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Abstract: A novel composite photocatalyst was synthesized by loading 5 wt % of platinum cobalt
alloy on 3C-SiC nanowires and powder (Pt-Co-SiC) respectively via a simple polyol reduction method.
Pt-Co-SiC were comprehensively characterized by SEM, HRTEM, XRD, PL, and XPS. The results
indicated that Pt-Co nanoparticles in the size of 2–5 nm were dispersed homogeneously in the SiC
nanowires and powders. The photocurrent response of the Pt-Co-SiC increased remarkably with
increasing Pt content and the best performance was observed with the sample of Pt3Co-SiC. Especially,
the Pt3Co-SiC nanowires photoelectrode exhibited improved cathodic current density (0.14 mA·cm−2)
under the simulated sunlight, which was about 10 times higher than the Pt3Co-SiC powders. The H2

production rate for the Pt3Co-SiC nanowires is 30 times more than that of the pure SiC nanowires.
The enhancement of the Pt-Co-SiC properties could be ascribed to the fact that more visible light was
harvested and the photogenerated electron and the interfacial electron transfered more easily.
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1. Introduction

Photocatalytic and photoelectrochemical hydrogen evolution from water using
semiconductor-based materials has attracted considerable attention since Fujishima’s discovery
of photoelectrocatalytic H2 evolution over TiO2 in 1972 [1–7]. In recent years, cubic silicon
carbide (3C-SiC) has been widely investigated as a promising environment-friendly semiconductor
photocatalyst for hydrogen evolution from water because of its high chemical stability, strong
thermostability, and appropriate band gap (2.4 eV for cubic SiC) [8–13]. However, 3C-SiC suffers
from a similar problem as other semiconductors, that is, rapid recombination of photogenerated
electron-hole pairs as well as low surface activation ability [14,15]. To overcome the limitations,
various metals have been adopted as co-catalysts supported on the surface of the semiconductor,
serving as highly active sites for water decomposition for the improvement of the charge separation of
semiconductor [16,17].

Among the metals, low-cost non-noble metal co-catalysts including metal sulfides [18], transition
metals [19], and transition metal-based complexes [20] have been investigated as alternative co-catalysts
for water splitting besides noble metals [21]. Although some progress has been made in recent years,
the non-noble metal co-catalysts still exhibit lower catalytic properties or require special catalytic
environments than noble metals. Therefore, the noble metals, especially Pt, still play an irreplaceable
role in the photocatalytic hydrogen evolution reaction, mainly because they can increase the charge
separation and transfer, as well as decrease activation energy [22,23]. However, the prohibitive cost
and scarcity of Pt greatly impedes its practical application. Toward this end, Pt alloys with different
transition metals (cobalt, nickel, and iron) have been extensively explored. Compared with pure
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Pt, Pt-based alloys imply an opportunity to reduce material costs and meanwhile maintain higher
photocatalytic activity [24]. Among the Pt-based alloys, platinum-cobalt (Nanowires) alloy is especially
popular because of its small size, excellent self-stability, and high catalytic activity [25–27].

Based on the above mentioned facts, the adoption of Nanowires to modify SiC is expected, with
the aim of effectively improving the separation efficiency of the electron-hole pairs and catalytic activity.
In this study, Pt-Co-SiC is synthesized via an ethylene glycol reduction method. The advantages of the
ethylene glycol reduction method are the synthesis of nanoparticles with good dispersion and uniform
morphology. The photoelectrocatalytic activity was measured on the electrochemical workstation
under visible light irradiation. Photocatalytic hydrogen production experiments were carried out in
an air-free, closed gas circulation system whose reaction cell was made of quartz. Based on this, the
possible catalytic mechanisms for the improved photocatalytic performance are proposed.

