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Abstract: Elasto-plastic models for composites can be classified into three categories in terms of a
length scale, i.e., macro scale, meso scale, and micro scale (micromechanics) models. In general,
a so-called multi-scale model is a combination of those at various length scales with a micromechanics
one as the foundation. In this paper, a critical review is made for the elastoplastic models at the micro
scale, and a comparative study is carried out on most popular analytical micromechanics models for
the elastoplastic behavior of long fibrous composites subjected to a static load, meaning that creep
and dynamic response are not concerned. Each model has been developed essentially following
three steps, i.e., an elastic homogenization, a rule to define the yielding of a constituent phase, and a
linearization for the elastoplastic response. The comparison is made for all of the three aspects.
Effects of other issues, such as the stress field fluctuation induced by a high contrast heterogeneity,
the stress concentration factors in the matrix, and the different approaches to a plastic Eshelby tensor,
are addressed as well. Correlation of the predictions by different models with available experimental
data is shown.
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1. Introduction

Fibrous composites have been vastly used in engineering due to their high specific moduli and
strengths and admirable tailorability. Fibrous composites include long and short fiber reinforcements.
Short fibrous composites are superior to the long ones in mass-production benefiting from their
excellent formability. But the long fibrous composites have significant advantages over short ones on
mechanical properties, based on the continuous long shape and improved alignment. In this work,
the long fibrous composites are focused on. Unless specified, a composite in this research work is
long fibrous.

The elastoplastic properties of a composite are important for the failure and strength evaluation [1,2],
damage evolution [3], and dynamic damping analysis [4]. Mechanics of composites in an elastic range
has been well-developed [5,6]. Based on an elastic homogenization and a linearization, an elastoplastic
model for a composite can be established. However, much effort is still needed to improve the
prediction accuracy and efficiency in a plastic range [7–9]. In general, elastoplastic theories for a
composite can be classified into three categories by a length scale, i.e., macro scale, meso scale,
and micro scale, i.e., micromechanics models.

As shown in Figure 1a, a macro model treats a laminate as a homogeneous anisotropic material
so that the mechanical response of a composite structure such as a wind turbine blade can be analyzed.
Generally, a macro model is incorporated into a finite element approach [10–15], in which elastoplastic
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properties of a laminate element can be obtained from experiments or a model at a smaller scale.
For example, Dano et al. [16] developed a two dimensional numerical model for failure analysis of a
fastened joint in a composite laminate, where the effective shear elastoplastic behavior of a laminate
plate was described by a nonlinear internal variable obtained experimentally. Cooper and Warrior [17]
conducted a finite element crash analysis for a composite structure, where an elastoplastic material
element was implemented to describe the nonlinear behavior of the structure.
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It should be noted that an anisotropic yield rule is necessary to describe the elastoplastic
behavior, since a laminate is generally highly anisotropic. For example, Schmidt and Weichert [18]
proposed an elastoplastic constitutive model for anisotropic shells using the Hill yield criterion [19].
Brünig [20] developed a numerical algorithm for anisotropic plates with the Tsai-Wu criterion to
identify a yielding [21]. Under an assumption of an elastic-perfect plastic behavior, the Tsai-Hill yield
criterion [22] was employed by Aykul et al. [23] in an elastoplastic analysis of a steel fiber reinforced
aluminum matrix composite. With a macro model, analysis of complicated composite structures can be
easily carried out by a numerical method. However, since composite materials are highly anisotropic
and a plastic deformation is history dependent, the determination of the critical parameters in an
anisotropic yield criterion is time and financial consuming [24,25]. Furthermore, how to establish a
proper yield theory for a laminate with arbitrary lay-ups is still an open issue [26–29].

Meso scale models, also referred as layer-wise models, estimate mechanical properties of a
laminate from the information of single layers [30–35]. In a meso scale approach (Figure 1b), a single
layer is treated as a homogeneous and orthogonally anisotropic media. Its mechanical properties can
be directly measured through experiments or obtained from a micromechanics model. One major
problem for an elastoplastic model at a meso scale is how to describe the nonlinearity involved.
Rotem [36,37] expressed the shear component in the stiffness tensor of a layer as a nonlinear function of
a shear strain dependent parameter, while all the other components remained elastic. Pinho et al. [38]
and Wolfe et al. [39] utilized a secant and a tangent linearization, respectively, to approximate the
elastoplastic behavior of an individual layer. An instantaneous stiffness tensor was obtained by
replacing the elastic modulus in it with a secant or tangent one.

To better understand the nonlinearity of a composite, it is necessary to consider an interaction
between normal and shear stresses. Puck et al. [40] introduced a concept of stress exposure
ratio to account for the interaction between the transverse normal and the in-plane shear stresses.
Kress [41] expressed the transverse normal and the in-plane shear stresses in terms of the Hashin’s
second and fourth invariants [42], respectively. Moreover, to fully address the stress interaction,
anisotropic yield criteria for a layer are widely developed and employed [19,21,22,43–50]. For example,
Sun et al. [51] proposed a one parameter plasticity model to describe the elastoplastic behavior of a UD
(unidirectional) composite. The Tsai-Wu yield criterion was employed by Pisano et al. [45] to analyze
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the failure behavior of a pinned-joint composite laminate based on a layer-wise approach. However,
it is still not easy to establish a general plasticity theory and a failure criterion for a single layer under
a multiaxial load condition due to the high anisotropy. Besides, a meso scale model cannot capture
detailed information at a constituent level, such as the field fluctuation in a matrix, the inclusion
distribution and shape, and the imperfect interface between the constituents, which may be critical to
a failure analysis.

A micro scale model evaluates the mechanical response of a composite from the microstructure
and the properties of its constituent phases (Figure 1c). In an elastic range, numerical [52–54] and
analytical micromechanics models [55,56] have been well developed. Making use of a linearization
scheme, a micromechanics model in the elastic range can be extended to an elastoplastic range [9,57–59].
Compared with a meso or macro model, the yield condition at a micro scale is much easier to build.
In addition, micromechanics models can significantly improve the design efficiency with composites,
since only the constituent properties are required. A numerical micromechanics model can reflect
the effect of complex microstructures on the mechanical responses of a composite [60–64]. However,
it is very computational-consuming to do a full field microstructure-based analysis when a nonlinear
behavior is involved [53,65–67]. The computational efficiency of an analytical model is significantly
higher than that of a numerical one. Besides, analytical models can reveal physical mechanism of the
mechanical response of a composite. But, it is difficult to establish an analytical model to describe the
elastic-plastic behavior of a composite with all the complex microstructures considered.

The complexity of a model determines whether it is convenient for engineering application. It is
very difficult to compare the complexity from various aspects model by model. But it is practicable to
give a distinct classification for models at different length scales by theoretical analysis. Regarding
the plasticity, a macro-scale plasticity model for a composite depends on the fiber distribution
density and lay-up information of a laminate. A meso-scale plasticity model is also sensitive to
fiber configuration but regardless of the lay-up information. A micro-scale plasticity model is
established for a homogeneous matrix when the fiber is seen as linear elastic. In such case, it only
depends on information of the constituent matrix. Thus, it is reasonable to say that the complexity
of plasticity decreases from macro-scale to micro-scale models. For the computation efficiency, in a
macro-scale model, the input data of a laminate element are obtained from experiments. In a meso-scale
model, such properties need to be calculated from a lamination theory. But in a micro-scale model,
such information has to be calculated from information of fiber, matrix and their distribution. If all
the calculation is analytical, the difference of computation is not obvious. But if the calculation is
carried out by FEM, the difference in computational efficiency is significant. On the requirement
of experiments, a macro-scale model needs to obtain input data from experiments of a laminate.
When the fiber distribution or lay-up changes, experiments have to be re-conducted. But a micro-scale
model only needs experiment data of constituent materials regardless of laminate geometry details.
Thus, the experimental requirements decrease from macro-scale to micro-scale model. Lastly, for the
complexity of modeling, a micro-scale model has to construct a model from fiber and matrix scale
including fiber distribution and micro-cracks or voids. A macro-scale model can directly build a macro
structure model by treating a laminate as a homogeneous material. Thus, the complexity of modeling
increases from macro to micro-scale models in general. The complexity of models at different length
scales are summarized in Table 1.

A practical way for the analysis of a composite structure is to take an approach of a multi-scale
framework (MSF) [68–74]. As shown in Figure 1 in the MSF the models at different scales are built
independently but are combined organically so that loads and material data can be transferred
between the models. The micromechanics model plays a fundamental role in the MSF, because
it provides bottom information. The establishment of a yield or failure criterion is more reliable
at a micro scale [75–81]. Another kind of multi-scale model is so-called multiscale asymptotic
homogenization method (MAHM) [82–90], in which a micromechanics model also plays a cornerstone
role. It is generally applicable for a composite with periodic microstructures. In the MAHM,
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the fields of displacements, stresses, and strains are expressed in terms of small parameters which
connect coordinates at different scales. Note that a homogenization function, the key to the MAHM,
is addressed by a micromechanics model [70,91–94].

Table 1. Qualitative comparison among models at different length scales.

