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Abstract: Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil
engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components
is of considerable significance for ensuring the integrity and safety of the whole structures. With the
development of high-resolution measurement technologies, mode-shape-based crack identification
in such laminated beam components has become an active research focus. Despite its sensitivity to
cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes
a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy
of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced
polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying
cracks in Timoshenko beams with general boundary conditions; and its applicability is validated
by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are
precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and
experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating
the presence and location of cracks in these beams under noisy environments. This proposed
method holds promise for developing crack identification systems for carbon fiber reinforced
polymer laminates.

Keywords: carbon fiber reinforced polymer laminated beam; crack identification; mode shape;
Teager–Kaiser energy; multi-resolution modal Teager–Kaiser energy; scanning laser vibrometer

1. Introduction

Carbon fiber reinforced polymer (CFRP) laminates are increasingly utilized in the aerospace
and civil engineering fields for their low weight, high strength, and high stiffness [1–3]. During
the long-term operation of CFRP laminated beam components, such as aircraft wings and wind
turbine blades, cracks can occur on their surfaces, jeopardizing the integrity and safety of the whole
structures [4–6]. Thus, identifying cracks in CFRP laminated beam is of great significance [7–12].

Commonly, physical properties such as strain [13,14], electrical resistance [15,16], and eddy
current [17,18], can be utilized to identify cracks in CFRP laminates; changes in those physical
properties can designate the presence and location of cracks. In contrast, dynamic characters, such as
mode shapes, have lower capability to identify cracks in CFRP laminated beams because they are
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less sensitive to cracks than the aforementioned physical properties [19,20]. To tackle this deficiency,
dynamic quantities such as modal curvature and modal strain energy were developed from the mode
shape. Pandey et al. [21] proposed the modal curvature, which is the second-order derivative of
a mode shape, to represent the crack-caused loss in bending stiffness, whereby cracks in beams can
be identified by the change in the modal curvature. The modal curvature method has been further
developed by many researchers in the last two decades [22–34]. The modal strain energy method is
another method developed from mode shapes. Cracks can cause changes in modal strain energy, and in
turn they can be identified by such changes [32,35–39]; recently, modern signal processing methods
such as wavelet transform (WT) [40–49] and fractal dimension (FD) [50–54] have been applied to mode
shapes for crack identification by characterizing the crack-caused singularities therein. Recent attention
to crack identification methods relying on mode shape has focused on the robustness of the methods
to environmental noise interference [30,33]. To precisely localize cracks, very small spatial sampling
intervals matching the width of a crack are required, whereby noise components inevitably involved
in densely-sampled mode shapes can cause intense noise interference, masking actual crack-caused
changes [55,56]. Hence, developing noise-robust methods relying on mode shapes with the aim of
precisely identifying cracks in CFRP laminated beams is the current research interest.

With this concern, this study proposes a physical concept modal Teager–Kaiser energy (M-TKE)
derived from the mode shape. The M-TKE is the point-wise energy of a mode shape calculated by the
Teager–Kaiser energy (TKE) operator, which features high sensitivity to structural damage. To enhance
the noise robustness of the M-TKE, it is transformed to multi-resolution modal Teager–Kaiser energy
(MRM-TKE) by the WT-based multi-resolution analysis (MRA) [57,58].

The rest of this paper is organized as follows. Section 2 introduces the fundamental theories of
the MRA and the TKE operator. Section 3 proposes the M-TKE based on the TKE operator, and further
develops it to the MRM-TKE by the MRA. Section 4 numerically proves the concept of the MRM-TKE
to identify cracks in beams. Section 5 experimentally validates the applicability of the MRM-TKE to
identification of cracks in CFRP laminated beams, whose modes shapes are precisely acquired via
non-contact measurement using a scanning laser vibrometer (SLV). Section 6 presents the conclusions
of this study.