2. Results and Discussion

2.1. Characterization of SiC, Modified with the Pt-Co Alloy

The XRD patterns of the pristine and modified SiC nanowires are shown in Figure 1. The major
peaks at 2θ = 35.70◦, 60.10◦, and 71.90◦ can be indexed to the (111), (220), and (311) reflections of cubic
SiC (PDF # 29-1129). The peaks at 2θ of 39.7◦, 46.3◦, 67.5◦, and 81.2◦ of the catalyst agree with the
peaks of (111), (200), (220), and (311) of Pt (PDF # 04-0802), respectively. The diffraction peaks at 44.2◦

and 51.5◦, which matche the reflection planes of (111) and (200), can be indexed to Co (PDF # 15-0806).
Two distinct peaks at 2θ = 40.5◦ and 47.1◦ are found for the Pt3Co alloy. These fit the (111) and (200)
planes of the Pt3Co alloy well (PDF # 29-0499). The peaks at 2-theta of 41.2◦ and 47.71◦ match the
reflection planes of (111) and (200) in the PtCo alloy (PDF # 43-1358). These two diffraction peaks
of PtCo3 are in good agreement with those reported in the literature [28]. Obviously, the diffraction
peaks of PtCox present small movement towards a higher degree angle region when compared to pure
Pt, while it is still in a lower degree angle compared with Co. The PtCox lattices contract due to the
fact that diffraction peaks at higher degree angles stand for smaller crystal lattices. The contraction of
PtCox lattices may be attributed to the substitution of Pt atoms with smaller Co atoms [29]. As for the
pristine and modified SiC powders, the XRD patterns show the similar phenomenon as that of SiC
nanowires except for stacking faults (SF) existing in SiC powder (Figure 2).
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Figure 1. X-ray diffraction (XRD) and corresponding PDF standard patterns of the pure SiC nanowires,
and SiC nanowires loaded with Pt-Co alloy.
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Figure 2. XRD and corresponding PDF standard patterns of the pure SiC powders, and SiC powders
loaded with Pt-Co alloy.

The morphology and microstructure of the product are characterized using SEM and TEM
analysis. The images of Pt3Co-SiC nanowires (Figure 3a,b) and powders (Figure 3c,d) at low and high
magnification clearly disclosed that Pt3Co nanoparticles are homogeneously dispersed on the surface
of SiC nanowires and powders, respectively. To further confirm the existence of Pt3Co nanoparticles,
EDS is performed and the result is shown in Figure 3b. There are 5.11 wt % metal or metal alloy
loaded according to the EDS data, which corresponds well to our expectation. TEM images of the
Pt3Co-SiC nanowires are given in Figure 3e. In the inset of Figure 3e, the fast fourier transform (FFT)
of the nanowire shows lattice reflections of cubic SiC (111). Figure 3f reveals that the FFT of the
black nanoparticles corresponds to the lattice reflections of Pt3Co (111). The nanoparticles of 2–5 nm
in size are uniformly dispersed on the surface of the SiC powders (Figure 3g). The HRTEM image
of Pt3Co-SiC nanoparticles (Figure 3h) indicates two adjacent, well-defined lattice fringes with an
interplanar distance of 0.22 nm, which is further indexed to the (111) plane of Pt3Co.
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Figure 3. SEM images of Pt3Co-SiC nanowires (a,b); Pt3Co-SiC powders (c,d); TEM images of Pt3Co-SiC
nanowires (e,f); Pt3Co-SiC powders (g,h).
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2.2. The Photoelectrochemical Property of SiC, Modified with Pt-Co Alloy

To assess the photoresponse and stability of the SiC modified with Pt-Co alloy photoelectrodes,
current vs. time (I-t) curves are studied. The photoelectrode is investigated using switched light
in a Na2S/Na2SO3 solution, at a constant potential, at open circuit voltage (−0.6 V). As shown in
Figure 4, a sharp increase in photocurrent in the positive direction is observed upon illumination (light),
which reverts to the initial state as soon as the illumination is turned off (dark). The photoresponse
characteristics remain almost constant for several cycles of operation, indicating good photoreversibility
and the stability of the present photoelectrodes. The different molar ratio of Pt-Co alloys loaded on
SiC nanowires and powders are investigated. By comparison, the photogenerated current density
for Pt3Co-SiC is the highest. Especially, the photogenerated current density is 140 µA·cm−2 for the
Pt3Co-SiC nanowires under visible light irradiation (Figure 4a), which is about 10 times higher than
the Pt3Co-SiC powders (Figure 4b). Compared with the SiC powders, the SiC nanowires exhibit higher
photoelectrocatalytic activity. The main reasons for the better performance of the nanowires are as
follows. On the one hand, nanowires possess better dispersity than that of nanoparticles. On the other
hand, the nanoparticles have a high recombination of the photogenerated charges, according to the
photoluminescence (PL) spectra.
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Figure 4. Current density of the different SiC nanowires photoelectrode: Pt3Co-SiC (6), PtCo-SiC (5),
PtCo3-SiC (4), Pt-SiC (3), Co-SiC (2), SiC (1) at open circuit voltage in the dark and simulated solar light
(a); different SiC powders photoelectrode: Pt3Co-SiC (6), PtCo-SiC (5), PtCo3-SiC (4), Pt-SiC (3), Co-SiC
(2), SiC (1) at open circuit voltage in the dark and simulated solar light (b).