Complexity Macro-Scale Model Meso-Scale Model Micro-Scale Model

Complexity of plasticity *** ** *
Complexity of computation * ** ***
Complexity of experiments *** ** *

Complexity of modeling * ** ***

*** = high, ** = medium, * = low.

Furthermore, the plastic behavior and failure mechanisms of a composite can be well-understood
only at the micro scale. Thus, it is necessary to make a comprehensive review on micromechanics
models for elastic-plastic behaviors of composite materials. Chaboche et al. [95] presented a
comparison between linearization schemes with and without an isotropic assumption on the matrix
properties. It was pointed out that better results were obtained with the isotropic assumption [96].
Kanouté et al. [70] did a comprehensive review regarding multiscale homogenization models for
nonlinear behaviors of composites. Effects of the linearization methods on the elastoplastic response
were compared while the selection of an elastic homogenization was discussed. Charalambakis [59]
provided a brief literature review on application of homogenization techniques to the prediction
of, e.g., the elastic or inelastic properties, dynamic response and wave propagation of composite
structures, without any comparative study. Klusemann and Svendsen [96] and Klusemann et al. [97]
presented a comparison and benchmark study for multi-phase composites with elliptic and non-elliptic
heterogeneities in an elastic range, respectively. Saeb et al. [98] and Matouš et al. [99] made reviews on
multiscale homogenization methods for composites, focusing on numerical micromechanics. Ghossein
and Lévesque [100] investigated prediction capability of various analytical micromechanics models
by comparing with RVE (representative volume element) based FEAs (finite element analysis) in an
elastic range. It was pointed out that the prediction accuracy was sensitive to the stiffness contrast of
constituent materials [100].

Compared with a numerical micromechanics model, an analytical model has a distinct physical
meaning which is essential to an in-depth understanding of the mechanical behavior of a composite.
Besides, the computation efficiency of an analytical model is much more superior to a numerical
one. In this work, a critical review and comparative study is made on most popular analytical
elastoplastic micromechanics models for composites. Prediction deviations of the models induced by
an elastic homogenization and linearization method are investigated. Some latest advancements are
also accounted for in the comparison, including the stress concentrations in the matrix [101–109],
the isotropization of an Eshelby tensor [65,110,111], an incremental-secant scheme [112–115],
and Peng’s approach [116].

2. Review on Micromechanics Models

Micromechanics models are also referred to as homogenization models, meaning that the
homogenized properties of a heterogeneous material, e.g., composite, are evaluated from properties of
its constituent materials [59,117]. Micromechanics models can be separated into two classes, numerical
and analytical [59,70]. In consideration of the advantage of computational efficiency, the analytical
micromechanics models including empirical or semi-empirical ones are the focus of this work, whereas
the numerical ones are briefly mentioned. Additionally, micromechanics models for a composite with
an imperfect interface are also briefly reviewed.
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2.1. Numerical Micromechanics Models

As shown in Figure 2, numerical models are based on either RVE (representative volume
element) [118] or RUC (repeating unit cell) [54,58]. RVE based models apply to statistically
homogeneous materials. Sufficient number of randomly distributed fibers was said to be necessarily
contained in an RVE so that the microstructure of a composite could be reflected precisely [54,58].
Bohm et al. [119] generated an RVE containing 15 fibers using a randomly sequential adsorption
algorithm to investigate the elastoplastic behavior of short fiber reinforced metal matrix composites.
Kanit et al. [120] studied the relationship between the RVE size and its prediction capability for random
composites. They pointed out that a larger RVE size gave better prediction accuracy but resulted in
lower computational efficiency [120]. Heinrich et al. [121] claimed that an RVE containing at least
25 fibers could provide a satisfactory prediction accuracy. Determination of an RVE size has also been
discussed by some other researchers [122–125].
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Figure 2. Schematic of a representative volume element RVE and a repeating unit cell (RUC) (solid
line-undeformed, dash line-deformed). (a) An RVE for a unidirectional (UD) composite with randomly
distributed fibers; (b) an RUC for a UD composite with periodically distributed fibers.

RUC based models are applicable to a composite with periodic microstructures. Only one or
several fibers are included in an RUC. The boundary condition, a critical point of an RUC model,
has to be defined carefully to represent effect of different fiber distribution patterns and loads
applied [54,58,89,126–129]. In some cases, the uniform boundary conditions are applied to RUCs.
For example, Brockenbrough, et al. [130] investigated the effect of fiber distribution patterns on
the response of a metal matrix composite with a uniform strain boundary condition. Also, similar
treatment can be found in the work of Aboudi [131], Aghdam et al. [132], and Würkner et al. [133].
However, it was reported by Suquet [89] that an RUC model with such a uniform boundary condition
could only give an upper or lower bound of the effective properties of a composite. Specifically,
the effective stiffness of a composite would be overestimated by an RUC model with a uniform strain
while underestimated with a uniform stress assumption. Suquet [89] gave a rigorous definition of the
periodic boundary condition with which a better estimation of the effective properties was achieved.
Xia, et al. [134,135] proposed a unified periodic boundary condition for an RUC under any combined
loads. They indicated that the uniform boundary condition not only over constrained the RUC but
might violate the boundary traction periodicity as well. A periodic boundary condition has been
widely applied with both RVE [123,136–138] and RUC [139–143] models.
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Elastic RVE and RUC models can be extended to nonlinear cases, providing that the nonlinear
constitutive laws for the constituents are available. For example, based on a three-dimensional RVE
model, Yuan and Lu [144] conducted a numerical investigation on the elastoplastic behavior of carbon
nanotubes (CNTs) reinforced polymer composites. Hoang et al. [124] studied the effect of an RVE
size on the prediction for the elastoplastic and elasto-viscoplastic behavior of a two-phase composite.
Choosing an RUC, Aghdam et al. [132] analyzed the yield and collapse behavior of a metal matrix
composite. With an RUC based multiscale model, Wan et al. [145] studied the compressive behavior of
a braided composite after an impact accounting for the elastoplastic deformation of the matrix.

The computational quantity of a numerical micromechanics model is generally acceptable when
dealing with a linear elastic problem. However, when a constituent e.g., matrix material becomes
nonlinear, such as an elastoplastic or visco-elastoplastic behavior occurs, a common FEA approach
is much more computationally-consuming [65–67,146]. To tackle this issue, a number of numerical
micromechanics models with reduced computational effort have been developed. Examples include
the Voronoi Cell Finite Element Method (VCFEM) [147–149], the Generalized Method of Cells
(GMC) [131,150–152], the Finite Volume Direct Averaging Micromechanics (FVDAM) [153–161],
and the Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH) [86,162–166].
Reviews on them for nonlinear analysis of a composite can be found in Kanouté et al. [70] and
Saeb et al. [98], among others.

2.2. Analytical Micromechanics Models

Analytical micromechanics models have been well developed for elastic problems but are still
in progress for elastoplastic ones. Linearization is a practical way to establish an elastoplastic
micromechanics model, in which a nonlinear response is discretized and approximated as a series of
linear problems. With such a linearization, a micromechanics model can be extended to the analysis of
an elastoplastic problem.

The selection of a proper micromechanics model is fundamental. The equivalent inclusion
method pioneered by Eshelby [167] can be used to solve an eigenstrain problem with a single inclusion
embedded in an unbounded matrix. As long as a fibrous composite is concerned, the interaction
between the inclusion and the surrounding fibers is ignored in the Eshelby’s method. A self-consistent
model (SCM) [55] is advanced from the Eshelby’s method by replacing the matrix phase with a
medium whose properties equal to the effective properties of the composite. Although better in
a prediction accuracy, the implicit formulae resulted from the SCM make it inconvenient for use
in engineering. Moreover, the SCM may give a physically nonsense result when the inclusion is
rigid or a void [168]. Afterwards, Mori and Tanaka developed a method [56] by keeping the same
configuration of the Eshelby model but assigning the homogenized strain field of the matrix as that
of the composite. Further, a generalized self-consistent method (GSCM) was proposed [169–171],
dealing with a configuration that a single fiber surrounded by the matrix is embedded in an infinite
homogeneous medium whose properties are the same as those of the composite. In addition, two or
three phase concentric cylinder assembly (CCA) models are also widely used to determine the
effective properties of the composite [170,172–178]. Note that the two-phase and three-phase CCA
models are equivalent to the Mori–Tanaka and the GSCM, respectively, when the inclusions are
cylindrical [168,179]. Moreover, a double inclusion approach [180–182] is proposed to evaluate the
mechanical properties of a multiphase composite, of which the Mori–Tanaka model, the SCM, and the
GSCM can be considered as a special case.

In addition to the theory of elasticity based models mentioned above, some semi-empirical
analytical models are also well-known. With the iso-stress and iso-strain assumptions, the classical
rule of mixture [183,184] is resulted. The rule of mixture can give good prediction for the longitudinal
modulus and the major Poisson’s ratio but deliver poor estimation for the other elastic properties of a
composite. Based on experimental results, Chamis et al. [185,186] achieved a model called Chamis’
model, which can be considered as a modified version of the rule of mixture. Much better prediction
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in the transverse and shear moduli is generally seen. Halpin and Tsai [187] presented a simplified
version of the SCM, known as Halpin–Tsai’s equations.

Huang [188] developed a unified elasto-plastic bridging model in which a bridging tensor is
employed to link the homogenized stresses of the matrix with those of the fiber. The bridging
tensor elements can be classified as dependent and independent. Whereas the dependent elements
are determined from the symmetric condition of the overall compliance tensor of the composite,
the independent ones are expressed in the form of Taylor series expansions with respect to the fiber
and matrix property parameters. The expansion coefficients, independent of any constituent property,
were determined based on existing micromechanics theories in an elastic range. It can be seen that
the independent bridging tensor elements thus obtained are simplifications and modifications to the
corresponding counterparts of the Mori–Tanaka model [179,189]. As long as a plastic deformation of
a constituent e.g., matrix material is concerned, only the corresponding matrix property parameters
in the Taylor expansion need to adjust. It has been shown that the bridging model can give better
correlation between the predicted and measured effective elastic properties of UD composites than
many other famous models [190–193].