2. Fundamental Theories

2.1. MRA

By the theory of the MRA [49,58], an orthonormal, compactly supported wavelet basis of space
L2(R) of measureable, square integral functions is formed by dilating and translating a mother wavelet
function ψ(x):

ψj,k(x) = 2−j/2ψ(2−jx− k); j, k ∈ Z, (1)

where R and Z denote sets of real and integer numbers, respectively. ψ(x) satisfies the following
two-scale equation:

ψ(x) =
√

2
M−1

∑
k=0

gkφ(2x− k), (2)

where φ(x) is a scaling function that is dilated and translated as

φj,k(x) = 2−j/2φ(2−jx− k); j, k ∈ Z. (3)

and φ(x) satisfies the following two-scale equation:

φ(x) =
√

2
M−1

∑
k=0

hkφ(2x− k), (4)
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where {gk}k=0,...,M−1 and {hk}k=0,...,M−1 denote quadrature mirror filters and have the relationship:

gk = (−1)khM−k−1; k = 0, ..., M− 1. (5)

Based on the orthonormal base expressed in Equation (1), the space L2(R) can be spanned by

L2(R) = span(ψj,k : j, k ∈ Z). (6)

Equation (6) implies that the analysis and synthesis of an arbitrary signal f (x) in L2(R) can be,
respectively, realized by

wj,k =
∫ ∞

−∞
f (x)ψj,k(x)dx, (7a)

f (x) = ∑
j

∑
k

wj,kψj,k(x). (7b)

Such wavelets provide a framework for the MRA as stated in the following.
Derived from Equation (7), Wj = span(ψj,k : j, k ∈ Z) forms a subspace of L2(R), leading to

f j = ∑
k

wj,kψj,k(x), (8a)

f (x) = ∑
j

f j. (8b)

For all j, Wj are orthogonal to each other, from which L2(R) is expressed as

L2(R) = · · · ⊕W2 ⊕W1 ⊕W0 ⊕W−1 ⊕W−2 ⊕ · · ·, (9)

where ⊕ denotes summing vector spaces. On the other hand, Vj = span(ψi,k : i, k ∈ Z, i > j) forms
a subspace of L2(R), which leads to Vj−1 = Vj ⊕Wj. Thus, f j in Vj can be represented as

f j = ∑
i>j

∑
k

wi,kψi,k(x) + ∑
k

wj,kψj,k(x). (10)

Substituting Vj into Equation (9) results in

L2(R) = Vj ⊕Wj ⊕ · · · ⊕W1 ⊕W0 ⊕W−1 ⊕W−2 ⊕ · · ·. (11)

Thus, a sequence of closed subspace V nested as

· ·· ⊂ Vj+1 ⊂ Vj ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · ·, (12)

forms the MRA of L2(R).
Based on the above definitions, a signal f (x) in the subspace V0 with the finest resolution can be

decomposed into the first to the N-th level:

f (x) = AN(x) +
N

∑
j=1

Dj(x), (13)

where AN(x) is the approximation of f (x) at level N in VN , and Dj(x) is the detail of f (x) at level j in
Wj. Equation (13) can be implemented by the discrete wavelet transform (DWT) [43]; the fundamental
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discrete wavelet, the Haar wavelet, is utilized for the MRA in this study. The scaling function φ(x) and
mother wavelet function ψ(x) of the Haar wavelet are:

φ(x) =

{
1 0 ≤ x < 1,
0 otherwise,

(14a)

ψ(x) =


1 0 ≤ x < 1/2,
−1 1/2 ≤ x ≤ 1,
0 otherwise,

(14b)

whose quadrature mirror filters are

{hk}k=0,1 =
1√
2
[1, 1], (15a)

{gk}k=0,1 =
1√
2
[1,−1]. (15b)

2.2. TKE Operator

The TKE operator was proposed by Kaiser to measure the point-wise energy of a signal [57].
Let Y[p] be a discretized cosine signal:

Y[p] = U cos(Ωp + β), (16)

where U is the amplitude, p is the sampling number, β is the initial phase, and Ω is the frequency
specified by Ω = 2π f / fs, with f being the analog frequency and fs the sampling frequency. The signal
values at three successive points are:

Y[p− 1] = U cos(Ω(p− 1) + β), Y[p] = U cos(Ωp + β), Y[p + 1] = U cos(Ω(p + 1) + β). (17)

According to the trigonometric identities, the signal values in Equation (17) have the following
relationship:

Y[p]2 −Y[p− 1]Y[p + 1] = U2 sin2(Ω). (18)

Kaiser found that the left side of Equation (18) can be used to measure the point-wise energy of
an oscillating signal, and this nonlinear operator is defined as the TKE operator, denoted Ψ(·) [57]:

E[p] = Ψ(Y[p]) = Y2[p]−Y[p− 1]Y[p + 1]; (19)

accordingly, the E[p] is called the TKE hereafter in this study.
The TKE operator is sensitive to change in the local frequency and amplitude of

a signal [57]. To illustrate this property, consider a frequency-modulated (FM) signal (Figure 1a) and
an amplitude-modulated (AM) signal y(x) (Figure 1b), whose Teager–Kaiser energies are calculated
by Equation (19) and shown in Figure 1c,d, respectively. It can be seen that Teager–Kaiser energy can
sensitively reflect changes in local frequency (Figure 1c) and amplitude (Figure 1d) in signals.
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Figure 1. FM (a) and AM (b) signals; and their respective TKE (c,d).

3. MRM-TKE for Identifying Cracks in Beams under Noisy Environments

This section proposes the M-TKE, from which the MRM-TKE, with stronger robustness to noise
interference, is further developed by the WT-based MRA.

3.1. M-TKE

A mode shape of a Timoshenko beam can be expressed as [59]:

W(x) = C1 cosh α1x + C2sinhα1x + C3 cos α2x + C4 sin α2x, (20)

where C1, C2, C3, and C4 are unknowns to be solved. α1 and α2 are parameters related to the natural
frequency (the higher the natural frequency is, the lager are α1 and α2). For a high-order mode shape,
Equation (20) can be further written as [60,61]:

W(x) = C1e−α1x + C2e−α1(L−x) + C3 cos α2x + C4 sin α2x, (21)

where L is the beam length. W(x) in Equation (21) can be divided into two terms, the decaying term
WD(x) and the steady-state term WS(x):

WD(x) = C1e−α1x + C2e−α1(L−x), (22a)

WS(x) = C3 cos α2x + C4 sin α2x. (22b)
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The value of the decaying term WD(x) exponentially decays from the boundaries at x = 0 and
x = L. The distance from boundaries to the locations where WD(x) approximates zero is defined
as the boundary-effect interval, denoted as d. As per Equation (22a), the higher the mode order is,
the larger is α1, and then the smaller are the boundary-effect intervals. Outside the boundary-effect
intervals, WS(x) dominates the high-order mode shape component, WD(x) contributes little to it.
Hence, such high-order mode shape components can be approximately represented as WS(x):

W(x) ≈WS(x) = C cos(α2x + β); x ∈ [d, L− d]. (23)

where C =
√

C3
2 + C4

2, tan β = −C4
C3

. The discrete form of W(x) in Equation (23) can be written as:

W[x] ≈ C cos(Ωx + β); x ∈ [d, L− d]. (24)

where Ω = α2/ fs with fs being the spatial sampling frequency. The TKE of the mode shape W[x],
namely the M-TKE, can be calculated by Equation (17):

E(W[x]) = Ψ(W[x]) = W[x]2 −W[x− 1]W[x + 1]; x ∈ [d, L− d]. (25)

By Equation (18), E(W[x]) approximates a constant of C2 sin2 Ω:

E(W[x]) ≈ Ψ(C cos(Ωx + β)) = C2 sin2 Ω; x ∈ [d, L− d]. (26)

Owing to the sensitivity of the TKE operator to changes in the local frequency and amplitude of
signals (shown in Figure 1), the M-TKE can be sensitive to slight changes in C and Ω caused by cracks,
whereby cracks can be clearly identified by such changes.

3.2. MRM-TKE

Noise components are inevitably involved in measured mode shapes, and Kaiser has proved that
the TKE operator is very prone to noise interference [57]; therefore, the vulnerability of the M-TKE
to noise interference can hamper its applicability in identifying cracks under noisy environments.
To overcome this deficiency, the M-TKE is ameliorated by the WT-based MRA, whereby the MRM-TKE
has stronger noise robustness. In accordance with the MRA introduced in Section 2, W[x] can be
decomposed into the N-th approximation AN [x] and the first to j-th details Dj[x] (j = 1, ..., N) by
Equation (13), and the M-TKE can be expressed as:

E(W[x]) = Ψ(W[x]) = Ψ(AN [x]) +
N

∑
j=1

Dj[x]); x ∈ [d, L− d]. (27)