2.3. Water Splitting for Hydrogen

The photocatalytic activities for H2 production of the SiC nanowires and the SiC nanowires
modified with Pt-Co alloy were evaluated under visible light irradiation in aqueous suspensions with
Na2S and Na2SO3 as sacrificial agents (electron donors). As shown in Figure 5a, the photocatalytic
activities of the SiC nanowires with a different treatment were compared. It can be seen that the Pt-Co
alloy significantly affects the photocatalytic activity. The photocatalytic H2 production rates of the
treated samples from high to low are Pt3Co-SiC (151.3 µmol·h−1·g−1), PtCo-SiC (43.23 µmol·h−1·g−1),
PtCo3-SiC (21.6 µmol·h−1·g−1), Pt-SiC (8.70 µmol·h−1·g−1), Co-SiC (6.12 µmol·h−1·g−1), and pure
SiC (5.01 µmol·h−1·g−1). Stability tests for photocatalytic hydrogen production using the Pt3Co-SiC
nanowires were also investigated by carrying out recycling reactions three times under visible light
irradiation. No decrease in catalytic activity was observed in the recycling reactions, as shown in
Figure 5b. The H2 production rate for the Pt3Co-SiC nanowires exceeds by over 30 times the pure
SiC nanowires. These Pt3Co-SiC NWs also exhibit an enhanced activity for H2 production compared
with recent work, such as the modified SiC nanowires [30], RGO/SiC [31], and the boron-doped SiC
nanowires [32], SiC-PEDOT/PSS [33], as shown in Table 1. It confirms that noble metals-based alloys
can maintain higher photocatalytic activity.



Materials 2017, 10, 955 5 of 13

Materials 2017, 10, 955 5 of 12 

 

 
Figure 5. (a) Photocatalytic hydrogen evolution performance over: Pt3Co-SiC, PtCo-SiC, PtCo3-SiC, 
Pt-SiC, Co-SiC, SiC; (b) cyclic experiments of Pt3Co-SiC nanowire over water splitting. 

Table 1. Comparison of H2 production of semiconductor photocatalysts reported in the 
literature with our work. 

Material Morphology H2 Production (μmol·h−1·g−1) Year/Reference 
Modified SiC nanowires 2.68 2012/[30] 

RGO/SiC powder 42.4 2013/[31] 
SiC fibre 67.5 2015/[33] 

SiC-PEDOT/PSS fibre 100.7 2015/[33] 
B-SiC nanowires 108.4 2015/[32] 

Pt3Co-SiC nanowires 151.3 This work 

2.4. Photoresponse Mechanism 

Figure 6 shows the UV-Vis absorption spectra of the SiC, the Pt-SiC, the Pt3Co-SiC, the PtCo-SiC, 
the PtCo3-SiC, and the Co-SiC samples. The maximum absorption wavelength of the catalyst can be 
achieved by extending the tangent of the critical fall section of the UV-Vis diffuse spectrum to the 
horizontal axis [34]. The maximum absorption wavelength of SiC is estimated to be about 464 nm, 
which indicates that SiC responds to visible light. After the introduction of the Pt and Co species, the 
maximum absorption wavelengths of Pt-SiC, Pt3Co-SiC, PtCo-SiC, PtCo3-SiC, and Co-SiC are 
approximately 515, 585, 573, 561, and 488 nm, respectively. The band gap of SiC calculated based on 
the Kubelka-Munk method is 2.42 eV, which accorded well with reports. The band gap of Pt-SiC, 
Pt3Co-SiC, PtCo-SiC, PtCo3-SiC, and Co-SiC are 2.17, 2.05, 2.08, 2.10, and 2.26 eV, respectively. It is 
quite clear that the existence of Pt-Co alloy reinforces the absorption wavelength of catalysts in the 
visible light region. 