The second step in the establishment of an elastoplastic model is the selection of a linearization.
Hill [194] proposed an incremental linearization in which stress and strain increments were linked
with an instantaneous stiffness or compliance tensor. Consider a homogeneous material subjected
to uniaxial tension. An instantaneous Young’s modulus is defined as a tangent to the stress-strain
curve of the material at the current stress analysis point. Hence, an incremental linearization scheme
is also referred to as a tangent approach. The incremental linearization has been widely used due
to its capability on history dependent cases [9,195–197]. Following Hill’s work [194], Berveiller and
Zaoui [198] and Tandon and Weng [199] proposed a deformation linearization in which the total stress
and strain were connected by a secant stiffness or compliance tensor. Under a uniaxial tension, a secant
Young’s modulus is defined as the secant slope between an objective point and the initial point on the
stress-strain curve. Puck and Schurmann [200] pointed out that the secant method offers the advantage
of self-correction, meaning that the error induced by the secant method in the current load step will not
be transferred to the next step whereas a tangent approach will be done due to its incremental nature.
The deformation linearization, referred to as a secant approach, also gains a popularity in application
benefiting from its simple formulation and good prediction accuracy [201–203]. In comparison, it is
seen that the tangent model applied to non-proportional and non-monotonic loads whereas a secant
model is generally restricted to proportional and monotonic cases [114,199,202,204–207]. In addition
to these two linearizations, Dvorak [208] proposed a transformation field analysis (TFA) method.
In the TFA, properties of the constituents keep elastic. The plastic strain in a constituent is taken as an
eigenstrain whose effect on a composite response is reflected by an influencing function. The TFA has
been implemented into an FEA for nonlinear analysis of composites [209].

It has been reported that the nonlinear stress strain curve evaluated by a tangent approach, a secant
approach, or the TFA may be too stiff compared with experiments [95,210–213]. Existing attempts
to address the too stiff problem are mainly in three kinds, i.e., improvements on a linearization,
corrections on an equivalent stress, and modifications on the calculation of a plastic Eshelby’s tensor.

Regarding the first kind attempt, Molinari [214] suggested that the too stiff response might
be amended by a full consideration of an interaction between plastic deformation of the fiber and
matrix. He then proposed a non-incremental tangent linearization approach, which was validated by
Molinari et al. [215] and Mecier et al. [216]. Using the same linearization [217], Masson et al. [218] and
Zaoui et al. [219] proposed an affine formulation for an elastoplastic response of a composite. The affine
formulation was further developed and validated by Pierard and Doghri [110], Pierard et al. [220],
and Doghri et al. [221]. On the other hand, Wu et al. [112–114] believed that better results could
be obtained by an incremental-secant scheme they proposed. In their approach, when the load
was increased from the current to the next step, the effective properties of a composite were
approximately estimated by the secant method. Afterwards, a fictitious elastic unload was introduced,
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from which residual stresses and strains induced by the plastic deformation were obtained and
accumulated [112–114]. One feature of this incremental-secant scheme is in its applicability to
non-proportional and non-monotonic load problems.

As for the second kind attempt, it was pointed out that the too stiff response might be resulted
from an ignorance of a stress field fluctuation in the constituents [205]. Instead of calculating the
von-Mises equivalent stress from homogenized stresses of the constituent materials in a composite,
Qiu and Weng [205] and Hu [222] derived the von-Mises equivalent stress from an energy approach
which can reflect the effect of stress fluctuation on yield behavior. Inspired by their work, Suquet [223]
proposed a modified secant model, where the second-moment estimation for stresses was used to
capture the stress fluctuation in the constituent phases of a composite. Independently, basing on the
work of Talbot and Willis [224], Ponte Castaneda [225,226] proposed a rigorous variational principle to
give bounds or estimates for nonlinear composites. It is interesting to find that the modified secant
model by Suquet [223] coincides with the variational estimation by Ponte Castaneda [225–227] when
the complementary energy of the constituent phases is a quadratic form of the stress tensor [228].

Regarding the third attempt, there are four approaches in the literature to determine a plastic
Eshelby’s tensor. The first one [229–232] is named as anisotropic Eshelby tensor method, meaning
that an instantaneous stiffness tensor of the matrix under an elastoplastic deformation is computed
rigorously from a plasticity theory, such as Prandtl-Reuss model, and the corresponding Eshelby
tensor is also anisotropic and evaluated through a numerical integration. This approach gives the
most rigorous tensor but may result in a too stiff response [65,197,233,234]. The second is referred
as isotropicalized matrix method. In this method, the instantaneous stiffness of a matrix can be
approximated as isotropic, and the corresponding Eshelby tensor is isotropic as well [65,145,160].
Namely, the Eshelby tensor in a plastic region is similar to that in an elastic one. However,
an isotropization has been demonstrated successful only for a proportional load case [212]. The third
approach is designated as isotropicalized Eshelby tensor method. In this approach, an instantaneous
stiffness tensor of the matrix remains anisotropic whereas the Eshelby tensor is determined according to
an isotropic condition. Namely, only the elastic property of the matrix in the Eshelby tensor of an elastic
region is replaced with a plastic counterpart of the matrix. This method was first proposed by Doghri
and Ouaar [65], and was further applied by many other researchers [111,197,234–239]. However,
Huang et al. [240] and Peng et al. [116] pointed out that the isotropization of the Eshelby tensor has
no sound physical background. The fourth approach has been recently presented by Peng et al. [116].
At each load step, a reference elastic medium (REM) is introduced whose configuration and properties
are identical to the instantaneous ones of the elastoplastic medium (EPM). Based on the REM, Peng et al.
obtained a scheme to determine the Eshelby tensor with modified prediction on the elastoplastic
behavior of a composite.

Very recently, Huang et al. [103–105,107–109,241] have shown that the homogenized stresses of
the matrix should be converted into true values before an effective property of the composite can
be determined in terms of the monolithic fiber and matrix properties. The conversion is achieved
by multiplying the homogenized stresses with the respective stress concentration factors (SCFs) of
the matrix due to introduction of the fiber, and all of the SCFs in relation to different loads under
perfect as well as debonded fiber-matrix interface have been derived [103–105,107–109,241]. The elastic
properties of the composite are independent of the stress values in the constituents, and thus the true
stress concept plays no role. However, when the matrix is in a plastic deformation, the true stresses
may result in an instantaneous stiffness of the matrix lowered down significantly in comparison with
the homogenized counterparts. This is because essentially all of the SCFs are greater, and some are
significantly higher, than 1 especially after the interface debonding. In turn, the composite stiffer
response resulted from the homogenized stresses in the fiber and matrix can be satisfactorily addressed.

To better understanding the establishment of an elastoplastic model, Figure 3 summarized the
process of extending an elastic model to an elastoplastic range.
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2.3. Micromechanics Models with Imperfect Interface

The afore-mentioned models/theories are mainly built for a composite with a perfect interface.
A perfect interface condition means that the stress and displacement fields are continuous at the
interface in-between the fiber and matrix. Contrarily, imperfect interface condition implies that the
stress or displacement field is discontinuous at the interface. Perfect interface condition is applicable
for most engineering applications of composite materials. However, imperfect interface situations do
exist in some cases. For example, interface debonding occurs when a composite subjected to a fatigue
load that exceeds its elastic limit, e.g., Figure 4a [242]. Cracks or micro-voids are often observed at the
interface in a thermo-pressure lamination process of a kind of metal matrix fibrous composite, e.g.,
Figure 4b [243]. In addition, an interphase is produced due to the chemical reaction between the fiber
and matrix (see Figure 4c) [244]. Moreover, coating, also a kind of interphase, is often added to a fiber
for the purpose of function design, as shown in Figure 4d [245]. Both the interface debonding/crack
and the interphase can be classed to imperfect interface condition. It is reported that the effect of
imperfect interface on mechanical properties of a composite is unignorable in some cases [246–248].
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Figure 4. Imperfect interface phenomenon in fibrous composites. (a) Crack growth in a SiC/SiC
woven composite under cyclic load [242]; (b) Ear-hole formation in a SiC/Ti-6Al-4V composite [243];
(c) Interphase produced by chemical reaction in a SiC/Ti-6Al-4V composite [244]; (d) BN coated T300
fiber [245].
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In elastic range, micromechanics models with an imperfect interface can be classified into two
categories [249], i.e., interface model and interphase model. In an interface model, a crack-like
zero-thickness interface is employed to characterize the imperfect interface between fiber and matrix.
The stress or displacement fields across the interface are discontinuous. Obviously, an interface model
is proper for the cases shown in Figure 4a,b. The linear-spring model [250,251] and interface stress
model [252,253] are the two well-known interface models. At the interface, the former assumes
that the stress field is continuous while the displacement field is not. The displacement variance
is proportional to the stress. The latter assumes a continuity of displacement but discontinuity of
stress. This model is generally used to describe interface compression phenomenon. Other models,
like dislocation-like model [254], interface sliding model [255,256], and the anti-interpenetration
model [257] can be seen as extensions of the linear-spring and interface stress models. An interphase
model adds a layer between the fiber and matrix in a two-phase concentric cylindrical assembly
(CCA) [174]. The mechanical property of the layer is different from those of the fiber and matrix.
Clearly, an interphase model is appropriate for the cases shown in Figure 4c,d. Hashin [174] gave an
exact solution for a three-phase CCA model with thin interphase. Further, Benveniste [178] extended
Hashin’s results to a three-phase CCA model with thick interphase. It is pointed out that an interphase
model is equivalent to an interface model when the interphase is thin and soft [249,258,259]. The exact
solution of an interphase model is complex. Based on a two-phase bridging model and an equivalent
fiber method, Wang [179,189,260] proposed a simplified analytical three-phase model for the analysis
of composites with imperfect interface.

