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Abstract: There have been many reports about the thickening ability of nanoparticles on the wormlike
micelles in the recent years. Through the addition of nanoparticles, the viscosity of wormlike
micelles can be increased. There still exists a doubt: can viscosity be increased further by adding
more nanoparticles? To answer this issue, in this work, the effects of silica nanoparticles and
temperature on the nanoparticles-enhanced wormlike micellar system (NEWMS) were studied.
The typical wormlike micelles (wormlike micelles) are prepared by 50 mM cetyltrimethyl ammonium
bromide (CTAB) and 60 mM sodium salicylate (NaSal). The rheological results show the increase
of viscoelasticity in NEWMS by adding nanoparticles, with the increase of zero-shear viscosity and
relaxation time. However, with the further increase of nanoparticles, an interesting phenomenon
appears. The zero-shear viscosity and relaxation time reach the maximum and begin to decrease.
The results show a slight increasing trend for the contour length of wormlike micelles by adding
nanoparticles, while no obvious effect on the entanglement and mesh size. In addition, with the
increase of temperature, remarkable reduction of contour length and relaxation time can be observed
from the calculation. NEWMS constantly retain better viscoelasticity compared with conventional
wormlike micelles without silica nanoparticles. According to the Arrhenius equation, the activation
energy E, shows the same increase trend of NEWMS. Finally, a mechanism is proposed to explain
this interesting phenomenon.
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1. Introduction

Since 1980’s nanocrystals have been firstly prepared by manual work, research studies and
applications of nanostructured materials have received widespread attention [1,2]. Nanoparticles often
refer to very small solid particles, which range from 1 to 100 nm [3]. Due to the small size, nanoparticles
show special properties, such as large specific surface area and adsorption performance [4-8].
The study of materials modification by adding nanoparticles has been developed in the recent years,
where enhancing the strength of wormlike micelles by adding nanoparticles is one of the focuses.

Recently, viscoelastic surfactants have attracted more researchers’ attention due to good
viscoelasticity, sand suspension, stability and environmentally friendliness [9]. Under different
concentrations, viscoelastic surfactant molecules can form different aggregates, just like rodlike
micelles, wormlike micelles, vesicles, lamellar phases and liquid crystals, in which wormlike micelles
are used widely in fracturing fluid due to better viscoelasticity [10-12]. Viscosity of conventional
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wormlike micelles can decrease greatly with the increase of temperature, which seriously results in
instability limitation in complex environments [13,14]. As previously mentioned, in order to enhance
the strength of wormlike micelles, some researchers have done a large amount of work, such like
adding silica and titania nanoparticles for enhancing wormlike micelles [15-17]. Due to the tiny size
and high specific area, adding nanoparticles in wormlike micelles can affect molecular interaction
between each other [18,19]. It is expected that special properties of nanoparticles can enhance structure
strength of micelles by microcosmic function, which can be reflected in the resistance of viscosity at
increased temperature [16]. Nettesheim et al. reported the viscoelasticity of wormlike micelles by
cetyltrimethyl ammonium bromide (CTAB) and sodium nitrate (NaNOs3) with the addition of silica
nanoparticles and found that the zero-shear viscosity (#79) and relaxation time (7g) of solutions would
be increased by adding a small amount of silica nanoparticles [20]. In addition, with the decrease of
CTAB concentration, tackifying effects of the same amount of nanoparticles added in wormlike micelles
are more remarkable than before. Helgeson et al. did further study on the tackification mechanism
of wormlike micelles by silica nanoparticles [21]. They proposed a newly micelle-particle structure
existing in CTAB/NaNOj3; wormlike micellar solution with addition of silica nanoparticles, which can
be called “Double Networks”. The observation by cryogenic transmission electron microscopy
(cryo-TEM) was used to verify this hypothesis. Luo et al. used the anionic surfactant fatty acid
methyl ester sulfonate sodium to prepare wormlike micelles with the aid of barium titanate (BaTiO3)
nanoparticles [16]. Their work investigated influence of different factors on the viscoelasticity of
wormlike micelles, such as surfactant concentration, mass fraction of nanoparticles and temperature.