0 2 4 6 8 10 12 14 16 18

100

200

300

400

500

600

700

800

900

1000

 

3rd2nd1st

H
2 p

ro
du

ct
io

n 
/ 

m
ol

·g
-1

Photoirradiation time / h

 

Pt3Co-SiC nanowires (b)

0 1 2 3 4 5

0

200

400

600

800

1000

H
2 p

ro
du

ct
io

n 
/ m

m
ol

·g
-1

Photoirradiation time / h

 
 SiC            5.01 mol·g-1·h-1

 Co-SiC      6.12 mol·g-1·h-1

 Pt-SiC       8.70 mol·g-1·h-1

 PtCo3-SiC 21.6 mol·g-1·h-1

 PtCo-SiC  43.23 mol·g-1·h-1

 Pt3Co-SiC 151.3 mol·g-1·h-1

(a)nanowires
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Table 1. Comparison of H2 production of semiconductor photocatalysts reported in the literature with
our work.

Material Morphology H2 Production (µmol·h−1·g−1) Year/Reference

Modified SiC nanowires 2.68 2012/[30]
RGO/SiC powder 42.4 2013/[31]

SiC fibre 67.5 2015/[33]
SiC-PEDOT/PSS fibre 100.7 2015/[33]

B-SiC nanowires 108.4 2015/[32]
Pt3Co-SiC nanowires 151.3 This work

2.4. Photoresponse Mechanism

Figure 6 shows the UV-Vis absorption spectra of the SiC, the Pt-SiC, the Pt3Co-SiC, the PtCo-SiC,
the PtCo3-SiC, and the Co-SiC samples. The maximum absorption wavelength of the catalyst can be
achieved by extending the tangent of the critical fall section of the UV-Vis diffuse spectrum to the
horizontal axis [34]. The maximum absorption wavelength of SiC is estimated to be about 464 nm,
which indicates that SiC responds to visible light. After the introduction of the Pt and Co species,
the maximum absorption wavelengths of Pt-SiC, Pt3Co-SiC, PtCo-SiC, PtCo3-SiC, and Co-SiC are
approximately 515, 585, 573, 561, and 488 nm, respectively. The band gap of SiC calculated based
on the Kubelka-Munk method is 2.42 eV, which accorded well with reports. The band gap of Pt-SiC,
Pt3Co-SiC, PtCo-SiC, PtCo3-SiC, and Co-SiC are 2.17, 2.05, 2.08, 2.10, and 2.26 eV, respectively. It is
quite clear that the existence of Pt-Co alloy reinforces the absorption wavelength of catalysts in the
visible light region.
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Figure 6. UV-Vis diffusion reflectance spectra of Pt3Co-SiC (a); PtCo-SiC (b); PtCo3-SiC (c); Pt-SiC (d);
Co-SiC (e); SiC (f).

As for the enhanced photoresponse mechanism for the PtCo3-SiC electrode, the recombination and
transportation of the photogenerated charges were further investigated by the photoluminescence (PL)
spectra. Figure 7 shows the PL spectra of the SiC, the Pt-SiC, the Pt3Co-SiC, the PtCo-SiC, the PtCo3-SiC,
and the Co-SiC nanowire samples. PL measurement of the catalysts with an excitation wavelength at
340 nm was carried out at room temperature, in which the peak centred at 468 nm is ascribed to the
bandgap recombination of 3C-SiC [35]. After the introduction of the Pt and Co species, the PL intensity
of Co-SiC, Pt-SiC, PtCo3-SiC, PtCo-SiC, and Pt3Co-SiC decreases gradually, and the maximum decrease
in PL intensity at around 468 nm implies the highest separation rate of photogenerated electron-hole
pairs. It is quite clear that the existence of the Pt-Co alloy reinforces the separation of photogenerated
electron-hole pairs, and that Pt3Co-SiC is the best. The PL spectra of the SiC powder (red line) and
SiC nanowire (black line) are shown in Figure 8. It is obvious that the SiC nanowires exhibit a better
performance in the separation of electron-hole pairs.
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Figure 7. PL spectra of SiC (a); Co-SiC (b); Pt-SiC (c); PtCo3-SiC (d); PtCo-SiC (e); Pt3Co-SiC (f).
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Figure 8. PL spectra of SiC powder and SiC nanowire.