By discarding the details Dj[x] up to a satisficing level N that contain noise components and
substituting the retained approximation AN [x] that contains damage features for W[x] in Equation (25),
the MRM-TKE is defined, denoted as EN(W[x]):

EN(W[x]) = E(AN [x]) = AN [x]
2 − AN [x− 1]AN [x + 1]; x ∈ [d, L− d]. (28)

In contrast to the M-TKE with one-fold resolution, the resolution of the MRM-TKE is adjustable
by the level N, whereby noise components in the M-TKE can be eliminated at a satisficing level in the
MRM-TKE; synchronously, crack features in the MRM-TKE can be retained for crack identification.
It is worth mentioning that the MRM-TKE method is a non-baseline method, requiring no structural
baseline information such as temperature, materials, geometry, and boundary conditions.
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4. Proof of Concept

Without loss of generality of the MRM-TKE method, the concept of the MRM-TKE to identify
cracks is proven on beams of general materials and boundary conditions with emphasis on its
noise robustness.

4.1. Free Vibration of Timoshenko Beams with Cracks

Cracks in a beam are modeled as linear rotational springs with the bending constant of each crack
determined by the fracture mechanics principle [62,63]:

K = 1/c, c = (5.346H/EI)J(ξ), (29)

where E is the Young’s modulus, I is the moment of inertia, K is the bending constant of the spring,
H is the beam thickness, ξ = a/H is the crack depth ratio with a the crack depth, and J(ξ) is the
dimensionless local compliance function:

J(ξ) = 1.8624(ξ)2 − 3.95(ξ)3 + 16.375(ξ)4 − 37.226(ξ)5

+ 76.81(ξ)6 − 126.9(ξ)7 + 172(ξ)8 − 143.97(ξ)9 + 66.56(ξ)10.
(30)

As illustrated in Figure 2, the beam is divided into n + 1 segments by n cracks with each adjacent
pair of segments being linked by a crack.
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Figure 2. Analytical model of n-crack beam with n being 3.

According to the theory of Timoshenko beams, governing equations for the flexural vibration of
the i-th beam segment are [59]:

EI
∂2 ϕi(x, t)

∂x2 + kGA
(

∂wi(x, t)
∂x

− ϕi(x, t)
)
− ρI

∂2 ϕi(x, t)
∂t2 = 0, (31a)

kG
(

∂2wi(x, t)
∂x2 − ∂ϕ(xi, t)

∂x

)
− ρ

∂2w(xi, t)
∂t2 = 0, (31b)

where wi(x, t) is the transverse deflection; ϕi(x, t) is the slope of deflection due to the bending; and
E, G, I, ρ, A, and k are the Young’s modulus, shear modulus, moment of inertia, material density,
cross-sectional area, and the shear coefficient for the cross-section, respectively.

Solutions to Equation (31) consist of spatial and temporal parts:

wi(x, t) = LWi(x)ejωt, (32a)

ϕi(x, t) = θi(x)ejωt, (32b)

where ω is the angular frequency of vibration, j is the imaginary unit, and Wi and θi are the amplitudes
of transverse deflection and rotational angle of the i-th beam segment, respectively. Substituting
Equation (32) into Equation (31), with the coordinate variables ζ = x

L and ς = t√
L

, geometric and
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material variables ϑ = E
kG , r = 1

AL2 , s = ϑr, τ = ρA
EI L4ω2, a = τ(r+s)

2 and b = τ(τrs− 1), yields the
equations [64]:

d4

dζ4 Wi(ζ) + 2a
d2

dζ2 Wi(ζ) + bWi(ζ) = 0, (33a)

d4

dζ4 θi(ζ) + 2a
d2

dζ2 θi(ζ) + bθi(ζ) = 0. (33b)

Let γ1 = (
√

a2 − b− a)
1/2

, γ2 = (
√

a2 − b + a)
1/2

, m1 =
τs+γ2

1
γ1

, m2 =
τs−γ2

2
γ2

, the solutions of Wi
and θi can be expressed as [65–67]:

Wi(ζ) = Ci1 cosh γ1ζi + Ci2sinhγ1ζi + Ci3 cos γ2ζi + Ci4 sin γ2ζi, (34a)

θi(ζ) = Ci1m1sinhγ1ζi + Ci2m1 cosh γ1ζi + Ci3m2 sin γ2ζi − Ci4m2 cos γ2ζi. (34b)