In nonlinear range, for a composite with an imperfect interface, it is reasonable to assume that
the nonlinearity of a composite mainly comes from the elasto-plastic behavior of the matrix and the
progress damage of the interface. Chang et al. [261] developed a progressive damage model for a
composite laminate. But their model is in macro-scale, meaning that the stress analysis at micro scale is
not available. In addition, the contribution of matrix and interface nonlinearity cannot be distinguished.
Ju et al. [262] proposed a micromechanics interface damage model. In their work, the interface damage
was approximately described by an inhomogeneity with transverse isotropy. However, their work is
only valid for particle reinforced composites. The cohesive element method [3,263] has been widely
used in simulation of a composite with an imperfect interface. The cohesive element method has
sound physical background and is powerful in the analysis of interface crack propagation. However,
the cohesive model has to be implemented into a micro-scale FEM, thereby being of high cost in
computation resource. For engineering applications, it is desirable to develop a model with abilities in
micro-scale damage analysis, satisfied prediction accuracy, and high computational efficiency.

It is noted that models with imperfect interface have been vastly investigated. But, for most
engineering applications, the perfect interface assumption is good enough for mechanical analysis.
In this work, a composite with perfect interface is mainly focused on.

3. Comparison on Elastic Theories

The selection of a proper elastic micromechanics theory is in the fundamental step to establish
an elastoplastic model. In this section, summary of different elastic micromechanics models is made.
Then, the elastic models are evaluated regarding their capabilities in predicting elastic properties of
UD composites. Further, based on a tangent linearization, the elastic models are extended to be valid
in an elastoplastic range. A quantitative comparison for them is shown in the next section.

3.1. General Framework

Consider an RUC shown in Figure 5. The stress and strain components must be homogenized
with respect to the volume of the RUC through Equations (1) and (2).

σ =
1
V

∫
σ(x)dV (1)
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ε =
1
V

∫
ε(x)dV (2)

where σ(x) and ε(x) are, respectively, point-wise stress and strain tensors, σ and ε the homogenized
counterparts. Since only the homogenized quantities are dealt with, the over bars are omitted.
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For a two-phase composite with fiber and matrix constituents, the stress and strain of a composite
are given by Equations (3) and (4).

σ = Vf σf + Vmσm (3)

ε = Vf ε f + Vmεm (4)

f and m designate the fiber and matrix, respectively. A quantity with no suffix belongs to a composite.
Following Hill [264], there are two fourth-order strain and stress concentration tensors, Ar and Br,
as shown in Equations (5) and (6).

εr = Ar : ε, r = f , m (5)

σr = Br : σ, r = f , m (6)

Let M and L denote compliance and stiffness tensors with Equations (7) and (8).

ε = M : σ, σ = L : ε, (7)

εr = Mr : σr, σr = Lr : εr, r = f , m (8)

Then, the effective stiffness and compliance tensor are given by Equations (9) and (10).

L = Lm + Vf

(
L f − Lm

)
: A f (9)

M = Mm + Vf

(
M f −Mm

)
: B f (10)

Equation (11) is also useful:
Br = Lr : Ar : M, r = f , m (11)

The strain (stress) concentration tensor, Ar (Br), that connects a strain (stress) tensor of a
constituent with that of a composite is named as a global strain (stress) concentration tensor. Very often,
it is easier to establish a model with a local concentration tensor. Let Tf and Pf represent the local
strain and stress concentration tensor, respectively, such as Equations (12) and (13).

ε f = Tf : εm (12)

σf = Pf : σm (13)

The connections between the local and the global concentration tensors are found as shown in
Equations (14) and (15).
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A f = Tf :
(

Vm I + Vf Tf

)−1
(14)

B f = Pf :
(

Vm I + Vf Pf

)−1
(15)

Further, once the stiffness and compliance tensors, L and M, are known, the global concentration
tensors are given (see Equations (16) and (17)).

A f =
L− Lm

Vf

(
L f − Lm

) (16)

B f =
M−Mm

Vf

(
M f −Mm

) (17)

The key to a micromechanics model is the determination of a global or local strain/stress
concentration tensor. From Equations (5), (6), (12) and (13), it is found that the determination of
concentration tensors requires knowledge of the stress and strain fields in the constituent phases of a
composite. However, as shown in Figure 6a, due to the interaction between adjacent fibers, it is arduous
to obtain an exact stress/strain field of a constituent in a multi-inclusion model. Therefore, a reference
medium is introduced, with which the fiber interaction can be approximated in a single fiber model as
shown in Figure 6b. The strain and stiffness tensors of the reference medium are denoted by εre and
Lre, respectively. A specific definition of the εre and Lre leads to a specific micromechanics model.
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3.2. Summary of Elastic Models

3.2.1. Eshelby Model

It was established on a single fiber model (Figure 6b). Let it be subjected to a uniform traction σ0.
Suppose that [167]

Lre = Lm and εre = εm (18)

where Lre and εre in Equation (18) stand for the stiffness and strain tensor of the reference medium in
Figure 6b, respectively. Since the matrix is infinite, the effect of the fiber on the total strain of the model
is neglected, leading to Equation (19).

ε = εm = Mm : σ0 (19)

Making use of the Eshelby equivalent inclusion method, the following Equations (20) and (21)
are obtained

ε f = εre + εpt = εm + Sm : ε∗ = HES
f : εm = HES

f : ε (20)



Materials 2018, 11, 1919 13 of 55

HES
f =

[
I + Sm : Mm :

(
L f − Lm

)]−1
(21)

where εpt is the perturbed strain tensor due to the presence of the fiber, ε∗ is an eigenstrain, and Sm is
an Eshelby tensor. The superscript ES designates the Eshelby method. Comparing Equation (5) with
(20), the global and the local strain concentration tensors are the same as shown in Equation (22).

A f = HES
f (22)

Substituting Equations (21) and (22) into Equation (9), the stiffness tensor of the composite is
given by Equation (23).

LES = Lm + Vf

(
L f − Lm

)
:
[

I + Sm : Mm :
(

L f − Lm

)]−1
(23)

Owing to ignoring the interaction of the inclusion with the surrounding fibers, the Eshelby model
is applicable only to a composite with a low fiber volume fraction.

3.2.2. SCM

In a SCM [55], the stiffness and strain of the reference medium equal to those of the composite,
shown as Equation (24).

Lre = L and εre = ε (24)

The strain in the fiber is obtained as Equations (25) and (26)

ε f = εre + εpt = ε + S : ε∗ = HSC
f : ε (25)

HSC
f =

[
I + S : M :

(
L f − L

)]−1
(26)

where S is the Eshelby tensor from the composite medium. Therefore, Equation (27) is obtained.

A f = HSC
f (27)

Substituting Equations (25)–(27) into (9), the stiffness tensor of the composite is given by

LSC = Lm + Vf

(
L f − Lm

)
:
[

I + S : M :
(

L f − L
)]−1

(28)

Equation (28) is implicit since both sides of it contain the unknown stiffness tensor.
Further, the SCM would yield a physical nonsense result for a composite with a rigid or void
inhomogeneity [168].

3.2.3. Mori–Tanaka Model

Equation (29) is the assumption of Mori–Tanaka model [56]

Lre = Lm and εre = εm = ε (29)

where ε = M : σ0. A modification to Equation (20) gives the strain tensor in the fiber as
Equations (30) and (31).

ε f = εre + εpt = ε + Sm : ε∗ = HMT
f : ε = HMT

f : εm, (30)

HMT
f =

[
I + Sm : Mm :

(
L f − Lm

)]−1
(31)

Comparing Equation (12) with (30), one has Equation (32).



Materials 2018, 11, 1919 14 of 55

Tf = HMT
f (32)

The stiffness tensor in Equation (33) is obtained from Equations (9), (14), (31) and (32) as

LMT = Lm + Vf

(
L f − Lm

)
:
[

I + Sm : Mm :
(

L f − Lm

)]−1

:
{

Vm I + Vf

[
I + Sm : Mm :

(
L f − Lm

)]−1
}−1 (33)

3.2.4. GSCM

A schematic configuration for the GSCM is shown in Figure 7.Materials 2018, 11, x FOR PEER REVIEW  14 of 53 
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Hill [264] and Hashin [172] presented exact solutions for four of the five effective elastic constants,
E11, υ12, G12, and E22, as Equations (34)–(38)

E11 = Vf E f
11 + VmEm +

4Vf (1−Vf )(υ
f
12 − υm)

2

Vf
km +

1−Vf
km + 1

Gm

(34)

υ12 = Vf υ
f
11 + Vmυm +

Vf (1−Vf )(υ
f
12 − υm)

2

Vf
km +

1−Vf
km + 1

Gm

(
1

km −
1
k f ) (35)

G12 = Gm (G f
12 + Gm) + Vf (G

f
12 − Gm)

(G f
12 + Gm)−Vf (G

f
12 − Gm)

(36)

E22 =
4

1
k22

+ 1
G23

+
4υ2

12
E11

(37)

k22 = km +
Vf

1
k f−km +

1−Vf
km+Gm

(38)

where k, k f , and km are the transverse bulk moduli of the composite, fiber, and matrix given,
respectively, as Equation (39).

kr =
Lr

22 + Lr
23

2
, r = f , m (39)

Lr
ij represents a stiffness component of a constituent material.

