopic strain changes of the tested samples were measured by 
the clip-on extensometers in the load frame. Besides, the global crystallographic textures of both the 
initial sample (without thermo-mechanical treatment) and the sample after thermo-mechanical 
treatment were examined by neutron diffraction. The incoming beam sizes for the in-situ neutron 
diffraction and the pole figure measurements were 5 mm×5 mm and φ15 mm, respectively.  

 
Figure 1. The unique tensile/compression rig installed at STRESS-SPEC for in-situ neutron diffraction 
measurements. 

3. Results and Discussion 

3.1. Thermo-Mechanical Treatment of Directionally Solidified Alloys 

In general, the martensitic transformation is deformation-dominant diffusionless phase 
transformation with symmetry break. The lower symmetry of the product martensitic phase may 
result in the formation of self-accommodated multi-variants to compensate the elastic strains 
associated with the phase transformation. However, such self-accommodated microstructure is not 
favorable for the achievement of magnetic shape memory effect in Ni-Mn-Ga alloys, since the 
co-existence of multi-variants would greatly enhance the resistance for the variant reorientation. As 
the deformation accompanying the martensitic transformation is anisotropic, unidirectional 
constraint (tension or compression) during the martensitic transformation could promote the 
formation of certain favorable variants but eliminate some other unfavorable ones [34]. Therefore, 
strong preferential orientation of martensite can be achieved through the selective formation of 
favorable variants with the application of an external field during the martensitic transformation, 
thus to realize the optimization of crystallographic anisotropy and magnetic shape memory effect 
[2,4,13,14,35]. In this section, thermo-mechanical treatments (compressive load applied during the 
martensitic transformation) were introduced in order to reformulate the variant distribution. 
Through in-situ neutron diffraction, the martensitic transformation process under uniaxial 
compressive load was traced and the direct evidence on the variant redistribution induced by 
thermo-mechanical treatments was followed. 
  

Figure 1. The unique tensile/compression rig installed at STRESS-SPEC for in-situ neutron
diffraction measurements.

3. Results and Discussion

3.1. Thermo-Mechanical Treatment of Directionally Solidified Alloys

In general, the martensitic transformation is deformation-dominant diffusionless phase
transformation with symmetry break. The lower symmetry of the product martensitic phase
may result in the formation of self-accommodated multi-variants to compensate the elastic strains
associated with the phase transformation. However, such self-accommodated microstructure is
not favorable for the achievement of magnetic shape memory effect in Ni-Mn-Ga alloys, since the
co-existence of multi-variants would greatly enhance the resistance for the variant reorientation. As the
deformation accompanying the martensitic transformation is anisotropic, unidirectional constraint
(tension or compression) during the martensitic transformation could promote the formation of certain
favorable variants but eliminate some other unfavorable ones [34]. Therefore, strong preferential
orientation of martensite can be achieved through the selective formation of favorable variants with the
application of an external field during the martensitic transformation, thus to realize the optimization
of crystallographic anisotropy and magnetic shape memory effect [2,4,13,14,35]. In this section,
thermo-mechanical treatments (compressive load applied during the martensitic transformation)
were introduced in order to reformulate the variant distribution. Through in-situ neutron diffraction,
the martensitic transformation process under uniaxial compressive load was traced and the direct
evidence on the variant redistribution induced by thermo-mechanical treatments was followed.
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3.1.1. Austenite to 7M Martensite Transformation

Polycrystalline Ni50Mn30Ga20 alloy with 7M martensite at room temperature was prepared by
directional solidification. The cylindrical-shaped (φ5 mm×10 mm) samples with the axial direction
parallel to solidification direction were cut from the homogenized ingot for thermo-mechanic treatment
and neutron diffraction. The actual composition was verified to be Ni50.1Mn28.8Ga21.1 by energy
dispersive spectroscopy (EDS). According to DSC measurements, the start and finish temperatures of
the forward (Ms, Mf) and inverse martensitic transformation (As, Af) were determined to be 347.8 K,
331.3 K, 336.8 K and 352.2 K, respectively. Powder XRD measurements reveal that the directionally
solidified Ni50Mn30Ga20 alloy consists of 7M martensite at room temperature with lattice parameters
a7M = 4.2651 Å, b7M = 5.5114 Å, c7M = 42.365 Å, and β = 93.27◦, where the crystal structure of 7M
martensite is depicted as an incommensurate monoclinic superstructure consisting of ten unit cells [22].
Moreover, microstructural observations have shown that the original austenite of the directionally
solidified alloy forms coarse columnar-shaped grains with the grain size of several hundreds of microns
along the solidification direction (SD) [36].