In addition, XPS is applied to obtain the surface elemental compositions and valence states of
the prepared samples. Figure 9 present the XPS spectra of the Pt3Co-SiC nanowires. The survey XPS
spectrum indicates that the main elements on the surface of the products are C, Si, and a small amount
of Pt and Co. Figure 9a shows the C 1s XPS spectrum of the Pt3Co-SiC nanowires, in which two XPS
peaks are observed at approximately 282.6 eV and 284.8 eV; the characteristic peaks of C–Si and C–C
bond, respectively. Figure 9b gives the spectrum of the Si–C and Si–O peaks in the samples, which are
located at 100.8 eV and 103.2 eV, respectively. Significantly, the peak centered at 98.3 eV, corresponding
to the Pt–Si bond [36], is presented in Figure 9b. The reason for the formation of the Pt–Si bond is that
reduced Pt ions deposit around the Si atoms and then grow into particles, rather than the displacement
reaction that always occurs at a high temperature [37]. Due to the formation of the Pt–Si bond, an
excellent electron transport channel is established. This effect accelerates the excited electrons transfer
from Si to the Pt–Co surface, which is beneficial for decreasing the electron-hole recombination [38].
Figure 9c presents the Pt 4f spectrum of the as-prepared sample; two peaks are located at 71.2 eV and
74.8 eV, which are ascribed to the Pt◦ 4f 7/2 and Pt◦ 4f 5/2 binding energies. The peaks at 72.4 eV and
75.6 eV are attributed to Pt (II) [39]. The Co 2p spectrum (Figure 9d) is characterized by two major
peaks of Co 2p3/2 and Co 2p1/2 at 780 eV and 797 eV. Moreover, satellites centered at 786 eV and
804 eV also confirm the formation of Co (II) [40]. The peak at 778 eV exhibits the presence of Co (0),
and its strength is weak because Co is a more oxophilic metal compared with Pt and is easier to show
the effect of oxidation [41]. The valence state of Co after the photocatalytic reaction is similar to before.
The actual composition of the expected PtxCoy alloys can be obtained by the XPS spectra. The actual
composition ratios of Pt3Co, PtCo and PtCo3 are Pt2.89Co, Pt0.94Co1, PtCo2.86, respectively.
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Figure 9. XPS spectra of the Pt3Co–SiC nanowires: (a) C 1s; (b) Si 2p; (c) Pt 4f; (d) Co 2p3/2.

Based on the above mentioned experimental results, a possible mechanism of the photocatalytic
activity enhancement of the alloys-SiC is proposed (as shown in Figure 10). Cubic SiC stimulated by
visible-light and electron-hole pairs is generated under visible light irradiation. Without any co-catalyst,
the Si atom acts as a reductive reaction site. When the nano-Pt3Co alloy is deposited on the SiC surface,
Pt3Co nanoparticles act as a reductive reaction site instead of Si. Through the particularly effective
Pt-Si bond, an excellent electron transport channel is established. Meanwhile the “synergistic effect” of
Pt and Co changes the Fermi energy level of the Pt3Co alloys, and then the electrons’ trapping ability
is enhanced for the Pt3Co alloy in comparison to Pt [42]. The specific band edge positions of the CB
and valance band (VB) of SiC can be estimated by the following equation [43].