Until now, most of these research studies indicate that with the increase of nanoparticle
concentrations, viscosities of wormlike micelles increase. If further adding nanoparticles, can more
nanoparticles induce larger viscosities of nanoparticle-enhanced wormlike micellar system (NEWMS)?
In addition, the effect of temperature on nanoparticle-enhanced wormlike micelles has been not studied
sufficiently. Therefore, it is necessary to carry out the related research.

In this work, the effects of nanoparticle concentration and temperature on the NEWMS were
studied. The conventional wormlike micelle is formed by CTAB and sodium salicylate (NaSal),
which is one of the most widely applied formula at present. NEWMS were prepared by 50 mM
CTAB and 60 mM NaSal with the addition of silica nanoparticles. Rheological measurements were
conducted to evaluate the rheological properties of NEWMS. It is observed that with the addition of
silica nanoparticles, the viscosity of wormlike micelles is increased, demonstrating that nanoparticles
induce micellar growth. However, with the increase of nanoparticle concentration, the viscosity
of NEWMS is decreased but still higher than that of conventional wormlike micelles. In addition,
effects of nanoparticles and temperature on the entanglement length, mesh size and contour length of
wormlike micelles are clarified. For explaining this phenomenon, a new mechanism of crosslinking
between nanoparticles and wormlike micelles is proposed.

2. Materials and Methods

2.1. Materials

The CTAB and NaSal were purchased from Shanghai Experimental Reagent Co., Ltd. (Shanghai,
China) without further purification. Hydrophilic silica nanoparticles with the average of 60 nm were
supplied by Molinhui New Advanced Materials Co., Ltd. (Shanghai, China). Water was triply-distilled.

2.2. Sample Preparation

Silica nanofluids are prepared by distilled water at different mass fractions, including 0.1%, 0.3%,
and 0.5%. Firstly, samples are mixed by mechanical stirrer for 1 h, and then separated by ultrasonic
dispersion for 4 h at 60 °C. The model of ultrasonic dispersion device was KQ3200DE, supplied by
Kunshan Ultrasonic Instruments Co., Ltd (Kunshan, China). Then, the nanofluid is regarded as the
base fluid, which is used to prepare CTAB solution (100 mM) and NaSal solution (120 mM). Then,
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CTAB solution and NaSal solution are mixed together in equal volume at 50 °C. After mixing for 1 h,
NEWMS were prepared. In addition, wormlike micelle without silica nanoparticles was regarded as a
contrast sample.

2.3. Rheological Measurements

The rheological properties of samples were measured by using Haake Mars 60 rheometer (Thermo
Fisher Scientific, Karlsruhe, Germany) with the cone plate system (diameter 35 mm; angle 1°).
The range of shear rate is kept from 0.01 to 300 s~ ! during the steady shear measurement. In oscillatory
measurements, the frequency was kept at 6.28 rad-s~! (1 Hz) with the variation of the stress (o).
When the linear viscoelastic region was confirmed, frequency sweep measurements were performed
as a function of frequency at a constant stress. The temperature of measurements was regarded as the
control variable in this work. These wormlike micelles samples were tested at different temperatures,
such as 20, 30, and 40 °C.

3. Results and Discussion

3.1. Rheological Properties of NEWMS

In order to investigate the influence of added nanoparticles on NEWMS at elevated temperatures,
the steady shear measurements are conducted firstly. Figure 1 shows the different shear-rate viscosities
of NEWMS with different silica concentrations at 20, 30, and 40 °C. It can be observed that all
viscosities keep constant at low shear rate, and this plateau value of shear viscosity can be regarded
as the zero-shear viscosity (779), which is the significant assessment factor of rheological property.
From Figure 1, it is clear that the addition of silica nanoparticles can promote the viscosity of
wormlike micelles.
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Figure 1. Steady shear viscosities of NEWMS with addition of different silica mass fraction at 20, 30,
and 40 °C.

As can be seen from Figure 1, with the further increase of shear rate, viscosities become smaller
and show remarkable shear thinning phenomenon, which is the representative symbol of wormlike
micelles formation [12,22-24]. The high shear rates lead to the alignment of aggregates in micelles, and
make shear banding phenomenon eventually. At low shear rates, NEWMS with 0.1 wt % nanoparticles
has the highest zero-shear viscosity (1) through comparison. This phenomenon illustrates that the
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addition of silica nanoparticles can indeed improve the viscosity of NEWMS. However, with further
increase of nanoparticles, the zero-shear viscosity begins to decrease.