To reveal the global texture of the directionally solidified Ni50Mn30Ga20 alloy, the complete
pole figures were measured by neutron diffraction. The high penetration capability of neutrons,
which exceeds that of X-rays by about four orders of magnitude, is considered to allow more reliable
analysis on the global orientation distribution of the studied samples. Figure 2 displays {−1 0 10}7M,
{1 0 10}7M and {0 2 0}7M complete pole figures of the directionally solidified alloy. It is seen that the
7M martensite develops a strong preferential orientation, with {−1 0 10}7M, {1 0 10}7M and {0 2 0}7M

crystallographic planes of 7M martensite either perpendicular or parallel to the SD. For {−1 0 10}7M

and {0 2 0}7M, the orientation component parallel to the SD possesses the much higher intensity,
indicating that {−1 0 10}7M and {0 2 0}7M tend to be parallel to SD. On the other hand, {1 0 10}7M is
almost perpendicular to the SD. According to the orientation relationship between austenite and 7M
martensite [37], {−1 0 10}7M, {1 0 10}7M and {0 2 0}7M of 7M martensite are originated from {2 0 0}A of
austenite. Thus, it can be inferred that the initial austenite of the directionally solidified Ni50Mn30Ga20

alloy should possess the strong <0 0 1>A preferential orientation parallel to the solidification direction.
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Figure 2. {−1 0 10}7M, {1 0 10}7M and {0 2 0}7M complete pole figures of 7M martensite measured from
neutron diffraction for the directionally solidified Ni50Mn30Ga20 alloy (BD: incoming beam direction;
SD: solidification direction).

In order to modify the variant distribution, cyclic thermo-mechanical treatments were performed
on the directionally solidified Ni50Mn30Ga20 alloy, and the martensitic transformation process under
external load was traced by in-situ neutron diffraction. The sample was first heated to 393 K to reach the
fully austenite state, where the uniaxial compressive load was applied along the solidification direction
(SD). Since the austenite of the directionally solidified Ni50Mn30Ga20 alloy possesses the strong
<0 0 1>A preferential orientation in parallel to the solidification direction, the uniaxial compressive load
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was actually applied along the <0 0 1>A. Prior to thermo-mechanical treatment, the neutron diffraction
patterns were collected at 393 K and 303 K in the 2θ range of ~36◦–52◦ for the tested sample, as shown
in Figure 3a. It is seen that within measured 2θ range, only {2 0 0}A diffraction can be observed in the
austenite (aA = 5.83 Å) temperature region. After martensitic transformation, {2 0 0}A evolves into
{−1 0 10}7M, {1 0 10}7M and {0 2 0}7M, where the {1 0 10}7M diffraction possesses the strongest intensity.

Figure 3b–d displays the serial patterns measured on cooling across the martensitic transformation
under the compressive load of −10 MPa (Cycle 1), −25 MPa (Cycle 2) and −50 MPa (Cycle 3) applied
along the solidification direction, respectively. With the increase of compressive load, the intensity of
{0 2 0}7M diffraction increases gradually. After three cycles of treatment, there remained almost only
the {0 2 0}7M diffraction in the measured 2θ range, as shown in Figure 3e. Apparently, the uniaxial
compression has exerted significant influence on the variant distribution, creating a strong preferential
orientation of the {0 2 0}7M. Moreover, with increasing the compressive load, the macroscopic
deformation amount accompanying the martensitic transformation increased gradually, i.e., −2.1%,
−2.8% and −3.3% for Cycle 1, Cycle 2 and Cycle 3, respectively, which also indicates the increase in
the degree of preferred variant orientation.
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Figure 3. (a) Neutron diffraction pattern measured at ~393 K and ~303 K with no external load;
(b–d) neutron diffraction patterns measured during cooling under the compressive load of −10 MPa
(Cycle 1), −25 MPa (Cycle 2) and −50 MPa (Cycle 3); and (e) neutron diffraction pattern measured at
~303 K without compressive load after three cycles of treatment [36].

The applied uniaxial compressive load can also result in the increase of martensitic transformation
temperatures. Experimentally, the increases of Ms under −10 MPa, −25 MPa and −50 MPa applied
during martensitic transformation were ~0.9 K, ~2.3 K and ~8.5 K, respectively [36]. The shifts of
transformation temperatures under uniaxial load σ can be well explained by the Clausius–Clapeyron
relation: dσ/dT = −∆S·ρ/ε, where ∆S and ε stand, respectively, for the entropy change and
transformation strain, and ρ is the mass density. According to Clausius–Clapeyron relation, the increase
of Ms under uniaxial load of−10 MPa,−25 MPa and−50 MPa was determined as 1.2 K, 4.1 K and 9.5 K,
respectively, which is very close to the experimentally observed transformation temperature shifts [36].

