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Abstract: In this study, the effect of Ce additions on microstructure evolution of Mg–7Gd–3.5Y–0.3Zn
(wt %) alloys during the casting, homogenization, aging and extrusion processing are investigated,
and novel mechanical properties are also obtained. The results show that Ce addition promotes the
formation of long period stacking ordered (LPSO) phases in the as-cast Mg–Gd–Y–Zn–Ce alloys.
A high content of Ce addition would reduce the maximum solubility of Gd and Y in the Mg matrix,
which leads to the higher density of Mg12Ce phases in the as-homogenized alloys. The major second
phases observed in the as-extruded alloys are micron-sized bulk LPSO phases, nano-sized stripe
LPSO phases, and broken Mg12Ce and Mg5RE phases. Recrystallized grain size of the as-extruded
0.2Ce, 0.5Ce and 1.0Ce alloys can be refined to ~4.3 µm, ~1.0 µm and ~8.4 µm, respectively, which is
caused by the synthesized effect of both micron phases and nano phases. The strength and ductility
of as-extruded samples firstly increase and then decrease with increasing Ce content. As-extruded
0.5Ce alloy exhibits optimal mechanical properties, with ultimate strength of 365 MPa and ductility
of ~15% simultaneously.

Keywords: magnesium alloys; alloying; second phases; dynamic recrystallization; mechanical
properties

1. Introduction

In recent years, the demand for environment-friendly structural materials with light weight and
novel mechanical properties has become urgent owing to strict emission limitations in the international
community and the rapid depletion of fossil fuels [1,2]. Magnesium alloy, as the lightest metallic
structural material, possesses some obvious advantages such as low density, high specific strength,
notable shock absorption and noise reduction, excellent electromagnetic shielding performance, good
machine ability, and recyclability [3,4]. In this sense, Mg alloy has become a promising candidate for
use in various fields such as aircraft, automotives, 3D products and so on [5–7]. However, the industrial
application of Mg alloy is still limited due to its low absolute strength and poor ductility [8]. Therefore,
a popular research topic has been about the development of a new type of Mg alloy with high strength
and excellent ductility, simultaneously.

The addition of rare earth (RE) elements plays an important role in purifying molten alloys and
refining grains in Mg alloys. Moreover, it can induce formations of the high-density long period
stacking ordered structure (LPSO) phases. Therefore, the properties of Mg alloy such as yield strength,
ultimate strength, elongation and corrosion resistances, can be improved significantly with the addition
of RE elements [9–13]. At present, Mg alloys containing the LPSO phases mainly involve ternary
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Mg–Zn–X alloys (X = Y, Gd, Dy, Er, Ho, Tm, Tb), as well as the quaternary Mg–Gd–Y–Zn alloys [14,15].
It is believed that the high density of the micron-sized LPSO phases induced by multi-alloying
can improve the strength of the Mg alloys via the short-fiber strengthening mechanism, while the
nano-sized LPSO phases in the Mg matrix can contribute to the strength and plasticity of the alloy
simultaneously based on the dislocation mechanism [16–20]. On the other hand, previous studies
have shown that the volume fraction of the micron-sized and nano-sized LPSO phases increased
when the other types of the micro-alloying elements are added in the Mg–Gd–Y–Zn alloy, and the
strength and ductility can be further improved. For example, Wang et al. confirmed that the LPSO
phases in the as-cast Mg–2.5Zn–2.5Y–1Mn (at %) alloys were increased by Ca addition [21]. Recently,
Zhang et al. showed that a small amount of Zr addition could induce a new nano-sized phase in
the Mg–Gd–Zn alloy, and also change the morphology and distribution of LPSO phases, while little
effect of Zr addition on the quantity of the LPSO phases can be detected [21]. In particular, Ce is
an alloying element that can effectively refine the Mg matrix and also greatly reduce the stacking
fault energy of the α-Mg matrix [22]. In this sense, Ce may have a significant effect on formation of
the LPSO phases in the RE-containing Mg alloys. However, there are few reports on the effect of Ce
alloying on the microstructure and mechanical properties of Mg–Gd–Y–Zn alloy. Therefore, in this
paper, the second phase in as-cast, as-homogenized, as-aged and as-extruded Mg–Gd–Y–Zn–Ce alloys
is systematically investigated, and the grain size, textures and yield strength of the alloys are also
characterized, in order to provide theoretical support for the development of new high-strength and
high-ductility Mg wrought alloys.