Compatible conditions of displacement, slope, moment, and shear force in the crack locations ζi
can be expressed as [67]:

Wi = Wi+1|ζ=ζi
, W ′i −W ′i+1 = − EI

KL
θ′i

∣∣∣∣
ζ=ζi

, θ′i = θ′i+1
∣∣
ζ=ζi

, W ′i − θi = W ′i+1 − θi+1
∣∣
ζ=ζi

. (35)

Without loss of generality, boundaries at each end of the beam are simulated by a pair of linear
springs, by which the boundary conditions at each end can be expressed as [68]:

WLKT − AGk(W ′ − θ) = 0, (36a)

θLKS − EIθ′ = 0, (36b)

where KT and KS are constants of springs providing translational and rotational restraints, respectively.
Equation (36) can be further written as [68]:

W = ηT(W ′ − θ), (37a)

θ = ηSθ′, (37b)

where parameters ηT = AGk
LKT

and ηS = EI
LKS

. According to Equation (37), four common boundary
conditions can be represented: for a simply supported (SS) end, ηT = 0 and ηS = ∞ produce boundary
conditions with W = 0 and θ′ = 0; for a free (F) end, ηT = ∞ and ηS = ∞ produce boundary
conditions with W ′ − θ = 0 and θ′ = 0; for a free-shear (FS) end, ηT = ∞ and ηS = 0 produce
boundary conditions with W ′ − θ = 0 and θ = 0; and for a clamped (C) end, ηT = 0 and ηS = 0
produce boundary conditions with W = 0 and θ = 0.

Substituting Equation (34) into the four equations of boundary conditions at the two ends and
4n equations of compatible conditions at the crack locations, a group of simultaneous equations with
respect to ω can be obtained:

D(ω)C = 0, (38)

where C is a column vector of Ci1, Ci2, Ci3 and Ci4 (i = 1, 2, · · · , n + 1), and D is a 4(n + 1)× 4(n + 1)
matrix. To achieve nontrivial solutions, the determinant of D, D(ω), is set to zero to produce the
frequency equation:

D(ω) = 0. (39)

Solving Equation (39) produces a sequence of natural frequencies ωm [69]; provided with ωm,
the corresponding coefficient vector Cm can be derived from Equation (38); substituting ωm and Cm

into Equation (34a), the m-th mode shape can be obtained.
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4.2. Crack Identification

A general beam with the dimensions of length 500 mm, width 30 mm, and depth 10 mm is
taken as a specimen. Three cracks are introduced at locations x = 125 mm (ζ1 = 0.25), 275 mm
(ζ2 = 0.55), and 375 mm (ζ3 = 0.75), with depths of 2.5 mm (ξ1 = 0.25), 2 mm (ξ2 = 0.2),
and 3 mm (ξ3 = 0.3), respectively. Three scenarios associated with three common types of boundary
conditions are considered: SS-SS, C-F, and C-SF boundary conditions for the sixth, seventh, and eighth
modes, respectively.