Figure 4 displays {−1 0 10}7M, {1 0 10}7M and {0 2 0}7M pole figures of 7M martensite after cyclic
thermo-mechanical treatments. Compared to the initial sample without thermo-mechanical treatment
(Figure 2), a significant change on the crystallographic orientation of 7M martensite can be confirmed.
It is seen that {−1 0 10}7M and {1 0 10}7M of 7M martensite are almost parallel to the loading direction
(LD) (also the SD), whereas {0 2 0}7M is almost perpendicular to LD. Notably, a strong <0 1 0>7M

preferential orientation along the LD was induced by the external compression during martensitic
transformation. With respect to {2 0 0}A (d = 2.915 Å), the plane spacing of resultant {−1 0 10}7M

(d = 3.09 Å) and {1 0 10}7M (d = 2.919 Å) increases and {0 2 0}7M (d = 2.756 Å) decreases after martensitic
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transformation. Under the compressive load applied during martensitic transformation, the variants
with the reduction in the plane spacing should be more favorable. Thus, the formation of {0 2 0}7M

from {2 0 0}A is preferred under compressive load, leading to the large macroscopic strain and the
formation of a strong <0 1 0>7M preferred crystallographic orientation along the loading axis.
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Figure 4. {−1 0 10}7M, {1 0 10}7M and {0 2 0}7M pole figures of 7M martensite after cyclic
thermo-mechanical treatments measured from neutron diffraction for the directionally solidified
Ni50Mn30Ga20 alloy (BD: incoming beam direction; SD: solidification direction; LD: loading direction).

3.1.2. Austenite to 5M Martensite Transformation

In order to figure out the effect of external loading direction applied during the martensitic
transformation on the selection of preferential variants, a directionally solidified Ni50Mn28.5Ga21.5

alloy with two preferred orientations with <0 0 1>A and <1 1 0>A parallel to the solidification direction
(SD) was used to perform thermo-mechanical treatments. The rectangular parallelepiped samples
(10 mm × 6.5 mm × 6.5 mm) with their longitudinal direction parallel to the solidification direction
were cut from the homogenized alloy for neutron diffraction testing.

According to the EDS, the actual composition was determined to be Ni49.6Mn28.4Ga22.0. Powder
XRD measurement shows that the alloy composes of 5M martensite at room temperature and
the lattice parameters were determined to be a5M = 4.226 Å, b5M = 5.581 Å, c5M = 21.052 Å and
β = 90.3◦. DSC measurements demonstrate that the martensitic transformation occurs above the room
temperature. The start and finish temperatures of the forward and reverse martensitic transformation
determined from DSC measurements are, respectively, 322.9 K (Ms), 318.4 K (Mf), 329.5 K (As) and
333.2 K (Af) [38].

Figure 5 shows the {1 0 5}5M/{−1 0 5}5M, {0 2 0}5M, {2 0 0}5M/{0 0 10}5M and {1 2 5}5M/
{−1 2 5}5M complete pole figures measured from neutron diffraction for the directionally solidified
Ni50Mn28.5Ga21.5 alloy. It is noted that the angular differences in 2θ between (1 0 5)5M and (−1 0 5)5M,
between (2 0 0)5M and (0 0 10)5M and between (−1 2 5)5M and (1 2 5)5M are too small, i.e., ~0.2◦, ~0.3◦

and ~0.2◦, respectively, to be effectively distinguished in the present neutron diffraction measurements
due to the instrumental resolution of the diffractometer, resulting in the overlapping of two diffractions
with very close 2θ, i.e., (1 0 5)5M and (−1 0 5)5M, (2 0 0)5M and (0 0 10)5M, and (−1 2 5)5M and (1 2 5)5M,
in the neutron diffraction measurement results, respectively [38].

It is seen in Figure 5 that both the {1 0 5}5M/{−1 0 5}5M and {0 2 0}5M poles are roughly located at
the tilt angle Psi = ~0◦, ~40◦ and ~90◦ in the corresponding pole figures. Since {1 0 5}5M/{−1 0 5}5M

and {0 2 0}5M of 5M martensite are originated from {2 0 0}A for the transformation from austenite to 5M
martensite [39], it can be inferred that the initial austenite of directionally solidified Ni50Mn28.5Ga21.5