2. Experiment

The as-cast Mg–7Gd–3.5Y–0.3Zn–xCe (x = 0.2, 0.5, 1.0) billets were prepared by vacuum induction
melting, and this was named the 0.2Ce alloy, for example, with 0.2 wt % Ce addition. The raw
materials were pure magnesium (99.95 wt %), pure zinc (99.99 wt %), pure cerium (99.97 wt %),
magnesium–yttrium master alloy (Mg–20 wt % Y) and Mg–Gd master alloy (Mg–20 wt % Gd). During
the melting process, argon gas was used to avoid oxidation in the furnace. The molten alloys were
poured into a preheated iron mold (350 ◦C) when the raw materials had been melted and fully stirred.
Chemical analysis was performed to determine the actual compositions, and the results are listed in
Table 1.

Table 1. Compositions of the as-cast Mg–7Gd–3.5Y–0.3Zn–xCe (x = 0.2, 0.5, 1.0) alloys in weight percentage.

Samples Gd Y Zn Ce

0.2Ce alloy 7.68 3.77 0.3 0.21
0.5Ce alloy 6.77 3.42 0.3 0.47
1.0Ce alloy 7.55 3.69 0.28 1.05

Homogenization treatments were conducted on the as-cast ingots at the temperature of 540 ◦C
for 24 h. As-aged samples were prepared by a subsequent aging treatment at 400 ◦C for 1 h. After
pre-heating at 400 ◦C for 20 min, the as-aged samples were indirectly extruded into the bars with a
diameter of 10 mm under an extrusion ratio of 18:1, extrusion temperature of 400 ◦C and a ram speed of
0.5 mm/s. Fiel-emission scanning-electron microscopy (SEM) and an energy-dispersive spectrometer
(EDS, JEOL JEM-2100F, JEOL Ltd., Osaka, Japan) were applied to reveal the microstructure of as-cast,
as-homogenized, as-aged and as-extruded samples, and also the compositions of the second phases.
The microstructures of the as-extruded samples were also characterized by optical microscopy
(OM, ZEISS, Heidenheim, Germany), and the macro-texture of the as-extruded samples were
determined by X-ray diffraction (XRD, Philips PW3040/60 X’ Pert PRO, Royal Dutch Philips Electronics
Ltd., Amsterdam, The Netherlands). Finally, the mechanical properties of the samples (length of
25 mm, diameter of 5 mm) were tested under tension directions, with the initial strain rate of 10–3/s
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(Shimazu AG-X Plus, SHIMAZU, Kyōto-fu, Japan). The equilibrium phase diagrams of the Mg alloys
were also calculated using the Panda software (Compu Therm LLC, Madison, WI, USA).

3. Results

3.1. Microstructures of the As-Cast Mg–Gd–Y–Zn–Ce Alloys

The SEM images of the as-cast Mg–7Gd–3.5Y–0.3Zn–xCe (x = 0.2, 0.5, 1.0, wt %) alloys are shown
in Figure 1. The as-cast 0.2Ce, 0.5Ce and 1.0Ce alloys exhibit a typical non-equilibrium solidification
microstructure, containing the dendrite and dendritic segregation zones. By increasing Ce additions,
the number density of irregular-shaped phases and stripe-phases increases and the size also grows
gradually. As listed in Table 2, the EDS results indicate that the composition of irregular 1# second
phase in the 0.2Ce as-cast alloy is Mg89.38Gd5.36Y3.5Zn1.12Ce0.63, and the 2# stripe second phase
contains 2.98 at % RE (Gd, Y, Ce) and 2.54 at % Zn, which are indicated by circles in Figure 1b. Based
on the morphologies and atomic ratios (RE/Zn) of the compounds, the corresponding 1# and 2#
particles can be identified to be the Ce-enriched Mg5RE phase and the LPSO phase (RE/Zn ≈ 1),
respectively. These results are in agreement with previous reports on the second phases formed in the
as-cast Mg–Gd–Y–Zn based alloys [12,13]. Moreover, EDS analysis of the α-Mg matrix shows higher
content of dissolved Ce solute with increasing Ce additions.