ECB = x − Ee −1/2Eg (1)

where ECB is the CB edge potential. x is the electronegativity of the semiconductor, expressed as
the geometric mean of the absolute electronegativity of the constituent atoms, which is defined as
the arithmetic mean of the atomic electron affinity and the first ionization energy. Ee is the energy
of free electrons on the hydrogen scale ca., while 4.5 eV. Eg is the band gap of the semiconductor.
The calculated CB and VB of SiC are −0.24 and 2.18 eV. Moreover, in the Pt3Co-SiC system, the
photo-generated electrons in the CB of the SiC transfer to Pt3Co co-catalysts via contacting interfaces,
giving the conduction band electrons higher mobility and promoting the separation of the electron–hole
pairs. The holes in the VB of SiC are consumed by Na2S/Na2SO3 sacrificial regents. It can cut down
the recombination of the photogenerated electrons and holes. Subsequently, the electrons in Pt3Co
nanoparticles transfer to the reduction of H+ to H2. Therefore, the Pt3Co-SiC samples exhibit superior
activity for the hydrogen production.
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Figure 10. Schematic diagram of photocatalytic mechanism for H2 production over Pt3Co-SiC.

3. Experimental Section

3.1. Materials

Silica (SiO2 > 99%), tetraethyl orthosilicate (Si(OC2H5)4, TEOS), carbon black (C ≥ 99.5%),
chloroplatinic acid (H2PtCl6·6H2O), cobalt nitrate (Co(NO3)2·6H2O), hydrochloric acid (Hcl), and
hydrofluoric acid (HF) were provided by Sinopharm Chemical Reagent Beijing Co., Ltd. (SCRB)
(Beijing, China). Argon with a purity of 99.99% was supplied by Haipu Gas Co., Ltd. (Beijing, China).
Indium-Tin Oxide (ITO) conductive film glasses with a size of 1 cm × 1 cm were provided by Shenzhen
Jingweite Technology Co., Ltd. (Shenzhen, China).

3.2. Preparation of the SiC Nanowires and Powders

The SiC nanowires were prepared as follows: Silica and carbon black with the mass ratio of
Si:C = 1:1 were mixed. The powder that was put in a ceramic boat was placed at the hot zone of
a furnace. Then, the furnace was put under vacuum and argon was leaded into at a constant gas
flow rate of 50 sccm with a pressure of 1 atm. The furnace was heated to 1500 ◦C and held for 2 h.
It was cooled to 800 ◦C at a rate of 3 ◦C·min−1 in flowing argon and then cooled naturally to room
temperature in air. Finally, the nanowires were calcined at 700 ◦C for 3 h in the air to eliminate the
unreacted carbon and washed with 10% HF for 1 h to remove the residual silica [44].

SiC powders were prepared through the sol-gel method. The process was as follows: the sol
mixture was prepared using TEOS and carbon black, with the mass ratio of Si:C = 1:1 as the silicon
source and the carbon source, respectively. Distilled water and ethanol were used as solvents. TEOS,
ethanol, carbon black, and water were mixed under stirring and the solution pH was adjusted to 4.0
using HCl. The prepared sol was dried at 80 ◦C to obtain gel. The dry gel was put into a graphite
crucible and was heated in a furnace at 1500 ◦C for 4 h in flowing argon. It was cooled naturally to
room temperature in air and the powder was obtained. At last, the powder was dealt with in the same
way as that of the nanowires to eliminate the unreacted carbon and residual silica.

3.3. Synthesis of the Pt-Co-SiC Electrode

The synthesis procedure of SiC modified with the Pt-Co alloy was as follows: firstly, solution
A was prepared using 60 mL ethylene glycol and 15 mL deionized water with the pH value of 11.0
adjusted by NaOH. Then, H2PtCl6 and Co(NO3)2·6H2O with a Pt/Co molar ratio of 1:0, 3:1, 1:1, 1:3,
0:1 were dissolved in solution A and magnetically stirred for 10 min to form a homogeneous and light
green solution. Subsequently, 10 mg SiC nanowires or powders were put into the above solution and
stirred for 30 min at high speed and ultrasonication for 30 min to ensure SiC disperse homogeneously.
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The obtained solution was poured into a 100 mL Teflon-lined stainless steel autoclave and heated
to 200 ◦C for 10 h. Finally, the black precipitate was separated by centrifigation and washed using
deionized water, acetone, and alcohol several times and dried at 80 ◦C in vacuum.