alloy mainly possesses two preferred orientation components, i.e., <0 0 1>A//SD and <1 1 0>A//SD.
Thus, during the subsequent thermo-mechanical treatment process, the compressive load applied
along SD during the martensitic transformation can be viewed along <0 0 1>A and <1 1 0>A. For the
initial austenite with the preferred orientation of <0 0 1>A//SD, the resultant {1 0 5}5M/{−1 0 5}5M and
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{0 2 0}5M of martensite are either perpendicular or parallel to the SD. More specifically, for {1 0 5}5M/
{−1 0 5}5M, the orientation component perpendicular to the SD possesses the much higher intensity,
indicating that {1 0 5}5M/{−1 0 5}5M tends to be perpendicular to SD. On the other hand, for {0 2 0}5M,
the orientation component parallel to the SD has the higher intensity. For the initial austenite with the
orientation of <1 1 0>A//SD, the resultant {2 0 0}5M/{0 0 10}5M tends to be perpendicular to SD and
{1 2 5}5M/{−1 2 5}5M to be parallel to SD.
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Figure 5. Complete pole figures of directionally solidified Ni50Mn28.5Ga21.5 alloy without
thermo-mechanical treatment measured from neutron diffraction (BD: incoming beam direction;
SD: solidification direction) [38]: (a) {1 0 5}5M/{−1 0 5}5M pole figure; (b) {0 2 0}5M pole figure;
(c) {0 0 10}5M/{2 0 0}5M pole figure; and (d) {1 2 5}5M/{−1 2 5}5M pole figure.

Figure 6a shows the in-situ neutron diffraction patterns measured on cooling without external
load (Cycle 1). Within the measured 2θ range (~36◦–48◦), only the {2 0 0}A diffraction can be observed in
the austenite temperature region. The lattice constant of the austenite was determined to be aA = 5.84 Å.
On cooling, {2 0 0}A transforms into {1 0 5}5M/{−1 0 5}5M and {0 2 0}5M, where {1 0 5}5M/{−1 0 5}5M

diffraction possesses a higher intensity than {0 2 0}5M diffraction. Figure 6b–e displays the serial
patterns measured on cooling across the martensitic transformation under the compressive load of
−10 MPa (Cycle 2), −20 MPa (Cycle 3), −40 MPa (Cycle 4) and −50 MPa (Cycle 5), respectively.
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For each cycle of the thermo-mechanical treatment, there remained two diffractions of 5M martensite,
i.e., {0 2 0}5M and {1 0 5}5M/{−1 0 5}5M, in the measured 2θ range after the martensitic transformation.
However, the intensity ratio between {0 2 0}5M and {1 0 5}5M/{−1 0 5}5M increases with the increase of
compressive load, suggesting a redistribution of martensitic variants induced by the compressive load
applied during the martensitic transformation [38].Materials 2017, 10, 463  8 of 20 
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Figure 7 shows the corresponding pole figures measured by neutron diffraction after five cycles of
thermo-mechanical treatment for directionally solidified Ni50Mn28.5Ga21.5 alloy. It should be mentioned
that, although the pole figures presented in Figure 5 (without thermo-mechanical treatment) and
Figure 7 (after thermo-mechanical) were obtained from two different samples, the initial texture of
two samples should be very similar since they were cut from the same directionally solidified alloy
rod and one sample was just adjacent to the other when cutting. It is seen that under the compressive
load applied along <0 0 1>A during the martensitic transformation (Figure 7a,b), the preferential
variants with {1 0 5}5M/{−1 0 5}5M//SD (LD) and {0 2 0}5M⊥SD (LD) were induced, in contrast with
the initial state with {1 0 5}5M/{−1 0 5}5M⊥SD and {0 2 0}5M//SD. Under the compressive load applied
along <1 1 0>A (Figure 7c,d), the initial orientation component with {2 0 0}5M/{0 0 10}5M⊥SD and
{1 2 5}5M/{−1 2 5}5M//SD evolves into {2 0 0}5M/{0 0 10}5M//SD (//LD) and {1 2 5}5M/{−1 2 5}5M⊥SD
(LD) [38]. Thus, the variant orientation distribution under the compressive load applied during the
martensitic transformation is strongly dependent on the austenite orientation and the direction of the
external load.

With respect to {2 0 0}A (d = 2.92 Å), the planar spacing of inherited {1 0 5}5M/{−1 0 5}5M

(d = 2.975 Å/2.991 Å) increases, whereas {0 2 0}5M (d = 2.791 Å) decreases. Similarly, the planar spacing
of {2 0 0}5M/{0 0 10}5M (d = 2.105 Å/2.113 Å) increases, but {1 2 5}5M/{−1 2 5}5M (d = 2.035 Å/2.040 Å)
decreases in comparison with {2 2 0}A (d = 2.065 Å). Under the constraint of compressive load along
SD during martensitic transformation, the formation of {0 2 0}5M⊥SD from {2 0 0}A of austenite and
{1 2 5}5M/{−1 2 5}5M⊥SD from {2 2 0}A of austenite should be preferentially activated to accommodate
the external constraint. Therefore, the coupling between anisotropic lattice distortion in martensitic
transformation and the external constraint dominates the preferred orientation of the martensite
variants formed under the external constraint applied during the martensitic transformation [38].
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Af = 331 K) ribbons are below and above room temperature, respectively. According to the XRD 
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determined to be austenite with cubic L21 structure (aA = 5.814 Å), whereas Ni51Mn27Ga22 ribbons 
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Figure 7. Pole figures of directionally solidified Ni50Mn28.5Ga21.5 alloy after five cycles of
thermo-mechanical treatment: (a) {1 0 5}5M/{−1 0 5}5M pole figure; (b) {0 2 0}5M pole figure;
(c) {0 0 10}5M/{2 0 0}5M pole figure; and (d) {1 2 5}5M/{−1 2 5}5M pole figure (BD: incoming beam
direction; SD: solidification direction; LD: loading direction) [38].