Table 2. Energy-dispersive spectrometry (EDS) results in as-cast Mg–7Gd–3.5Y–0.3Zn–xCe (x = 0.2, 0.5, 1.0)
alloys (at %).

Points Mg Gd Y Zn Ce

1# 89.38 5.36 3.50 1.12 0.63
2# 94.47 1.11 1.86 2.54 0.01
3# 88.29 5.94 4.65 0.55 0.58
4# 93.0 1.46 1.72 3.61 0.22
5# 87.14 5.46 4.19 1.74 1.47
6# 92.01 1.89 1.82 3.90 0.38

Figure 1. Scanning-electron microscopy (SEM) images of the as-cast Mg–7Gd–3.5Y–0.3Zn–xCe
(x = 0.2, 0.5, 1.0) alloys: (a,b) 0.2Ce alloy; (c,d) 0.5Ce alloy; (e,f) 1.0Ce alloy.



Materials 2018, 11, 102 4 of 12

The size and distribution of the Ce-enriched Mg5RE phase and LPSO phase in the as-cast 0.5Ce
alloy is similar to that in the as-cast 0.2Ce alloy, while the fraction of the LPSO phase and the dissolved
content of Ce atoms increase slightly. In the as-cast 1Ce alloy, on the other hand, the size of the
Ce-enriched Mg5RE phase increases significantly, and the quantity of the LPSO phase also becomes
obviously higher.

3.2. Microstructures of the As-Homogenized and As-Aged Mg–Gd–Y–Zn–Ce Alloys

Figure 2 shows the SEM and optical microscopy images of the as-homogenized 0.2Ce, 0.5Ce
and 1.0Ce alloys. The second phases and the segregation zones in the as-cast 0.2Ce and 0.5Ce alloys
have been almost dissolved by the high temperature solid solution treatment. In contrast, a large
number of reticular and spherical second phases still exist along the grain boundaries and within the
grain interior of the as-homogenized 1.0Ce alloy. According to the EDS results, the second phase is
the Mg12Ce phase enriched with RE elements. At the same time, the grain size of as-homogenized
0.2Ce, 0.5Ce and 1.0Ce samples decreases gradually with the increasing addition of Ce, i.e., ~370 µm,
~260 µm and ~160 µm, respectively. As shown in Figure 3, after the subsequent aging treatment of
the as-homogenized samples, numerous precipitations can be detected in the 0.2Ce, 0.5Ce and 1.0Ce
alloys, including the reticular, spherical and stripe phases. The EDS results (Table 3) show that the
spherical second phase “a” in Figure 3b contains ~3.4 at % Gd, ~9.21 at % Y and a small amount of
Zn and Ce; the stripe second phase “b” contains ~2.73 at % Gd/Y, ~2.28 at % Zn and a small amount
of Ce (RE/Zn ≈ 1); the reticular second phase “c” contains ~2.7 at % Gd/Y, ~1.5 at % Ce and a small
amount of Zn. Therefore, the second phase “a” and “c” that precipitates in the as-aged 0.2Ce alloy
can be clarified to be the Ce-enriched Mg5RE phase, while the second phase “b” is determined as the
LPSO phase. The length and volume fraction of nano-LPSO phase in as-aged 0.2Ce alloy is estimated
to be ~7 µm and ~2%, respectively.

Figure 2. (a,c,e) SEM images and (b,d,f) optical images of the as-homogenized Mg–7Gd–3.5Y–0.3Zn–xCe
(x = 0.2, 0.5, 1.0) alloys: (a,b) 0.2Ce alloy; (c,d) 0.5Ce alloy; (e,f) 1.0Ce alloy.
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Table 3. EDS results in as-aged Mg–7Gd–3.5Y–0.3Zn–xCe (x = 0.2, 0.5, 1.0) alloys (at %).