The sixth, seventh and eighth sampled mode shapes W[ζ] associated with the SS-SS, C-F, and C-FS
boundary conditions (Figure 3) are produced following the procedure given in Section 4.1 with
501 uniformly distributed sampling points. The corresponding M-TKE E(W[ζ]) is obtained by
Equation (25), and shown in Figure 4 with values in boundary-effect interval (d = 0.1) vanished.
It can be seen in Figure 4a,b that three peaks in E(W[ζ]) evidently indicate the presence of three
cracks and clearly pinpoint the cracks at ζ = 0.25, 0.55, and 0.75, which correspond to the actual crack
locations ζ1 = 0.25, ζ2 = 0.55, and ζ3 = 0.75; in Figure 4c, only two peaks appear at ζ1 = 0.25 and
ζ3 = 0.75 because the location of the second crack at ζ2 = 0.55 is close to one of the nodes, and it is
hard to identify such cracks because vibration near a node is always of close-to-zero amplitude [27,70].
Thus, under a noise-free environment, the M-TKE is capable of identifying cracks in beams. For actually
measured mode shapes, however, noise components are inevitably incorporated. To simulate a normal
noisy environment, white Gaussian noise is added to the W[ζ] to produce noisy mode shapes of 60 dB
signal-to-noise ratio (SNR) [33]; the lower the SNR is, the noisier is the mode shape. The corresponding
noise-contaminated E(W[ζ]) is obtained and shown in Figure 5, where intense noise interference
considerably masks crack-caused peaks in the E(W[ζ]). Thus, susceptibility to noise severely hampers
the capability of the M-TKE to identify cracks in beams under noisy environments.
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To eliminate noise interference, the second-level (N = 2) approximations A2[ζ] are extracted from
the mode shapes W[ζ] by Equation (13), as shown in Figure 6; then the MRM-TKE E2(W[ζ]) is obtained
by Equation (28), as shown in Figure 7 with values in the boundary-effect interval (d = 0.1) vanished.
It can be seen from Figure 7 that noise interference is basically eliminated and crack-caused peaks
can be clearly identified. In Figure 7a,b, three damage-induced peaks stand out obviously and clearly
pinpoint the cracks at ζ = 0.25, 0.55, and 0.75, which correspond to the actual crack locations ζ1 = 0.25,
ζ2 = 0.55, and ζ3 = 0.75; in Figure 7c only two peaks appear at ζ1 = 0.25 and ζ3 = 0.75 because of the
node effect mentioned before. Thus, demonstrably superior to the M-TKE, the MRM-TKE features
much stronger robustness to noise interference and is capable of identifying cracks in beams under
noisy environments.
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4.3. Noise Tolerance

To demonstrate the noise tolerance of the MRM-TKE, a broader range of noise levels with
decreasing SNRs of 55 dB, 50 dB, and 45 dB are considered; the corresponding results are shown in
Figures 8–10, respectively. At the noise level of 55 dB SNR, the MRM-TKE appears slightly noisier than
the results for the 60 dB SNR (Figure 7), and the crack-caused peaks can still clearly identify the three
cracks in the SS-SS beam and the C-F beam (Figure 8a,b), and the first and the third cracks in the C-FS
beam (Figure 8c); at the noise level of 50 dB SNR, noise interference becomes more intense, but peaks
can be still identified (Figure 9) by increasing the level of the approximation to N = 3; at the noise
level of 45 dB SNR, noise interference becomes severe, and peaks are just distinguishable (Figure 10)
when the level of the approximation is further increased to N = 4. Thus, noise level of 45 dB SNR can
be regarded as the limit of the noise tolerance of the MRM-TKE for the given scenarios.
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in Figure 11. It can be seen in Figure 11 that similar to the results of the M-TKE (Figure 5), damage
features can be barely identified due to intense noise interference. Thus, MRM-TKE features stronger
noise robustness than the commonly utilized modal curvature for crack identification in beams.
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5. Experimental Validation

The applicability of the MRM-TKE to the identification of cracks is experimentally validated on
a CFRP laminated beam, whose modes shapes are acquired via non-contact measurement using a SLV.

5.1. Setup

A CFRP laminated beam of length 500 mm, width 10 mm, and depth 1.5 mm, consisting of five
plies each 0.3 mm in thickness, is taken as an experimental specimen. The dimensions of the beam are
shown in Figure 12 in millimeters. As shown in Figure 12, the beam is clamped at the left end with
the fixing area spanning 10 mm from the left edge. Four damage scenarios, Scenarios I, II, III and IV,
are considered. First, three through-width cracks are manufactured in the first two plies on the surface,
about 0.5 mm (ξ = 1/3) in depth between the first and the second plies. In Scenario I, the fourth mode
is considered; in Scenario II, the fifth mode is considered. Then, all three cracks are increased to about
0.9 mm (ξ = 0.6) in depth through the third ply. In Scenario III, the fourth mode is considered and,
in Scenario IV, the fifth mode is considered. The first, second, and third cracks, indicated by dashed
lines in Figure 12, occur at locations 113 mm, 221 mm, and 365 mm from the left edge, respectively.
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Figure 12. Dimensions in millimeters of cracked beam with shaker and measurement points.