As for the transverse shear modulus G23, only the upper and lower bounds were provided by
Hill [264] and Hashin [172]. Christensen and Lo [171] derived an explicit solution for G23 when the
composite is made of isotropic fiber and matrix. Luo and Weng [265] obtained the displacement fields
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in the fiber (f ), matrix (m), and the composite media of Figure 7. Both the fiber and matrix can be
transversely isotropic. Luo and Weng’s solutions are shown as Equations (40)–(46).

u f
r =

[
d1r + d2

(
η f − 3

) r3

a2

]
cos2θ (40)

u f
θ =

[
−d1r + d2

(
η f + 3

) r3

a2

]
sin2θ (41)

um
r =

[
d3r + d4(ηm − 3)

r3

b2 + d5
b4

r3 + d6(ηm + 1)
b2

r

]
cos2θ (42)

um
θ =

[
−d3r + d4(ηm + 3)

r3

b2 + d5
b4

r3 − d6(ηm − 1)
b2

r

]
sin2θ (43)

uc
r =

[
d7

b4

r3 + d8(ηc + 1)
b2

r

]
cos2θ (44)

uc
θ =

[
d7

b4

r3 − d8(ηc − 1)
b2

r

]
sin2θ (45)

ui
z = 0, i = f , m, c (46)

where di, i = 1, 2 . . . 8, are unknown coefficients to be solved using the continuity conditions. Once the
homogenized stresses and strains of the three-phases are determined from the displacement fields,
the shear modulus is obtained.

3.2.5. Rule of Mixture

Owing to its simplicity, the rule of mixture [183,184] is widely used in engineering [266–270].
By this model, the five elastic moduli of the composite are expressed as Equations (47)–(51).

E11 = Vf E f
11 + VmEm (47)

υ12 = Vf υ
f
12 + Vmυm (48)

E22 =
Em

1−Vf

(
1− Em

E f
22

) (49)

G12 =
Gm

1−Vf

(
1− Gm

G f
12

) (50)

G23 =
Gm

1−Vf

(
1− Gm

G f
23

) (51)

3.2.6. Chamis Model

The longitudinal Young’s modulus and the major Poisson ratio in Chamis model [271] coincide
with the rule of mixture. The other three moduli are given by Equations (52)–(54).

E22 =
Em

1−
√

Vf

(
1− Em

E f
22

) (52)
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G12 =
Gm

1−
√

Vf

(
1− Gm

G f
12

) (53)

G23 =
Gm

1−
√

Vf

(
1− Gm

G f
23

) (54)

3.2.7. Halpin–Tsai Equations

As stated by Halpin and Kardos [187], the Halpin–Tsai equations were modified from those of
GSCM with some engineering based considerations. The expressions for E11 and υ12 are consistent with
Equations (47) and (48), whereas E22 is calculated from Equation (37). Table 2 shows the expressions
for the other moduli.

Table 2. Halpin–Tsai equations.

P
Pm

=
1+ζηVf
1−ηVf

, η =
Pf /Pm−1
Pf /Pm+ζ

P Pf Pm ζ

k22 k f km 1− 2υm

G12 G f
12

Gm 1

G23 G f
23

Gm 1/(3− 4υm)

3.2.8. Bridging Model

Huang’s bridging model has the following expressions (Equations (55) and (56)) [188].

{σm
i } =

[
Aij
]{

σ
f
i

}
, i, j = 1, 2 . . . 6 (55)

[
Mij
]
=
(

Vf

[
M f

ij

]
+ Vm

[
Mm

ij

][
Aij
])(

Vf [I] + Vm
[
Aij
])−1

, i, j = 1, 2 . . . 6 (56)

where
{

σr
i
}
=
{

σr
11 σr

22 σr
33 σr

23 σr
13 σr

12
}T , r = f , m are the homogenized stress vectors of the fiber

and matrix. The explicit bridging tensor
[
Aij
]

is as Equations (57)–(60).

[
Aij
]
=



a11 a12 a13 0 0 0
0 a22 0 0 0 0
0 0 a33 0 0 0
0 0 0 a44 0 0
0 0 0 0 a55 0
0 0 0 0 0 a66


(57)

a11 = Em/E f
11 (58)

a22 = a33 = a44 = β + (1− β)Em/E f
22, 0 < β < 1 (59)

a55 = a66 = α + (1− α)Gm/G f
12, 0 < α < 1 (60)

β and α are the bridging parameters to better correlate the resulting E22 and G12 with experiments. If
no experiments are available, β = α = 0.3 are mostly recommended. The Equation (61) for a12 and a13

are solved from the symmetric condition of the composite compliance, i.e., Mij = Mji.

a12 = a13 = (M f
12 −Mm

12)(a11 − a22)/(M f
11 −Mm

11) (61)
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3.3. Quantitative Comparison

A comprehensive quantitative comparison on micromechanics models is desirable both in
academic and engineering applications. However, it is almost impossible collect all experiment
data in literature for validation. Consider that the WWFE is a worldwide well-known and trustworthy
academic activity. Measured elastic properties of the 9 UD composites together with the monolithic fiber
and matrix property parameters provided in three world-wide failure exercises (WWFEs) [272–274]
are used to benchmark the predictions by the different micromechanics models. In addition,
three numerical models, i.e., the FEM, FVDAM, and the GMC, are also compared. Please note
that all the 9 UD composites are all long fibrous, epoxy matrix, and fiber volume fraction of around
60%. Thus, cautiously speaking, the comparison results are limited to elastic behaviors of long fiber
reinforced epoxy matrix with intermediate-high fiber volume fraction.

Since all of the models give essentially the same results for E11, only the averaged correlation
errors for the other four moduli are shown in Tables 3–6. Table 7 summarizes the overall averaged
errors for the five elastic constants. Information of the 9 composites is given in Appendix A Table A1,
whereas detailed predictions by all the models are listed in Tables A2–A12.

Table 3. Averaged prediction error for E22 (Error = 1
9

9
∑

i=1
abs(error)i).

Models Average Error Rank Models Average Error Rank

Bridging Model 12.4% 1 GSCM 25.1% 7
SCM 14.3% 2 Halpin–Tsai Equations 28.2% 8

FVDAM 14.9% 3 Mori–Tanaka Model 28.2% 8
FEM 15.9% 4 Rule of Mixture 43.5% 10
GMC 18.4% 5 Eshelby model 44.3% 11

Chamis Model 21.4% 6 - - -

Table 4. Averaged prediction error for G12 (Error = 1
9

9
∑

i=1
abs(error)i).

Models Average Error Rank Models Average Error Rank

Bridging Model 14.6% 1 GSCM 25.2% 5
Chamis Model 18.1% 2 GMC 27.0% 8

FVDAM 22% 3 Rule of Mixture 48.1% 9
FEM 22.1% 4 Eshelby model 53.5% 10

Halpin–Tsai Equations 25.2% 5 SCM 62% 11
Mori–Tanaka Model 25.2% 5 - - -

Table 5. Averaged prediction error for G23 (Error = 1
9

9
∑

i=1
abs(error)i).

Models Average Error Rank Models Average Error Rank

FEM 8.8% 1 GSCM 22.4% 7
FVDAM 8.9% 2 Halpin–Tsai Equations 26.9% 8

Bridging Model 9% 3 Mori–Tanaka Model 26.9% 8
SCM 11.5% 4 Rule of Mixture 39.1% 10
GMC 11.8% 5 Eshelby model 45.5% 11

Chamis Model 15% 6 - - -
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Table 6. Averaged prediction error for υ12 (Error = 1
9

9
∑

i=1
abs(error)i).

Models Average Error Rank Models Average Error Rank

Eshelby Model 7.3% 1 GSCM 14.9% 7
Rule of Mixture 12.9% 2 GMC 15% 8
Bridging Model 12.9% 2 FVDAM 15.3% 9
Chamis Model 12.9% 2 FEM 15.4% 10

Halpin–Tsai Equations 12.9% 2 SCM 18.3% 11
Mori–Tanaka Model 14.6% 6 - - -

Table 7. Overall averaged prediction error for the five constants Error = 1
45

45
∑

i=1
abs(error)i.

Models Average Error Rank Models Average Error Rank

Bridging model 10.38% 1 Halpin–Tsai equations 19.24% 7
FVDAM 12.83% 2 Mori–Tanaka model 19.59% 8

FEM 13.08% 3 SCM 21.82% 9
Chamis model 14.09% 4 Rule of mixture 28.4% 10

GMC 15.07% 5 Eshelby model 30.72% 11
GSCM 18.14% 6 - - -

Please note that the bridging parameters α, β are adjustable according to experiments.
Without experiment as reference, α = β = 0.3 is recommended. Table 7 shows that bridging model
with α = β = 0.3 gives the best overall prediction accuracy for elastic behaviors of the 9 UD composites
among all the homogenization models involved. In addition, the expressions of the bridging model
for homogenized stresses of the fiber and matrix are explicit and the simplest, making it convenient
in application. Another advantage of the bridging model is in the bridging parameters, α and β,
which are semi-empirical to implicitly represent an effect of some uncertain factors such as random
fiber arrangement or imperfect interface on a composite response. Considering the adjustability of
α, β, it is worthy to expect that the bridging model may also give satisfactory prediction of elastic
properties for other kinds of long fiber composites in addition to the 9 UD ones. Bridging model has
been programmed into a general-purpose user-subroutine, Bridging model for analysis of composites
(BMANC) [275], which can be combined with an FEM software package such as ABAQUS to analyze
linear, nonlinear, failure, and strength behaviors of a complex structure with composites involved.