Points Mg Gd Y Zn Ce

a 86.79 3.4 9.21 0.46 0.15
b 94.94 1.04 1.69 2.28 0.05
c 97.13 1.20 1.50 0.09 1.5
d 87.00 3.05 9.34 0.23 0.38
e 92.62 1.1 2.28 3.38 0.62
f 86.57 4.47 3.80 3.27 3.89
g 80.46 7.07 6.64 0.5 5.33
h 58.87 8.94 30.45 0.66 1.08
i 88.13 3.64 2.94 3.06 2.24

With increasing content of Ce, both the size and number density of the second phases precipitated
from the 0.5Ce alloy and the 1.0Ce alloy increase significantly (Figure 3e,h). The EDS results (Table 3)
indicate that the spherical phase “d” in 0.5Ce alloy should be the Ce-enriched Mg5RE phases due to
the high RE content, and the stripe second phases “e” are also the LPSO phases, while the reticular
phase “f” should be the Mg12Ce phase due to the high Ce content. In other words, the addition of Ce
would induce formation of the new phase of Mg12Ce in present Mg–Gd–Y–Zn alloys. The quantity of
the Mg12Ce phases and the LPSO phases in 1.0Ce alloy increases significantly, as shown in Figure 3h.
Volume fractions of the nano-LPSO phases in as-aged 0.5Ce and 1.0Ce alloys have increased to ~4%
and ~9%, respectively. Moreover, the EDS analysis shows that the remaining Gd and Y elements
dissolved in the α-Mg matrix obviously decrease with increasing Ce additions.

Figure 3. (a,b,d,e,g,h) SEM images and (c,f,i) optical images of the as-aged Mg–7Gd–3.5Y–0.3Zn–xCe
(x = 0.2, 0.5, 1.0) alloys: (a,b,c) 0.2Ce alloy; (d,e,f) 0.5Ce alloy; (g,h,i) 1.0Ce alloy; (a,d,g) lower-magnification
images; and (b,e,h) higher-magnification images.

3.3. Microstructures and Mechanical Properties of the As-Extruded Mg–Gd–Y–Zn–Ce Alloys

Figure 4 shows the microstructures of as-extruded 0.2Ce, 0.5Ce and 1.0Ce alloys. As compared
with the as-homogenized samples, a large number of micron-size second phases precipitate in
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the as-extruded alloys and distribute along the extrusion direction after the hot extrusion process
(Figure 4a,d,g). Optical images show that dynamic recrystallization (DRX) occurs in the as-extruded
0.2Ce, 0.5Ce and 1.0Ce alloys, and volume fraction of the recrystallized grains is ~65%, ~75% and ~97%,
respectively (Figure 4b,e,h); that is, the proportion of recrystallization increases with the increasing
addition of Ce. At the same time, the coarsely as-deformed regions are compressed to be the streamline,
which is aligned with the extrusion direction. The DRXed grain sizes of the 0.2Ce, 0.5Ce and 1.0Ce
alloys are estimated to be ~4.3 µm, ~1.0 µm and ~8.4 µm, respectively, according to the higher
magnification optical images (Figure 4c,f,i). It can be noted that grain sizes of the non-DRXed grains
are not considered due to the severely heterogeneous microstructure. On the other hand, there usually
exists a relationship between the macro-texture and the dynamic recrystallization behavior of the
as-extruded Mg alloys. In general, DRXed grains of the RE-containing Mg alloys display a “rare
earth” texture, in which the c-axis deviates from the radial direction of the extrusion rod to the
extrusion direction [15,23]. Therefore, the more dynamic the recrystallization that takes place in rare
earth Mg alloys, the more obvious the “rare earth” texture that would be generated. As shown in
Figure 5, the macro-texture of the as-extruded 0.2Ce, 0.5Ce and 1.0Ce alloys agrees well with the
statement above. Due to the high proportion of recrystallized grains and the concurrent existence of
non-recrystallized grains, the “rare earth” texture and also the fiber texture co-exist in the as-extruded
0.2Ce alloy (Figure 5a). The fiber texture shows the typical texture of the non-recrystallized grains in
which the c-axis is aligned with the radial direction of the bar [23].