3.2. Orientation Inheritance from Austenite to 7M Martensite in Melt-Spun Ribbons

The rapid solidification based on melt-spinning technique has been proven to be an effective
processing route for the preparation of ribbon shaped ferromagnetic shape memory alloys [40–50].
This method can avoid long time post heat treatment to achieve the composition homogeneity.
Moreover, melt-spun ribbons usually tend to form a highly textured microstructure [51]. In this section,
Ni53Mn22Ga25 and Ni51Mn27Ga22 ribbons with austenite and 7M martensite at room temperature
respectively, were prepared by melt-spinning. The preferred orientation of austenite and 7M martensite
in ribbons was presented and their correlation was further analyzed.

DSC measurements show that the martensitic transformation temperatures of Ni53Mn22Ga25

(Ms = 290 K, Mf = 276 K, As = 286 K, Af = 298 K) and Ni51Mn27Ga22 (Ms = 323 K, Mf = 308 K,
As = 318 K, Af = 331 K) ribbons are below and above room temperature, respectively. According to the
XRD measurements on the ribbon plane, the room temperature phase of Ni53Mn22Ga25 ribbons
is determined to be austenite with cubic L21 structure (aA = 5.814 Å), whereas Ni51Mn27Ga22

ribbons consist of 7M martensite (a7M = 4.235 Å, b7M = 5.552 Å, c7M = 42.061 Å, β = 92.5◦) at the
room temperature.
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Figure 8a shows the EBSD orientation map measured from ribbon plane for the Ni53Mn22Ga25

ribbons. It is seen that the austenite grain appears in equiaxed shape in the ribbon plane with
an averaged grain size of ~10–20 µm. Figure 8b displays the corresponding {2 2 0}A, {4 0 0}A and
{4 2 2}A pole figures recalculated from EBSD measurements. Obviously, the austenite in ribbons
develops a strong preferred orientation with {4 0 0}A parallel to ribbon plane [52], which should be
attributed to the thermal gradient during the melt-spinning process. Figure 9 shows the {2 0 −20}7M,
{2 0 20}7M, and {0 4 0}7M pole figures of 7M martensite for Ni51Mn27Ga22 ribbons recalculated from
the XRD measurements. It is shown that the 7M martensite forms strong preferred orientation with
{2 0 −20}7M, {2 0 20}7M, and {0 4 0}7M parallel to the ribbon plane [52].
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Figure 9. {2 0−20}7M, {2 0 20}7M, and {0 4 0}7M pole figures recalculated from the X-ray diffraction (XRD)
measurements for Ni51Mn27Ga22 ribbons [52]. X0//ribbon length (rolling) direction, Z0⊥ribbon plane.

According to the orientation relationship between austenite and 7M martensite [37], i.e.,
{1 0 1}A//{1 −2 −10}7M and <1 0 −1>A//<−10 −10 1>7M, the crystallographic correlation between
austenite and 7M martensite can be well constructed. Further crystallographic calculations show that
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there exists an intimate correlation between {4 0 0}A and its resultant {2 0 −20}7M, {2 0 20}7M, and
{0 4 0}7M. Theoretically, {2 0 −20}7M, {2 0 20}7M, and {0 4 0}7M poles of 7M martensite are almost located
at the same positions with those of {4 0 0}A in the corresponding pole figures calculated through the
orientation relationship between two phases [52]. Based on the pole figures presented in Figure 8
(austenite) and Figure 9 (7M martensite) in ribbons, it can be inferred that the transformation from
austenite to 7M martensite exhibits a strong orientation inheritance and such orientation inheritance
should be attributed to the intrinsic orientation relationship between austenite and 7M martensite [52].

3.3. Preferential Orientation and Variant Distribution of Thin Film

The magnetron sputtering technique has been viewed as an effective method for the texturation of
ferromagnetic Ni-Mn-Ga thin films epitaxially grown on a single crystal substrate [53–61]. In general,
the epitaxial growth of Ni-Mn-Ga thin films on single crystal substrate may produce quite different
microstructures compared to those of polycrystalline bulk alloys [18,20,27]. The microstructural
and crystallographic characterizations of thin films remain challenging due to the local constraints
from substrates, the specific geometry of thin films, and the ultrafine microstructures of constituent
phases. Because of the lack of direct correlation of martensitic microstructures with crystallographic
orientations, precise information on the configurations of variants in Ni-Mn-Ga thin films are still not
available. In this section, based on XRD measurements and electron backscatter diffraction (EBSD)
analyses, the crystal structures of constituent phases, the configurations of martensite variants and
their orientation correlations are addressed.