Chamis model is simple and good in prediction accuracy. The FEM and the FVDAM predictions
also agree well with the experimental data. Besides, the numerical models can deal with more
complicated fiber-induced geometry such as irregular fiber cross-section or random fiber distribution.
Once in a while with no experimental data available, the FEM is used to benchmark other kinds
of solutions. The GMC is another kind of numerical model but gives inferior accuracy due to the
assumption of uniform strains in cells. Better predictions can be attained by a high fidelity generalized
method of cell (HFGMC) [276], but its computational efficiency is lower.

SCM, GSCM, Mori–Tanaka, and Halpin–Tsai give comparable predictions. Amongst, GSCM
performed the best. On the other hand, Halpin–Tsai equations and Mori–Tanaka model are more
widely used due to their simplicity. It should be noted that the prediction accuracy of G23 by SCM is
not satisfactory (61% error), although its results for the other four constants are good. For a composite
containing rigid or void inhomogeneity, SCM may lead to non-physical G23 [168].

The remaining two models, the rule of mixture and Eshelby model, ranked the lowest.
The uniform strain/stress assumption used in the rule of mixture violates the continuity condition at
fiber/matrix interface, whereas the major error of Eshelby model is resulted from the ignorance of the
fiber interaction.
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4. Comparison on Elastoplastic Behavior

In this work, a comparison of elastoplastic theories is restricted to static, monotonic,
and proportional loads. A brief introduction is given on whether a model is applicable to
non-monotonic and non-proportional load conditions. Three kinds of UD composites are taken
for example in the comparative study, i.e., E-glass/Epoxy, IM7/8551-7, and AS4/Peek UD composites.
E-glass is a kind of glass fiber and IM7 and AS4 are carbon fiber. Epoxy and 8551-7 are thermoset
while Peek is thermoplastic. Thus, the three composites can reasonably represent most common seen
fiber reinforced plastic composites. Regarding the load conditions, we choose transverse compression,
in-plane shear, and off-axial tension as examples. It is because the longitudinal tensile/compressive
and transverse tensile behaviors of a composite are usually linear elastic. Without consideration of
interface damage, the nonlinearity of a composite majorly comes from transverse compression and
in-plane shear deformation. In addition, off-axial tensile can be seen as a combination of transverse
tension and in-plane shear, representing a kind of multi-axial load case. Thus, we choose the three
kinds of load cases as benchmark.

A rule is needed to judge the efficiency of different models for the predicted elastoplastic responses.
Let us choose three parameters. They are the elastic modulus E or G, the yield point σY, and the
asymptotic tangent modulus ET

asy or GT
asy as schematically shown in Figure 8. The latter one, ET

asy or
GT

asy, is defined as the minimum value of the tangents to the tensile or shear stress strain curve of a
material [57,95]. A predicted elastic constant affects the prediction accuracy of the stress-strain curve in
the elastic part. The evaluation of the yield point determines when a material yields. In fact, the slope
variation of the stress strain curve depends on the predicted yield point. In other words, the reduction
rate of a predicted modulus is controlled by the yield point. The asymptotic tangent modulus ET

asy or
GT

asy is a new concept introduced in this work. It is defined as the minimum value of the tangents to
the tensile or shear stress strain curve of a material. As shown in Equation (62), a tangential modulus
is negatively correlated to a plastic strain. Thus, the asymptotic tangent modulus can partly reflect
how much plastic strain a material can bear.

dεp = −dσ/E + dσ/ET (62)
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In addition to the E or G, σY, and ET
asy or GT

asy, an overall error, ERov as shown in Equation (63),
is introduced to characterize the overall prediction performance of a model.

ERov =
1
n

n

∑
i

Abs
(

Rpr − Rex

Rex

)
× 100% (63)

where n is the amount of available experiment curves. As shown in Figure 8, Rpr is the enclosed
area between the predicted curve and strain-axis, and Rex is the experimental one. For a uniaxial
tension/compression or pure shear stress state, the enclosed area corresponds to the accumulated
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strain energy. For a complex stress state, the area corresponds to a part of the strain energy. Note that
ERov can only reflect one valuable side view of a model’s capability. When choosing a model, readers
should comprehensively evaluate the applicability of a model from their own viewpoint.

4.1. Comparison on Micromechanics Models

Among the eight analytical models, Mori–Tanaka method, SCM, bridging model, and Chamis
model have been widely used in the analysis of an elastoplastic response with the help of a linearization.
For consistency purpose, only the first-moment von-Mises equivalent stress (Section 4.2.1) and the
tangent linearization (Section 4.3.2) are incorporated. It should be noted that, for Mori–Tanaka model,
bridging model, and self-consistent model, the elastoplastic stiffness of a matrix and the corresponding
Eshelby tensor can be anisotropic. However, for Chamis model, the elastoplastic stiffness of a matrix
is pre-assumed to be isotropic. Thus, from the viewpoint of consistency, the stiffness of a matrix is
isotropicalized (Section 4.4.2) for all the four models. An instantaneous stiffness tensor of the composite
by SCM and Mori–Tanaka model are given as Equations (64) and (65) [194,277].

Ltan
SC = Ltan

m + Vf

(
L f − Ltan

m

)
:
[

I + Stan : Mtan
SC :

(
L f − Ltan

SC

)]−1
(64)

Ltan
MT = Ltan

m + Vf

(
L f − Ltan

m

)
:
[

I + Stan
m : Mtan

m :
(

L f − Ltan
m

)]−1

:
{

Vm I + Vf

[
I + Stan

m : Mtan
m :

(
L f − Ltan

m

)]−1
}−1 (65)

where tan indicates the instantaneous quantity in a tangent form. The subscripts SC and MT denote
the quantities from SCM and Mori–Tanaka model, respectively.

Regarding bridging model, owing to coupling between normal and shear stresses in a plastic
deformation, and elastoplastic bridging tensor is modified to Equations (66)–(69) [278].

[
Aep

ij

]
=



aep
11 aep

12 aep
13 aep

14 aep
15 aep

16
0 aep

22 aep
23 aep

24 aep
25 aep

26
0 0 aep

33 aep
34 aep

35 aep
36

0 0 0 aep
44 aep

45 aep
46

0 0 0 0 aep
55 aep

56
0 0 0 0 0 aep

66


(66)

aep
11 = Etan

m /E f
11 (67)

aep
22 = aep

33 = a44
33 = β + (1− β)Etan

m /E f
22 (68)

aep
55 = aep

66 = α + (1− α)Gtan
m /G f

12 (69)

The superscript “ep” represents elastoplastic. The off diagonal elements are solved from the condition
that the instantaneous compliance tensor of the composite, i.e., Mtan

ij = Mtan
ji , is symmetric. Mtan

ij is
given by Equation (70).[

Mtan
ij

]
=
(

Vf

[
M f

ij

]
+ Vm

[
Mm−tan

ij

][
Aep

ij

])(
Vf [I] + Vm

[
Aep

ij

])−1
, i, j = 1, 2 . . . 6 (70)

As for an elastoplastic Chamis model, Equation (71)–(75) are applied [271]:

Etan
11 = Vf E f

11 + VmEtan
m (71)

υtan
12 = Vf υ

f
12 + Vmυtan

m (72)
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Etan
22 =

Etan
m

1−
√

Vf

(
1− Etan

m

E f
22

) (73)

Gtan
12 =

Gtan
m

1−
√

Vf

(
1− Gtan

m

G f
12

) (74)

Gtan
23 =

Gtan
m

1−
√

Vf

(
1− Gtan

m

G f
23

) (75)

In general, an instantaneous compliance tensor of the matrix in an elastoplastic Mori–Tanaka
model, SCM, and bridging model is anisotropic defined by a classical flow rule. However,
an elastoplastic Chamis model is only applicable to cases where the matrix can undergo an isotropic
deformation up to failure. Figures 9–11 are the elasto-plastic stress-strain curves of three kinds of UD
composites predicted by the four elastoplastic models mentioned above. The experimental data are
taken from Kaddour and Hinton [273] and Kawai et al. [279].
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From Figures 9–11 and Table 8, it is found that the prediction results of all the four models
are too stiff. The yield points and asymptotic tangent moduli provided by the SCM are significantly
overestimated for all the cases in Figures 9–11. It is because that, in the configuration of the SCM, a fiber
is directly surrounded by a composite medium. Since the composite is much stiffer than the constituent
matrix, the plastic deformation of the matrix is underestimated, leading to overestimated stiffness of
the composite. In elastic range, the bridging model is recommended. However, regarding yielding,
asymptotic modulus and the overall error, all the four model are not satisfactory. More attempts
should be made on modifying the prediction of the yield points and the asymptotic tangent moduli.
In addition to a prediction accuracy, the capability on dealing with a tension-shear stress coupling is
also critical. From this point, the Chamis model is inferior to the other three models.

Table 8. Averaged prediction errors of different models for the cases in Figures 9–11.