With increasing addition of Ce, a higher degree of recrystallization takes place, and the c-axis tilts
to the extrusion direction gradually, as shown in Figure 5b,c. The fiber texture component in the 1.0Ce
alloy has basically disappeared, and only the “rare earth” texture remains, which is consistent with the
complete recrystallization as detected in Figure 4.

Figure 4. (a,d,g) SEM images and (b,c,e,f,h,i) optical images of the as-extruded Mg–7Gd–3.5Y–0.3Zn–xCe
(x = 0.2, 0.5, 1.0) alloys: (a,b,c) 0.2Ce alloy; (d,e,f) 0.5Ce alloy; (g,h,i) 1.0Ce alloy; (b,e,h) lower-magnification
images; and (c,f,i) higher-magnification images.
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Figure 5. The (0001) pole figures of the as-extruded Mg–7Gd–3.5Y–0.3Zn–xCe (x = 0.2, 0.5, 1.0) alloys:
(a) 0.2Ce alloy; (b) 0.5Ce alloy; (c) 1.0Ce alloy.

As mentioned above, the morphology of the second phases varies with different amounts of Ce
addition in the as-homogenized samples. Accordingly, different precipitation behaviors of the second
phases are also generated in the as-extruded alloys, as shown in SEM images of as-extruded 0.2Ce,
0.5Ce and 1.0Ce alloys (Figure 6). Cross-sectional scanning results show that a large number of the
non-fragmented reticular and spherical micron-size second phases are uniformly distributed in the
matrix (Figure 6a,c,e), which coincides with the results of longitudinal-section scanning in Figure 4.
Based on the characteristic “twisted” morphology of the second phases, these bulk micron-size phases
can be identified as LPSO phases [12,13]. In order to clarify the effect of the second phase on dynamic
recrystallization, higher-magnification images are also displayed and a large number of nano-sized
stripe second phase can be found to disperse in the grain interior of the Mg alloys (Figure 6b,d,f).
The nano-phases are similar to the nano-LPSO phases formed in the as-aged samples. Thus, it can
be concluded that during hot extrusion deformation, both bulk LPSO phases and stripe nano-LPSO
phases precipitated from the matrices of the 0.2Ce, 0.5Ce and 1.0Ce alloys. However, both the size
and distribution of the bulk and nano-LPSO phases in the three groups of alloys are different from
each other. The density and fraction of the stripe LPSO phases are high in the 0.2Ce and 0.5Ce alloys,
while the stripe LPSO phase exists in the form of clusters with lower inter-distances in the 1.0Ce alloy
and the volume fraction obviously decreases (Table 4). Moreover, the micron-sized Mg12Ce phases
are broken into spherical particles in the 0.5Ce and 1.0Ce alloys, and co-exist with the Mg5RE phases.
With increasing Ce addition, the corresponding volume fraction of the spherical phases also increases.

Figure 6. Cont.
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Figure 6. SEM images of the as-extruded Mg–7Gd–3.5Y–0.3Zn–xCe (x = 0.2, 0.5, 1.0) alloys: (a,b) 0.2Ce
alloy; (c,d) 0.5Ce alloy; (e,f) 1.0Ce alloy.

Table 4. Sizes of nano-long period stacking ordered structure (LPSO) and bulk LPSO, the fraction of
second phases and the DRXed grain size of as-extruded Mg–7Gd–3.5Y–0.3Zn–xCe (x = 0.2, 0.5, 1.0) alloys.