3.3.1. Global Microstructure and Texture of Thin Film

Epitaxially grown thin films with nominal composition of Ni50Mn30Ga20 were prepared on the
MgO(1 0 0) substrate with a Cr buffer layer by DC magnetron sputtering [62,63]. Figure 10a shows
the ψ-dependent XRD patterns of the thin films obtained by conventional θ-2θ coupled scanning
at the room temperature. At each tilt angle ψ, there appear only a limited number of diffraction
peaks. Figure 10b presents the XRD patterns measured using a large-angle position sensitive detector
under two different incident beam conditions. Some extra diffraction peaks can be seen in the
2θ range of 48◦–55◦and ~82◦. Based on the XRD patterns in Figure 10a,b, it can be inferred that
austenite, 7M martensite and NM martensite co-exist in the as-deposited thin films at room temperature.
The austenite phase has a cubic L21 crystal structure with lattice constant aA = 5.773 Å. The 7M
martensite phase has a monoclinic crystal structure with lattice constants a7M = 4.262 Å, b7M = 5.442 Å,
c7M = 41.997 Å, and β = 93.7◦. The NM martensite phase is of tetragonal crystal structure with lattice
constants aNM = 3.835 Å and cNM = 6.680 Å [62,63].
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Figure 10. XRD patterns of as-deposited Ni50Mn30Ga20 thin films: (a) conventional θ–2θ coupled
scanning at different tilt angles ψ; and (b) 2θ scanning at two incident angles ω and integrated over the
rotation angle ϕ.

Figure 11a presents a secondary electron (SE) image acquired from the top surface of
an electrolytically polished sample with gradient thickness relative to the film surface. As schematically
illustrated in Figure 11b, the right side and the left side of the image represent the microstructure
near the film surface and deep inside the film, respectively. Although the thin film has an overall
plate-like microstructure, there exists certain plate thickening from its interior to its surface, which
indicates a complete change of microstructural constituents or phases along the film thickness [28].
Based on EBSD measurements [62], it is revealed that the coarse plates in the top layer of the film are
of the NM martensite, whereas the fine plates in the film interior are of the 7M martensite. Moreover,
by combination of the XRD results, it is deduced that the NM martensite is located near the free surface
of the film, the austenite above the substrate surface, and the 7M martensite in the intermediate layers
between them.
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Figure 12 displays the pole figures of the 7M and NM martensite determined from XRD
measurements in the thin film. For 7M martensite (Figure 12a), {2 0 −20}7M, {2 0 20}7M and {0 4 0}7M

are nearly parallel to the substrate surface, whereas for the NM martensite (Figure 12b), {0 0 4}NM

and {2 2 0}NM tends to be close to the substrate surface. Although X-ray diffraction offers global
texture information of the film, it is difficult to correlate the crystallographic features with those of the
microstructure. Therefore, SEM/EBSD analysis is needed.
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3.3.2. 7M Variants Distribution in the Thin Film

Figure 13 presents typical SE images of 7M martensite for Ni50Mn30Ga20 thin film. It is seen in
Figure 13a that martensite plates are clustered in groups, exhibiting either low relative contrast (e.g.,
Group 1) with straight plates parallel to the substrate edges or high relative contrast (e.g., Group 2
and Group 3) with bent plates oriented at roughly 45◦ with respect to the substrate edges. In addition,
the traces of inter-plate interfaces in high relative contrast zones have three distinct orientations, as
indicated by the dotted yellow and green lines and the solid black lines in Figure 13b. In fact, the SE
image contrast is related to the surface topography of an observed object. Thus, the low relative
contrast zones and the high relative contrast zones are expected to have low and high surface reliefs,
respectively. Here, the low relative contrast zone (Group 1) corresponds to the so-called Y pattern, and
the high relative contrast zone (Group 2 or Group 3) to the X pattern [64].