A vibration shaker (4809, B&K, Nærum, Denmark), attached to the cracked side of the beam,
15 mm from its left edge, acts as an actuator to excite the beam. When the beam vibrates under
harmonic excitation at the fourth natural frequency of 241.79 Hz, the SLV (PSV-400, Polytec, Waldbronn,
Germany) is used as a sensor to scan the intact side of the beam to acquire the operating deflection
shape (ODS), that can be regarded as the fourth mode shape for this lightly-damped beam [71].
The SLV scans over 499 measurement points uniformly distributed on the intact surface, 10 mm
through 496 mm from the left edge; the dimensionless locations for the first, second, and third cracks
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in the scanning length are ζ1 = 0.212, ζ2 = 0.434, and ζ3 = 0.730, respectively. Figure 13 shows the
experimental setup including the SLV and the shaker along with a zoomed-in view of the crack in the
CFRP laminated beam.
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Figure 13. Experimental setup.

5.2. Experimental Results

In Scenario I, the fourth mode shape W[ζ] is shown in Figure 14a, from which the M-TKE E(W[ζ])

is obtained by Equation (25) and is shown in Figure 14b. In Figure 14b, damage features of E(W[ζ])

can be barely identified due to intense noise interference. The second-level (N = 2) approximation
AN [ζ] is obtained by Equation (13), and is shown in Figure 15a, from which the MRM-TKE EN(W[ζ])

is obtained by Equation (28) and is shown in Figure 15b, where three crack-caused peaks stand out
obviously, clearly pinpointing three cracks at about ζ1 = 0.21, ζ2 = 0.435, and ζ3 = 0.73, agreeing well
with the actual locations of the first, second, and third cracks.
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The results of the experiment validate the contention that the M-TKE lacks noise robustness,
whereas the MRM-TKE is robust to noise interference, capable of designating the presence and location
of cracks in CFRP laminated beams under noisy environments. Modal curvature for Scenario I is
shown in Figure 16 for comparison. It can be seen in Figure 16 that, similar to the analytical results in
Figure 11, damage features can be barely identified due to intense noise interference.
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For Scenarios II, the fifth mode shape is shown in Figure 17a, and the corresponding MRM-TKE
E2(W) is shown in Figure 17b. In Figure 17b, only two peaks appear at ζ1 = 0.21 and ζ2 = 0.435,
because the third crack at ζ3 = 0.73 is close to one of the nodes. The reason has been given in
Section 4.2 that vibration close to a node is always of close-to-zero amplitude. For Scenarios III
and IV with deeper cracks, crack-caused peaks are of larger amplitudes and more evident, which is
more beneficial to crack identification. For Scenario III, three peaks clearly identify all three cracks
(Figure 18a); and, for Scenario IV, only the first and third cracks can be identified (Figure 18b).
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It can be seen from the MRM-TKE for Scenarios I to IV that deeper cracks are more evident to
be identified by the MRM-TKE because the peak of the MRM-TKE increases with crack depth; cracks
close to nodes are hard to identify because of the node effect. In addition, when smaller depths of
cracks, e.g., 0.25 mm, are considered, the peaks in the MRM-TKE become less prominent.

6. Conclusions

To identify cracks in CFRP laminated beams under noisy environments, this study proposes
a physical concept M-TKE derived from a mode shape, that is sensitive to crack-caused changes in
the local frequency and amplitude. To enhance the noise robustness of the M-TKE, it is transformed
to the MRM-TKE by the WT-based MRA. The efficacy of this concept is analytically demonstrated
by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability
is validated in a CFRP laminated beam, whose mode shapes are precisely acquired via non-contact
measurement using a SLV. The analytical and experimental results show that the MRM-TKE is capable
of designating the presence and location of cracks in CFRP laminated beams under noisy environments.
Some conclusions are drawn below:

1. Cracks can cause rapid changes in the M-TKE because the TKE operator is sensitive to slight
changes in the local frequency and amplitude of a mode shape. However, the M-TKE is
very prone to noise interference and therefore lacks the robustness to identify cracks under
noise environments.

2. To enhance the noise robustness of the M-TKE, the MRM-TKE is developed from the M-TKE with
the WT-based MRA, whereby noise components in the M-TKE can be eliminated at a satisficing
level in the MRM-TKE; synchronously, damage-caused change in the M-TKE can be retained in
the MRM-TKE. Thus, the MRM-TKE is capable of identifying cracks in CFRP laminated beams
under noisy environments.

3. The MRM-TKE method is a non-baseline method, requiring no structural baseline information
such as temperature, materials, geometry, and boundary conditions. The only requirement for
the MRM-TKE method is that high-order modes are needed for small boundary-effect intervals.
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