As-Extruded
Samples

Length of
Nano-LPSO Phase

Length of Bulk
LPSO Phase

Width of Bulk
LPSO Phase

Fraction of
Second Phases

DRXed Grain
Sizes

0.2Ce alloy ~3.0 µm ~300 µm ~35 µm 4% (nano)
10% (micron) ~4.3 µm

0.5Ce alloy ~1.5 µm ~260 µm ~25 µm 5% (nano)
11% (micron) ~1.7 µm

1.0Ce alloy ~1.0 µm ~200 µm ~15 µm 2% (nano)
16% (micron) ~8.4 µm

The mechanical properties of the as-extruded samples under both tensile and compressive
conditions are shown in Figure 7 and Table 5. Under tensile deformation, the yield strength (YS) and
ultimate strength (UTS) of as-extruded 0.2Ce alloy are 286.4 MPa and 340.7 MPa, respectively. With the
addition of 0.5 wt % Ce, the YS and UTS increase to 302.2 MPa and 365.3 MPa. For as-extruded 1.0Ce
alloy, the YS and UTS decrease to 263.5MPa and 327.3MPa, respectively. In addition, the elongation to
fracture of the as-extruded alloy increases from ~13% in 0.2Ce alloy to ~15% in 0.5Ce alloy, and then
decreases to ~12% in the as-extruded 1.0Ce alloy. The strength and ductility of the as-extruded alloys
exhibit a trend of initial increase and then decrease with increasing Ce addition. The YS, UTS and
elongation of the as-extruded 0.5Ce alloy are the highest among the three samples. In other words,
the addition of a small amount of Ce is beneficial for improving mechanical properties of as-extruded
Mg–7Gd–3.5Y–0.3Zn alloys, and the optimal Ce content is about 0.5 wt %.

Figure 7. Engineering stress-strain curves of the as-extruded Mg–7Gd–3.5Y–0.3Zn–xCe (x = 0.2, 0.5,
1.0) alloys.
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Table 5. Mechanical properties of as-extruded Mg–Gd–Y–Zn–Ce alloys under tension.

Samples Yield Strength (MPa) Ultimate Strength (MPa) Elongation (%)

0.2Ce alloy (tension) 286.4 340.7 13
0.5Ce alloy (tension) 302.2 365.3 15
1.0Ce alloy (tension) 263.5 327.3 13.5

4. Discussion

As-cast samples exhibit the typical non-equilibrium microstructure, and the main second phases
are Ce-enriched Mg5RE and LPSO phases. With the addition of Ce, not only does the size of Mg5RE
phases increase, but also the fraction of LPSO phases increases gradually, which means that Ce
addition can promote the formation of LPSO phases in the as-cast Mg–Gd–Y–Zn alloys. This may
be attributed to the mechanism whereby Ce reduces the stacking fault energy of the Mg matrix
effectively [22]. After solid solution treatment, the eutectic microstructures of as-cast 0.2Ce and 0.5Ce
alloys have almost disappeared, while large numbers of RE-enriched Mg12Ce phases remain in the
1.0Ce alloy. Consequently, the maximum solid solubility of Gd and Y in the Mg matrix would be
reduced because of the addition of a large amount of Ce, as confirmed by the EDS analysis on the
α-Mg matrix. In fact, Figure 8 displays the polythermic sections for the equilibrium phase diagrams of
the Mg–0.3Zn–0.2Ce–xGd (x = 0–10 wt %) and Mg–0.3Zn–1.0Ce–xGd (x = 0–10 wt %) alloys. It can
clearly be seen that Ce addition would decrease the maximum solubility of the Gd elements, and also
induce formation of the new Mg12Ce phase.

Figure 8. The polythermic sections for the equilibrium phase diagrams of the (a) Mg–0.3Zn–0.2Ce–xGd
(x = 0–10 wt %) and (b) Mg–0.3Zn–1.0Ce–xGd (x = 0–10 wt %) alloys.