Approaches Tension-Shear Coupling Error of E or G Error of σY Error of ET
asy ERov

Mori–Tanaka Model Yes 18.5% 38.6% 134.8% 22.7%
Chamis model No 14.2% 61.3% 154.8% 29.1%

Bridging model Yes 12.6% 90.2% 206.1% 53.3%
Self-consistent model Yes 28.0% 126.2% 845.8% 116.2%

It is necessary to point out that the comparisons in Figures 9–11 are based on the assumption of
an isotropic elastoplastic matrix and the tangent linearization, whereas other factors such as the stress
fluctuations and the SCFs are not accounted for. In addition, the averaged error data in Table 8 is useful
for readers to evaluate a model but insufficient to tell which model is better. Cautiously speaking,
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the comparison results are valid only for long fiber reinforced plastic composites with intermediate
fiber volume fraction under static, monotonic, and proportional load conditions.

4.2. Comparison on Modifications on Yield Stress

As mentioned in Section 4.1, the accuracy in evaluation of a yield point is critical to the prediction
capability of an elastoplastic model. A von-Mises equivalent stress is employed to detect yielding.
Generally, the equivalent stress is calculated based on the first moment stress (homogenized stress) of
a material. However, it is reported that the first moment approach cannot reflect a stress fluctuation,
leading to an underestimation of an equivalent stress [205,222,223]. Thus, a second-moment approach
is developed [205,222,223]. On the other hand, Huang [103,108,109] pointed out that the homogenized
stresses of the matrix in a composite must be converted into true values before an effective property
of the composite is evaluated in terms of the fiber and matrix’s original property parameters.
The conversion is done by multiplying the homogenized quantities with the respective SCFs of
the matrix in the composite. Using the true stress concept, the prediction on a yield behavior of a
composite can also be significantly improved.

In this section, the tangent linearization is applied to the three approaches, i.e., first moment,
second moment, and SCFs. Both the elastoplastic matrix and Eshelby tensor are anisotropic, which are
given in Section 4.3.2.

4.2.1. First Moment Approach

For the first moment approach, the J2 flow rule is given as Equations (76)–(78) [114].

f
(
σeq, σY

)
=

1
3

(
σ1st

eq

)2
− 1

3
σ2

Y,

{
f
(
σeq, σY

)
= 0, yield

f
(
σeq, σY

)
< 0, not yield

(76)

σ1st
eq =

√
3
2

σ′ : σ′ =

√
3
2

Idev :: σ⊗ σ (77)

Idev =
1
2

δikδjl +
1
2

δilδjk −
1
3

δijδkl (78)

where σ1st
eq is the von-Mises equivalent stress based on the first moment approach. σY is the yield

strength, depending on a work-hardening behavior of a material. The symbol ⊗ denotes a tensor
product. Idev is a fourth-order deviatoric tensor. σ and σ′ are, respectively, the homogenized stresses
and the corresponding deviatoric of a material. The key point of the first moment approach is that the
von-Mises equivalent stress is calculated from a homogenized stress σ or σ′ other than the point-wise
one σ(x) or σ′(x).

4.2.2. Second-Moment Approach

The core concept of the second-moment approach is that a von-Mises equivalent stress is firstly
evaluated point-wisely. Then a homogenized von-Mises stress is calculated by volume averaging the
obtained point-wise von-Mises stresses (see Equation (79)).

σ2nd
eq =

√
3
2

Idev :: 〈σ(x)⊗ σ(x)〉r (79)

In Equation (79), σ2nd
eq means a von-Mises equivalent stress based on a second-moment approach.

The bracket 〈·〉r represents a volume average manipulation of a phase r⊗ given by Equation (80).

〈σ(x)⊗ σ(x)〉r =
1
Vr

σr :
∂M
∂Mr

: σr (80)
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where Mr, r = f , m, are the elastic compliance tensors of fiber and matrix, respectively. M is the
effective elastic compliance tensor of the composite calculated from a selected homogenization.

As addressed by Suquet [223] and Hu [222], the second-moment approach contributes more
when the stress/strain fields variation is significant. Theoretically, the field variation in a short fibrous
composite is more obvious than that in a long fibrous one. Thus, short fibrous composite is taken as
illustration in the comparison between the first and second moment approaches. Doghri et al. [280]
conducted a comprehensive study on the second-moment approach based on a kind of aligned short
fibrous composite. Figures 12–14 are taken from their work. M-T 1st and 2nd represent Mori–Tanaka
model based on the first and second-moment approaches, respectively.
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Figure 14. Comparison between the first and second-moment approach. (a) Ceramic reinforced
aluminum composite (aspect ratio = 1, plastic parameter n = 0.05); (b) Ceramic reinforced aluminum
composite (aspect ratio = 3, plastic parameter n = 0.05); (c) Ceramic reinforced aluminum composite
(aspect ratio = 3, plastic parameter n = 0.4); (d) two-phase steel with martensite inclusions
(aspect ratio = 3, plastic parameter n = 0.31).

Figure 12 are stress-strain curves of an aligned short fibrous composite under a longitudinal/
transverse tensile load. From Figure 12, it is found that the second-moment approach can significantly
improve the prediction accuracy for a short fiber reinforced polyamide composite under longitudinal
tension but makes a low contribution for the case of transverse tension. In order to investigate the
reason, FEM plastic strain gradient contours for the composite under the two load cases are plot in
Figure 13. It is shown that the strain gradient in the longitudinal tension is much more noticeable
than that in the transverse one. The results validate the conclusion of Suquet [223] and Hu [222] that
the second-moment approach can make more contributions for cases with significant stress or strain
gradients. Please note that the fiber configurations in Figure 13 are not exactly coincident. Theoretically,
strain concentration becomes more obviously when the ends of two fibers get closer. But in the second
image of Figure 13, the strain distribution is much more homogeneous even at the center-right point
where two fiber ends are close to each other. Thus, compared with two coincident images, the images
in Figure 13 are more convictive on illustrating the effect of loads on strain distributions. A further
comparison is made in Figure 14 to investigate in which situation a second-moment approach is
necessary [280]. Doghri et al. summarized three conditions [280]:

(a) the inclusion aspect ratio is larger than 1,
(b) the elastic stiffness contrast between a fiber and a matrix is high,
(c) work-hardening phenomenon of a matrix is not significant.

When the conditions are satisfied, an application of the second-moment approach can make a
significant improvement.
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4.2.3. SCFs in Matrix

A literature has shown [271] that a predicted matrix-failure controlled strength of a fibrous
composite especially under a transverse tension based on the homogenized stresses of the matrix is
much lower than the measured counterpart. Liu and Huang [101] pointed out that this phenomenon is
resulted from an ignorance of the stress concentrations in the matrix due to introduction of the fiber.
They believed that this problem could be tackled by introducing the SCFs to modify the homogenized
matrix stresses. The concept of the SCFs in the matrix is originally proposed for a failure prediction
based on a bridging model. But it can also be used in an elastoplastic model to estimate the yield
behavior of the composite. The SCFs in the matrix of a composite under transverse tension, Kt

22,
and compression, Kc

22, are given as Equations (81)–(86) [109].

K22(ϕ) = {1 + a1
2

√
Vf cos2ϕ + b1

2(1−
√

Vf )
[V2

f cos4ϕ + 4Vf (cosϕ)2(1− 2cos2ϕ)

+
√

Vf (2cos2ϕ + cos4ϕ)]} (Vf +0.3Vm)E f
22+0.7VmEm

0.3E f
22+0.7Em

(81)

a1 =
2E f

22Em(υ
f
12)

2
+ E f

11{Em(υ
f
23 − 1)− E f

22

[
2(υm)2 + υm − 1

]
}

E f
11

[
E f

22 + Em(1− υ
f
23) + E f

22υm
]
− 2E f

22Em(υ
f
12)

2 (82)

b1 =
Em(1 + υ

f
23)− E f

22(1 + υm)

E f
22

[
4(υm)2 + υm − 3

]
− Em(1 + υ

f
23)

(83)

Kt
22 = K22(0) (84)

Kc
22 = K22(φ) (85)

φ =
π

4
+

1
2

arcsin
σm

u,c − σm
u,t

2σm
u,c

(86)

where σm
u,t and σm

u,c are the tensile and compressive strengths of the matrix, respectively. Owing to
transversely isotropic, the SCFs of the matrix in the UD composite along axis 3 are the same as
those in the 2nd axis, i.e., K22 = K33, if the transverse stresses of the matrix, σm

22 and σm
33, do not

occur simultaneously.
The transverse shear SCF, K23, of the matrix is defined according to the Mohr’s rule as

Equation (87).

K23 = 2σm
u,s

√
Kt

22Kc
22

σm
u,tσ

m
u,c

(87)

where σm
u,s is the shear strength of a matrix.

A matrix SCF under in-plane shear is given by Equations (88) and (89),

K12 = K13 =

[
1−Vf

G f
12 − Gm

G f
12 + Gm

(
W
(

Vf

)
− 1

3

)](Vf + 0.3Vm

)
G f

12 + 0.7VmGm

0.3E f
22 + 0.7Em

(88)

W
(

Vf

)
≈ π

√
Vf

(
− 5

4096
V2

f −
1

256
Vf +

1
4Vf
− 1

32

)
(89)

Then, the matrix stress can be modified as Equations (90) and (91).