EBSD measurements show that one 7M martensite plate corresponds to one orientation variant.
There are in total four different variants distributed in one plate group. Here, the four orientation
variants, representing one plate group with low and high relative contrast, are denoted by the symbols
VL

A, VL
B, VL

C, VL
D and VH

A , VH
B , VH

C , and VH
D , respectively. Crystallographic calculations show that there

exist three types of twinning relation between the adjacent variant, i.e., Type-I, or Type-II, or compound
twinning relation, for the four variants in one plate group. The complete twinning elements were
reported in elsewhere [62].
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Figure 14 presents {2 0 20}7M, {2 0 −20}7M and {0 4 0}7M pole figures calculated from the
individual crystallographic orientation data of 7M variants in Group 1 and Group 2 by manual
EBSD measurements. Clearly, in the low relative contrast zone (Group 1), the four variants (VL

A, VL
B,

VL
C and VL

D) are all with their {2 0 20}7M plane nearly parallel to the substrate surface. However, in
the high relative contrast zone (Group 2), two variants (VH

A and VH
D) are with their {2 0 −20}7M plane

nearly parallel to the substrate surface, and the other two variants (VH
B and VH

C ) with their {0 4 0}7M

plane nearly parallel to the substrate surface.
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Figure 14. {2 0 20}7M, {2 0 −20}7M and {0 4 0}7M pole figures of four 7M variants in Group 1 and
Group 2.

Analyses show that, in the low relative contrast zone, the majority of variants are in Type-I twin
relation. Both Type-I and Type-II twin interfaces are nearly perpendicular to the substrate surface.
For the high relative contrast zone, the majority of variants are in Type-II twin relation. The existence
of height differences between adjacent variants accounts for the high relative contrast in this region.
Further crystallographic calculations indicate that the preferential occurrence of different twinning
type is a consequence of external constraint from the rigid substrate. The dominated twinning type
allows effective cancellation of the shear deformation in the film normal direction [62].

3.3.3. NM Variants Distribution in the Thin Film

Figure 15a shows an SE image of NM martensite for Ni50Mn30Ga20 thin film. Similar to 7M
martensite, the clustered colonies can also be characterized by two different relative contrasts, i.e.,
low relative contrast (Z1) or high relative contrast (Z2), as illustrated in Figure 15a. The low relative
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contrast zones consist of long and straight plates running with their length direction parallel to one
edge of the substrate (i.e., [1 0 0]MgO or [0 1 0]MgO). The high relative contrast zones are of shorter and
somewhat bent plates that orient roughly at 45◦ with respect to the substrate edges.

Microstructural observation reveals that there exist two variants distributed alternately in one
martensite plate, as highlighted with yellow and blue lines in Figure 15b. Of the two contrasted
neighboring lamellae, one is thicker and the other is thinner, which is different from the situation of
7M martensite. The two lamellar variants in one plate have a compound twin relationship with the
{1 1 2}NM as twinning plane and <1 1 −1>NM as twinning direction. As the BSE image contrast for
a monophase microstructure with homogenous chemical composition originates from the orientation
differences of the microstructural components, the thicker and thinner lamellae distributed alternately
in each plate should be correlated with two distinct orientations, which is also confirmed by the
indexation of Kikuchi line patterns [63].
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correspond to the thicker (major) variants and those with even subscripts the thinner (minor) 
variants. The measured orientations of the NM variants in the two relative contrast zones are 
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Figure 15. (a) SE image of electrolytically polished Ni-Mn-Ga thin films, showing NM martensite plates
that are clustered in colonies with low (Z1) and high (Z2) relative contrasts; (b) high-magnification BSE
image of the squared area in Z1 of Figure 15a, showing fine lamellae distributed alternately inside each
plate; (c) illustration of the geometrical configuration of NM variants in Z1 zone; and (d) illustration of
the geometrical configuration of NM variants in Z2 zone [63].

Detailed EBSD orientation analyses were conducted on the NM martensite plates in the low
and high relative contrast zones (Z1 and Z2 in Figure 15a). In each variant colony, there are four
types of plates, i.e., A, B, C and D in the low relative contrast (Z1) zones and 1, 2, 3 and 4 in the high
relative contrast (Z2) zones, as illustrated in Figure 15c,d. Since one NM plate contains two variants,
there are in total eight NM variants in one variant colony. For easy visualization, they are denoted
as V1, V2, . . . , V8 in Figure 15c and SV1, SV2, . . . , SV8 in Figure 15d, where the symbols with odd
subscripts correspond to the thicker (major) variants and those with even subscripts the thinner (minor)
variants. The measured orientations of the NM variants in the two relative contrast zones are presented
in the form of {0 0 1}NM and {1 1 0}NM pole figures, as displayed in Figure 16a,b [63].
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For the low relative contrast zones (Z1), the major and minor variants are oriented respectively
with their {1 1 0}NM planes and {0 0 1}NM planes nearly parallel to the substrate surface (Figure 16a).
In the high relative contrast zones (Z2), such plane parallelisms hold for plates 2 and 4 but with an
exchange of the planes between the major and minor variants, whereas both major and minor variants
in plates 1 and 3 are oriented with their {1 1 0}NM planes nearly parallel to the substrate surface
(Figure 16b). In correlation with the microstructural observations, plates 2 and 4 are featured with
higher brightness and plates 1 and 3 with lower brightness [63].