During the subsequent extrusion process, the bulk micron-sized LPSO phases dynamically
precipitate at the grain interiors and boundaries of the as-received 0.2Ce, 0.5Ce and 1.0Ce alloys,
as shown in Figure 6. The micron-sized Mg12Ce and Mg5RE phases in the 0.5Ce and 1.0Ce alloys have
been broken into spherical particles in the conditions of thermo-mechanical processing. Consistent
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with the mechanism of particle-stimulated nucleation (PSN), these micron-sized particles will promote
the dynamic recrystallization of the Mg matrix [15,23]. On the other hand, a large number of nano-sized
stripe LPSO phases also precipitate at the grain interiors (Table 4). The second phases with inter-spacing
of ~100 nm can bring an obvious drag effect on the DRXed grain boundaries, and then growths of
the DRXed grains can be inhibited [12,13]. After the extrusion deformation, the 0.2Ce alloy exhibits
a bimodal grain structure composed of coarse grains and ultra-fine grains. When the content of Ce
is increased to 0.5 wt %, the volume fraction of the bulk LPSO phase, the micron-sized Mg12Ce and
the Mg5RE phases increase. As a result, the nucleation sites of dynamic recrystallization increase.
At the same time, a high content of Ce promotes the dynamic precipitation of the higher density of
stripe LPSO phases (Table 4), and enhances the dragging effect on the mobility of the grain boundaries.
Consequently, a higher fraction of recrystallization occurs, and the ultrafine grains (only ~1.0 µm)
are formed in the as-extruded 0.5Ce alloy. With the addition of Ce increasing to 1 wt %, more Gd,
Y and other elements will combine with Ce, in the form of bulk LPSO and Mg5RE phases, which exist
in the interior or boundaries of the grains. As a result, the driving pressure for recrystallization via
the PSN mechanism increases during the extrusion process. However, the precipitation of a larger
number of bulk LPSO phases leads to the decrease of the residual Gd and Y elements in the Mg
matrix (Table 4), and consequently the fraction of nano-sized stripe LPSO phase is obviously reduced.
The inhibition effect on growth of the recrystallized grains is weakened, which leads to the formation
of larger recrystallized grains in 1.0Ce alloy (~8.5 µm).

Grain refinement is an effective approach for improving the strength and ductility of Mg alloys [24].
The recrystallized grains of the as-extruded 0.2Ce alloy can be refined to ~4.3 µm, and thus they can
exhibit high strength and ductility simultaneously. At the same time, the as-extruded 0.2Ce alloy
also displays the characteristics of a bimodal grain structure, in which the coarse grains will improve
the strength and plasticity of the alloy via the back-stress hardening mechanism [25]. For instance,
Wu et al. [25] revealed that, based on the bimodal grain structure, the yield strength of titanium
alloy was increased by three times, and elongation was maintained at ~8%. On the other hand,
there are a large number of reticular LPSO phases and nano-sized LPSO phases in the as-extruded
alloys (Table 4), which would enhance the strength and ductility of the alloys by fiber-strengthening
and dispersion-strengthening mechanisms [3,17]. Recently, Hagihara et al. [14] also confirmed the
strengthening effect of fiber-shaped LPSO phases in the Mg alloy. When the content of Ce increases
to 0.5 wt %, the size of recrystallized grains of the alloy is refined to ~1.0 µm, the yield strength of
the alloy is improved effectively based on the mechanism of grain-refinement strengthening, and the
plasticity can also be improved due to the existence of the bimodal grain structure. At the same time,
the density of the bulk and stripe LPSO phases increase, which can further improve the strength of the
alloy. With increasing Ce addition to 1 wt %, strength and ductility will be reduced due to the growth
of recrystallized grains (~8.4 µm) and the lower density of the nano-sized stripe LPSO phases (~2%,
Table 4). In this sense, Ce addition can change the size and distribution of second phases in present
alloys, and has an effect on the dynamic recrystallization behavior during the extrusion process to then
enhance the mechanical properties of the as-extruded alloys.

5. Conclusions

In this work, the effects of Ce alloying on the microstructure and mechanical properties of as-cast,
as-homogenized, as-aged and as-extruded Mg–7Gd–3.5Y–0.3Zn alloys have been investigated, and the
following conclusions can be drawn:

(1) Ce addition promotes the formation of LPSO phases in the as-cast Mg–Gd–Y–Zn–Ce alloys.
The high content of Ce addition reduces the maximum solubility of Gd and Y in the Mg matrix,
and leads to a higher density of Mg12Ce phases in the as-homogenized alloys;

(2) the main second phases in the as-extruded alloys are bulk micron-sized LPSO phases, nano-sized
stripe LPSO phases and broken Mg12Ce and Mg5RE phases. The recrystallized grain size of
the as-extruded 0.2Ce, 0.5Ce and 1.0Ce alloys can be refined to ~4.3 µm, ~1.0 µm and ~8.4 µm,
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respectively. This can be attributed to the synthesized effect of the driving force of the micron
phases and the dragging effect of the nano phases on dynamic recrystallization;

(3) with the increasing content of Ce, tension, strength and ductility of as-extruded samples
would firstly increase and then decrease. The as-extruded 0.5Ce alloy exhibits optimal
mechanical properties.
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