From Figure 2, it can be seen clearly that with the increase of temperature, steady shear
viscosities become smaller dramatically, which can be interpreted as the acceleration of the dynamic
process of breaking and recombination of micelles with temperature increasing [25]. Similarly,
even at different temperatures, NEWMS still have larger viscosities than wormlike micelles without
nanoparticles. The NEWMS with the addition of 0.1 wt % silica nanoparticles still retain the highest 7
at different temperatures.
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Figure 2. Zero-shear viscosity (179) of NEWMS with different nanoparticle concentrations at 20, 30, and
40 °C.

To further study the effects of nanoparticle concentrations and elevated temperatures on micellar
viscoelasticity, dynamic oscillatory measurements were conducted. As can be seen from Figure 3,
the storage modulus G’ and loss modulus G” vary with oscillation frequencies, and all NEWMS exhibit
typical features of wormlike micelles at elevated temperatures. G’ and G” increase with the increase of
frequency. At low shear frequencies, G” is larger than G/, showing that NEWMS have more viscous
properties, while at high shear frequencies, G’ is larger than G”, showing to be more elastic. It can
be observed that G’ reaches a constant value, which is the plateau modulus Gy, and G” can reach the
minimum value, which is determined as G” pin-
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Figure 3. Linear viscoelastic spectrum of NEWMS at different temperatures as a function of silica
nanoparticle mass fractions (a) 0 wt % silica; (b) 0.1 wt % silica; (c) 0.3 wt % silica; and (d) 0.5 wt % silica.

For typical wormlike micelles, a simple Maxwell model is generally used to investigate rheological
properties [26,27]. As to the Maxwell fluid, G’ and G” can be calculated according to Equations (1)
and (2) [22]:

) Gowzrﬁ 1)
14 w?T3

G” _ G()OJTR2 (2)
1+ w?tg

In these equations, w is the angular frequency and T is the micelle relaxation time. The relaxation
time TR is an significant factor for estimating rheological properties of wormlike micelles, which can
be calculated according to Equation (3) proposed by Cates [22]:

® = - ®)
where wy, is the angular frequency of crossover point while storage modulus G’ is the same as the
value of loss modulus G”.
The Cole-Cole plot is usually used to evaluate whether the data of G’ and G” fit the Maxwell
model well [12,28]. As for this work, Cole-Cole plots (a curve of G” as a function of G’) are studied
from the following Equation (4) [22]:

2 2
G (6 =) = () @

Figure 4 shows the plots of G” versus G’ of NEWMS. It is observed that Cole-Cole plots of these
NEWMS fit well with the calculated results at low shear frequencies. While at high shear frequencies,
practical data begin to deviate from theoretical semicircle in the Cole-Cole plot. This phenomenon
can be explained by the appearance of Rouse modes or “breather modes” [14,26], which is usually
observed in other wormlike micelles reported before [16,25].
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Figure 4. Cole-Cole plots for NEWMS at different temperatures as a function of the silica nanoparticle
mass fraction (a) 0 wt % silica; (b) 0.1 wt % silica; (c) 0.3 wt % silica; and (d) 0.5 wt % silica.

To further investigate the rheological properties of NEWMS with the addition of nanoparticles at
different temperatures, some important parameters of NEWMS were calculated. As mentioned before,
Gy is a practical plateau value of storage modulus. However, sometimes in actual experiments, it is
hard to test this value or get it inaccurately. Researchers often use Equation (5) to calculate the plateau
modulus G’ [22]:

G</>o = ZG;rlhax ®)

Here, the modulus G”may is the value of intersection point where G’ is equal to G”. In addition,
some important parameters of NEWMS are dependent on their structures, such as the mesh size ¢y,
the entanglement length [, the persistence length /,,, and the contour length L. These parameters can
be calculated from Equations (6)—(8) [22,29]:

GL, L
G// ~ T (6)
min e
5/3
_ °M
0T 1/3
o= () ®

Here, the modulus G” iy, is the minimum of the loss modulus G” at high shear frequencies, as
shown in Figure 3. The parameters L, I, and ¢y decide the rheological properties of NEWMS. The
value of kg is 1.38 x 1072? ] /K as the Boltzman constant and the persistence length I, is set to 15-25
nm according to previous studies [25,29]. According to the above information, these parameters of
NEWMS are listed in Table 1.
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Table 1. The rheological parameters of NEWMS with different mass fractions of silica nanoparticles at

different temperatures.