Indeed, for the two distinct relative contrast zones, the crystallographic orientations of the in-plate
martensitic variants with respect to the substrate surface are not the same, which should be the origin
of the topological differences observed for the two relative contrast zones. In the low relative contrast
zones, the in-plate major and minor variants have the same orientation combination for all NM plates
and they are distributed symmetrically to the inter-plate interfaces. As no microscopic height misfits
across inter-plate interfaces appear in the film normal direction, the relative contrast between adjacent
NM plates is not pronounced in the SE images. However, in the high relative contrast zone, the
asymmetrically distributed lamellar variants in adjacent NM plates lead to the pronounced height
misfits across inter-plate interfaces in the film normal direction, which gives rise to surface reliefs,
hence the high relative contrast between adjacent NM plates [63].
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4. Conclusions

(1) The influence of uniaxial compression on martensitic transformation in directionally solidified
Ni50Mn30Ga20 and Ni50Mn28.5Ga21.5 polycrystalline alloys was studied by neutron diffraction.
It was shown that the distribution of martensite variants can be tuned through cyclic
thermo-mechanical treatments. For the Ni50Mn30Ga20 alloy with <0 0 1>A preferential orientation
parallel to the solidification direction, a strong <0 1 0>7M preferential orientation of 7M
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martensite along the loading direction (//solidification direction) was induced by the external
compression during martensitic transformation. In addition, it was found that the selection of
preferential variants induced by thermo-mechanical treatments was strongly dependent on the
austenite orientation and the direction of external load, which was evidenced in Ni50Mn28.5Ga21.5

polycrystalline alloys with <0 0 1>A and <1 1 0>A parallel to the solidification direction. For the
austenite with the orientation of <0 0 1>A//SD, the compressive load applied along solidification
direction favored the formation of variants with {1 0 5}5M/{−1 0 5}5M//SD (LD) and {0 2 0}5M⊥SD
(LD). On the other hand, the formation of the variants with {2 0 0}5M/{0 0 10}5M//SD (//LD) and
{1 2 5}5M/{−1 2 5}5M⊥SD (LD) was favored under the condition of LD//<1 1 0>A. The preferred
orientation of the martensite variants formed under the external compression applied during the
martensitic transformation should be attributed to the accommodation between the anisotropic
lattice distortion in the martensitic transformation and the external constraint.

(2) The preferred orientation distribution for the austenite in Ni53Mn22Ga25ribbons and the 7M
martensite in Ni51Mn27Ga22 ribbons was studied based on EBSD and XRD. It was found that
the austenite forms a preferred orientation with {4 0 0}A parallel to ribbon plane, whereas the
7M martensite develops the preferred orientation with {2 0 −20}7M, {2 0 20}7M, and {0 4 0}7M

crystallographic planes parallel to the ribbon plane. The preferred orientation distribution for
austenite and 7M martensite was well correlated and the preferred orientation in ribbons can
be inherited after the martensitic transformation. Such texture inheritance is attributed to the
intrinsic orientation relationship between austenite and 7M martensite.

(3) Epitaxially grown thin films with nominal composition Ni50Mn30Ga20 and thickness of 1.5 µm
were prepared on MgO(1 0 0) substrate with a Cr buffer layer by DC magnetron sputtering.
Based on EBSD measurements, it was revealed that the coarse plates in the top layer of the film
are of the NM martensite, whereas the fine plates in the film interior are of the 7M martensite.
For both 7M and NM martensite, the plate-like microstructures are composed of two distinct kinds
of plate groups with low or high relative contrast. For 7M martensite, {2 0 −20}7M, {2 0 20}7M and
{0 4 0}7M are nearly parallel to the substrate surface, whereas for the NM martensite, {0 0 4}NM and
{2 2 0}NM tends to be parallel to the substrate surface. EBSD measurements show that one plate
group of 7M martensite consists of four twin-related variants. In the low relative contrast zone,
the majority of variants are in Type-I twin relation, whereas for the high relative contrast zone, the
majority of variants are in Type-II twin relation. The selection of twinning type is a consequence
of external constraint from the rigid substrate and the twinning type with less shear deformation
in the film normal direction is favored. For NM martensite, one plate group of NM martensite
also consists of 4 martensite plates, but each plate is composed of two twin related variants with
one thicker than the other. The in-plate major and minor variants are distributed symmetrically
to the inter-plate interfaces in low relative contrast zones, but asymmetrically distributed in high
relative contrast zones. The difference in the orientation combination of the in-plate variants
accounts for the topological differences observed for the two relative contrast zones.

The presented investigations are expected to provide some fundamental information for the
microstructure modification and functional performance control of ferromagnetic shape memory alloys.
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