The working electrodes were prepared by dropping Pt-Co-SiC catalysts onto ITO glass. During the
experiment, 1 mg of the catalysts were ultrasonically dispersed in 0.4 mL of 0.05 wt % of the
Nafion solution to form homogeneous suspension [45]. 0.02 mL of the above mentioned suspension
(containing 0.05 mg of the catalyst) was dip-coated onto a 1 cm × 1 cm ITO glass electrode. Finally, the
electrodes were dried in a vacuum oven at 70 ◦C overnight to evaporate all of the ethanol.

3.4. Characterization

The surface morphology was characterized on a Hitachi SU8020 scanning electron microscope
(SEM, Hitachi Ltd., Tokyo, Japan) and transmission electron microscopy (TEM JEOL JEM-2010).
The phase of the product was carried out using X-ray diffraction (XRD, TTRIII, Rigaku, Bruker,
Karlsruhe, Germany with Cu Kα radiation). The photoluminescence (PL) spectra were investigated on
a Hitachi F-4500 fluorescence spectrometer. X-ray photoelectron spectroscopy (XPS) was performed on
a VG Multilab 2009 system (Manchester, UK).

3.5. Photoelectrochemical Measurements

The photoelectrochemical analyses were carried out on a CHI 760C (Chenhua Ltd., Shanghai,
China) electrochemical workstation by a three-electrode configuration. The prepared Pt3Co-SiC
electrodes, Pt foil, and saturated calomel electrode acted as the working, counter, and reference
electrodes, respectively. The electrolyte was a 0.25 mol·L−1 Na2S and 0.35 mol·L−1 Na2SO3 solution.
The open circuit voltage is measured in the dark. The photocurrent density with time (I-t curve) was
performed at the measured circuit voltage under visible light irradiation. The radiation source was
obtained by a 300 W xenon arc lamp.

3.6. Photocatalytic Tests

Photocatalytic hydrogen production experiments were carried out in an air-free closed gas
circulation system reaction cell made of quartz. The total cylindrical volume of the cell was 200 mL.
An optically polished piece of quartz glass was fused on top of the cell to minimize light scattering.
Hydrogen evolution was detected using a gas chromatograph (GC-3240, Yuanhong technology Co.,
Ltd., Beijing, China, TCD, Ar carrier), which was connected to a gascirculation line. Argon, with
a flow rate of 100 mL·min−1, was used as a carrier gas, and was passed through the quartz glass
cell. In a typical photocatalytic experiment, 0.2 g of the prepared photocatalyst was dispersed with
constant stirring in a 200 mL mixed solution of Na2S (5 mL, 0.1 mol·L−1), Na2SO3 (5 mL, 0.04 mol·L−1),
and distilled water (190 mL). Na2S, due to its more negative oxidation potential, was often used as
a sacrificial reagent [9,43,46,47]. The reaction was initiated by irradiation with a 300 W xenon lamp
fitted with a cutoff filter (λ > 420 nm). The light intensity employed was 100 mW·cm−2. The whole
system, including the photocatalyst, was flushed with Ar at 100 mL·min−1 for 1 h to remove any trace
of air (including nitrogen and oxygen) before any photocatalytic reaction was carried out. During the
process, agitation of the solution ensured uniform irradiation of the suspension. A 0.4 mL sample of
the generated gas was collected intermittently through the septum, and the hydrogen content was
analyzed by a gas chromatograph (GC-14C, Shimadzu, Tokyo, Japan, TCD, nitrogen as a carrier gas,
and a 5 Å molecular sieve column). All glassware was rigorously cleaned and carefully rinsed with
distilled water prior to use.

4. Conclusions

The Pt-Co-SiC catalyst was prepared via an ethylene glycol reduction method. The Pt-Co alloy
nanoparticles were uniformly loaded on the surface of SiC. The maximum photocatalytic activity
was achieved when the ratio of Pt:Co was 3:1. As for the enhanced photocatalytic mechanism, Pt3Co
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nanoparticles acted as a reductive reaction site by forming the particular effective Pt-Si bond, and thus
an excellent electron transport channel was established. In the photocatalytic process, the Pt3Co alloy
nanoparticles could capture electrons from SiC to the Pt3Co alloy. It could decrease the recombination
of the photogenerated electron-hole pairs.
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