Csilica Wt %) T (°C) 1o (Pa-s) G’ (Pa) G min (Pa) TR (8) v (nm) I, (nm) L (nm)

20 15311 £0.30 13.106 £0.02 1.118£0.01 1.043£0.10 67.62+0.03 131-184  1536-2157

0 30 2242 £0.10 13954 £0.02 2978 +£0.01 0.154 £0.01 66.91+£0.03 129-181 604-848
40 0.694 +£0.01 13.664 £0.02 5415+0.01 0.042+0.01 6813+0.03 133-187 336472

20 224114+030 14.691 £0.02 0.8724+0.01 3.184+0.10 6512+£0.03 123-173  2072-2914

0.1 30 5375 +0.10 14.634 £0.02 1.996+0.01 02764001 6591 £0.03 126-177 924-1298
40 1484 £0.01 14.001 £0.02 3.021+£0.01 0.097 £0.01 67.64+0.03 131-184 607-853

20 17.063 £0.30 14139 £0.02 0.932+0.01 2677 £0.10 65.92+0.03 126-177  1911-2685

0.3 30 4917 £0.10 13382 +£0.02 2.0724+0.01 02834001 6793£0.03 132-186 853-1201
40 1.113 £0.01 14292 £0.02 3.289+0.01 0.082£0.01 67.11+0.03 130-182 564-791

20 16253 £0.30 11537 £0.02 1.064 £0.01 1.532£0.10 70.52+0.03 140-197  1518-2136

0.5 30 3531 £0.10 12633 £0.02 2204 +0.01 02414+001 6923 £0.03 136-192 779-1100
40 0.943 £0.01 13178 £0.02 4.101 £0.01 0.057 £0.01 68.92+0.03 135-190 434-611

3.2. Effects of Silica Nanoparticle Concentration

According to results listed in Table 1, at the same temperature, the addition of nanoparticles
indeed improves the viscosities of wormlike micelles. With the further increase of silica nanoparticle
concentrations, the viscosities of NEWMS reach the maximum and begin to decrease. In addition,
the changes of relaxation time Tz and contour length L can be used to investigate the effect of
nanoparticle concentration on NEWMS. As shown in Table 1, the contour length L is closely linked
with the zero-shear viscosity 1. With the addition of nanoparticles, L gets increase, indicating that
nanoparticles induce micellar growth. However, with the further addition, L decreases, suggesting that
redundant nanoparticles destroy the original structure of wormlike micelles and shorten the micellar
length. As shown in Figure 5, it can be observed that the relaxation time Ty is increased with the
addition of silica nanoparticles, which has the same changing trend as that of the zero-shear viscosity 7.
The plateau modulus G’ «, mesh size {js and entanglement length I, do not show variation distinctly,
suggesting that the entangled network structure of NEWMS keeps integrated with the addition of
nanoparticles. NEWMS with the addition of 0.1 wt % silica nanoparticles have the longest contour
length L.

35
1 —o—20C
3.0 ——30°C
| ——40C
2.5
2.04
w
\nz
t 154
1.0
0.5
| -
0.0 e A —
0.0 0.1 0.2 0.3 0.4 0.5

Concentration of SiO, (wt. %)

Figure 5. Relaxation time (tr) of NEWMS with different nanoparticle concentrations at 20, 30, and 40 °C.
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3.3. Effects of Temperature

In order to further investigate the rheological properties of NEWMS, the temperature effect is
studied in the range of 20—40 °C and the corresponding parameters of NEWMS are listed in Table 1.
At different temperatures, NEWMS show remarkable viscoelastic properties. With the increase of
temperature, the viscosities of NEWMS begin to decrease dramatically.

In addition, it can be observed that the contour length L decreases sharply with the increase of
temperature, which results in the reduction of viscosities at higher temperature. This changing trend is
consistent with the results of Tg, while the values of I, and ¢ keep nearly constant with the change of
temperature, suggesting that the entangled network structure of NEWMS keeps integrated within the
temperature range. The relationship between InTr and the reciprocal of the absolute temperature of
NEWMS are plotted in Figure 6. The experimental data accords well to a linear relationship, indicating
that the main relaxation time fits the Arrhenius relationships [22,29]:
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Figure 6. Arrhenius dependence of Tg with the reciprocal of absolute temperature for the NEWMS
with different nanoparticle concentrations (a) 0 wt %; (b) 0.1 wt %; (c) 0.3 wt %; and (d) 0.5 wt %.

Here, E, is the activation energy that describes the energy of individual micelles moving into an
environment of surrounding micelles [23,30,31]. R is the gas constant and A is a constant. According to
this Equation, E; values of NEWMS can be calculated and are listed in Table 2. By adding silica
nanoparticles, E; values are larger than those of conventional wormlike micelles, indicating the
influence of nanoparticles on micellar rheology.

Table 2. The activation energy E, of NEWMS with different silica nanoparticle concentrations.

Csitica (Wt %)

E,; (kJ/mol)

0 122
0.1 134
0.3 131
0.5 125
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3.4. Mechanism Discussion

According to previous work [3,15,20,21], there are many different thickening mechanisms of
wormlike micelles with the addition of nanoparticles. Bandyopadhyay et al. proposed that the
viscosity of wormlike micelles was increased because of additional electrostatic screening through
contributions of silica nanoparticles to the bulk ion concentration [15]. Helgeson et al. found that the
presence of nanoparticles does not significantly alter the electrostatic interactions between micelles [21].
They proposed that the addition of nanoparticles not only changes the surface electrical behavior of
micellar molecules, but also forms a new kind of physical cross-link micellar structure, which can also
be called a “double network”.

In this work, the improvement of wormlike micelle rheological properties is obvious, and micellar
solution with addition of 0.1 wt % silica shows the highest zero-shear viscosity. As for this phenomenon,
the hydrophilic silica nanoparticles have negative charges with high surface area. Cationic CTAB
surfactant molecules can adsorb on the surface of nanoparticles due to electrostatic attraction and
hydrophilic interaction, forming a bilayer circular structure. With the addition of NaSal, the counter-ion
can improve the aggregation of CTAB molecules. Meanwhile, bilayer circular structures would
regroup and be involved in the formation of wormlike micelles, forming a new micelle-particle
junction. This junction behaves as a bridging joint, improving micelles entangling with each other,
causing the strength to increase and lead to the growth of micelles. With the increase in temperature,
the contour length L of NEWMS begins to decrease sharply. At the same temperature, the contour
length L and entanglement of NEWMS are larger than those of conventional wormlike micelles without
nanoparticles. As can be seen in Figure 7, dilute silica concentrations can improve the aggregation
of micelles and induce micellar growth. With the further increase of nanoparticle addition, excessive
micelle-nanoparticle junctions make the network structure unconsolidated and weak. Redundant
nanoparticles gather and aggregate due to surface energy. Such effects of aggregation improvement
unexpectedly destroy the original network structure and form larger micellar molecular aggregates
from overlapping and entanglement, which results in the decrease of viscosity.
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Figure 7. Illustration of the proposed mechanisms of micelle-particle junctions and effects of silica
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concentration and temperature on wormlike micelles.
4. Conclusions

In conclusion, a doubt about the effect of nanoparticles on the wormlike micelles has been clarified.
With the addition of nanoparticles, viscosities of wormlike micelles cannot be continually increased.
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The viscosity of NEWMS can reach the maximum with the addition of nanoparticles. NEWMS
have higher viscosity and better viscoelasticity than conventional wormlike micelles without silica
nanoparticles. The added silica nanoparticles are attracted by hydrophilic headgroups of surfactant,
forming a new micelle-particle junction. In addition, it can be observed that the viscosity of NEWMS
is associated with values of Tg and L, indicating that nanoparticles lead to micellar growth and
enhance bridging attractions between nanoparticles and micelles. However, with the further increase
of nanoparticle concentration, the viscosity of NEWMS begins to decrease, which also reflects in
values of T and L. Since the effects of aggregation improvement unexpectedly destroy the original
network structure and form larger micellar molecular aggregates for overlapping and entanglement.
Experimental results show that NEWMS with the addition of 0.1 wt % nanoparticles has the highest
values of 179, Tr, and L. In addition, the temperature can cause a remarkable change for the contour
length of NEWMS, while no effect on the entanglement length [, and mesh size {);. We expect this
work can enrich the knowledge of NEWMS and widen their applications.
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