σSCF
m = {σm

11 K22σm
22 K33σm

33 K23σm
23 K12σm

13 K12σm
12} (90)
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K22 =

{
Kt

22, σm
22 ≥ 0

Kc
22, σm

22 < 0
, K33 =

{
Kt

33, σm
33 ≥ 0

Kc
33, σm

33 < 0
(91)

A comparison is made in Figures 15–17 between the bridging and Mori–Tanaka models
with and without the SCFs. The tangent linearization is employed. The involved elastoplastic
compliance/stiffness and the corresponding Eshelby’s tensors are anisotropic. As mentioned in
Section 4, the prediction accuracy of an elastoplastic model depends on three aspects, the elastic
modulus, the yield stress, and the asymptotic tangent modulus. From Figures 15–17, it is seen that
the prediction error of the bridging model mainly resulted from the overestimated yield stress and
the asymptotic tangent modulus. For the cases shown in Figures 15a, 16a and 17, the prediction
accuracies are improved significantly by incorporation of the SCFs. However, for the in-plane
shear cases, Figures 15b and 16b, the prediction accuracy is still not satisfactory. It is because the
introduction of SCFs can modify the prediction on yield stress but cannot reduce errors coming from
the overestimated GT

asy.
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The prediction errors of the Mori–Tanaka model come from all the three aspects, the E or G, the σY,
and the ET

asy or GT
asy. For most cases, the introduction of SCFs can improve its prediction results. But for

some cases, the prediction accuracy becomes worse. It is because the yield stress is underestimated by
the Mori–Tanaka model with SCFs. In addition, the errors from the overestimated ET

asy or GT
asy cannot

be modified by introducing the SCFs, similarly as the bridging model.

4.3. Comparison on Linearization

The next step to build an elastoplastic model is in selection of a linearization. For simplicity,
only the matrix is treated as elastoplastic while the fiber keeps elastic. Figure 18 shows a schematic of
the four most widely used linearization schemes, i.e., the secant linearization, the tangent linearization,
the TFA, and the affine formulations. The latest linearization, an incremental-secant scheme, is also
introduced later in this section. The Mori–Tanaka model and the first-moment equivalent stress are
employed for all the five linearizations.
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4.3.1. Secant Linearization

On the secant linearization, it is assumed that the total stresses and strains can be correlated by a
“secant” stiffness or compliance tensor through Equations (92) and (93).

ε = Msecσ, σ = Lsecε, (92)

εr = Msec
r σr, σr = Lsec

r εr, r = f , m (93)

where the superscript sec represents instantaneous quantities in a secant form. The global strain
concentration tensor can also be rewritten in a secant form as Equation (94).

σf = Bsec
f σ, (94)

The effective secant stiffness tensor is given by Equation (95).

Msec = Msec
m + Vf

(
Msec

f −Msec
m

)
Bsec

f (95)

If the Mori–Tanaka model is employed, the Bsec
f is obtained as Equations (96) and (97).

Bsec
f = Psec

f

[
Vm I + Vf Psec

f

]−1
, (96)

Psec
f = M−1

f

[
I + Ssec

m Msec
m

(
M−1

f −Msec
m
−1
)]−1

Msec
m (97)

The non-zero elements of the Msec
m are given by Equations (98)–(100).

Mm−sec
1111 = Mm−sec

2222 = Mm−sec
3333 =

1
Esec

m
(98)

Mm−sec
1122 = Mm−sec

2233 = Mm−sec
3311 = Mm−sec

1133 = Mm−sec
2211 = Mm−sec

3322 =
−υsec

m
Esec

m
(99)

Mm−sec
1212 = Mm−sec

2323 = Mm−sec
3131 =

1
Gsec

m
(100)

where Esec
m , Gsec

m , and υsec
m are the “secant” elastic constants. The secant Young’s modulus Esec

m is
directly obtained from a given uniaxial tension or compression stress-strain curve. Supposing that
the bulk modulus keeps elastic, the secant Poisson’s ratio and the secant shear modulus are obtained,
respectively, as Equations (101) and (102).
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υsec
m =

1
2
− (

1
2
− υm)

Esec
m

Em
(101)

Gsec
m =

Esec
m

2(1 + υsec
m )

(102)

Equations (103)–(105) list non-zero elements of the “secant ” Eshelby tensor Ssec
m .

Sm−sec
1111 = Sm−sec

2222 = Sm−sec
3333 =

7− 5υsec
m

15(1− υsec
m )

(103)

Sm−sec
1122 = Sm−sec

2233 = Sm−sec
3311 = Sm−sec

1133 = Sm−sec
2211 = Sm−sec

3322 =
5υsec

m − 1
15(1− υsec

m )
(104)

Sm−sec
1212 = Sm−sec

2323 = Sm−sec
3131 =

4− 5υsec
m

15(1− υsec
m )

(105)

It should be noted that Equations (103)–(105) only give the expressions of Ssec
m for cylindrical fiber

reinforced composites. For another shape of the inhomogeneity, the Ssec
m can also be obtained directly

by replacing the elastic properties of the matrix in an elastic Eshelby tensor with the corresponding
secant ones.

4.3.2. Tangent Linearization

Equations (106)–(108) are derived from a tangent linearization:

dε = Mtandσ, dσ = Ltandε (106)

dεr = Mtan
r dσr, dσr = Ltan

r dεr, r = f , m (107)

dσr = Btan
r dσ, r = f , m (108)

where dε, dεr and dσ, dσr are the strain and stress tensors of the composite, and the constituent phases,
respectively. The effective compliance tensor is derived as Equation (109).

Mtan = Mtan
m + Vf

(
Mtan

f −Mtan
m

)
Btan

f (109)

Also, if Mori–Tanaka model is employed, the Btan
f is obtained as Equations (110) and (111).

Btan
f = Ptan

f

[
Vm I + Vf Ptan

f

]−1
(110)

Ptan
f = M−1

f

[
I + Stan

m Mtan
m

(
M−1

f −Mtan
m
−1
)]−1

Mtan
m (111)

The superscript tan represents tangent quantities. Several approaches can be used to determine the
Mtan

m and Stan
m . In this section, only the most general one is highlighted. When a material undergoes an

elasto-plastic deformation, its mechanical properties become anisotropic. If a J2 flow rule is employed,
the tangent instantaneous compliance tensor of a matrix is given as Equations (112)–(114) [9]:

Mtan
m = Mm + Mpla

m (112)

Mpla
m =

9
4Ep

mσ2
eq

σ′ ⊗ σ′ (113)

Ep
m =

EmEtan
m

Em − Etan
m

(114)

Mm is the elastic compliance tensor of a matrix. σeq is an von-Mises equivalent stress given in
Equation (77). σ′ is a stress deviator. Etan

m is a tangent modulus obtained from a uniaxial tension or
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compression stress-strain curve. The corresponding tangent Poisson’s ratio and the tangent shear
modulus are given by Equations (115) and (116).

υtan
m =

1
2
− (

1
2
− υm)

Etan
m

Em
(115)

Gtan
m =

Etan
m

2(1 + υtan
m )

(116)

Owing to anisotropy of the matrix in an elasto-plastic region, the corresponding tangent Eshelby
tensor has to be calculated by a numerical integration (see Equations (117)–(126)) [230].

Stan
ijkl =

1
8π

Lm−tan
mnkl

+1∫
−1

dζ3

2π∫
0

{
Gimjn

(
ξ
)
+ Gjmin

(
ξ
)}

dω (117)

Lm−tan
mnkl =

[
Mm−tan

mnkl
]−1 (118)

Gijkl
(
ξ
)
= ξkξl Nij(ξ)/D(ξ

)
(119)

Nij
(
ξ
)
=

1
2

εiklε jmnKkmKln (120)

D
(
ξ
)
= εmnlKm1Kn2Kl3 (121)

Kik = Mm−tan
ijkl ξ jξl (122)

εijk =
1
2
(i− j)(j− k)(k− i) (123)

ξ = ζi/ai (124)

ζ1 =
(

1− ζ2
3

)1/2
cos ω (125)

ζ2 =
(

1− ζ2
3

)1/2
sin ω (126)

The superscript “m-tan” denotes quantities of the matrix in the tangent form.

4.3.3. Transformation Field Analysis (TFA)

Dvorak [208,281] proposed a transformation field analysis to evaluate elastoplastic behaviors of a
composite, in which the plastic strain of a matrix is viewed as an eigenstrain. The stress-strain relations
of the composite and the constituent phases are presented in Equations (127)–(130).

dσ = L
(

dε− dεpla
)
= Ldε + dλ (127)

dε = Mdσ + dεpla (128)

dσr = Lr

(
dεr − dε

pla
r

)
= Lrdεr + dλr, r = f , m (129)

dεr = Mrdσr + dε
pla
r , r = f , m (130)

where dλ, dλr, and dεpla, dε
pla
r denote eigenstresses and eigenstrains of the composite and the

constituents. Obviously, dλ = −Ldεpla and dλr = −Ldε
pla
r . Lr and Mr are the elastic stiffness

and compliance tensors of the constituents, with L and M being the elastic stiffness and compliance
tensors of the composite. The localization rule is shown as Equations (131)–(134).

dεr = Ardε + ∑
s

Drsdε
pla
s , r, s = f , m (131)
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dσr = Brdσ + ∑
s

Frsdλs, r, s = f , m (132)

dεpla = ∑
r

VrBT
r dε

pla
r , r = f , m (133)

dλ = ∑
r

Vr AT
r dλr, r = f , m (134)

where Ar and Br are the global strain and stress concentration tensors, respectively. AT
r and BT

r are
corresponding transposed tensors. Drs and Frs are the influence tensors given by Equations (135)–(138),

Drm = (I − Ar)
(

Lm − L f

)−1
Lm, r = f , m (135)

Dr f = −(I − Ar)
(

Lm − L f

)−1
L f , r = f , m (136)

Frm = (I − Br)
(

Mm −M f

)−1
Mm, r = f , m (137)

Fr f = −(I − Br)
(

Mm −M f

)−1
M f , r = f , m (138)

It is reported by Chaboche [57,95] that the prediction results of elastoplastic behavior of composites
provided by the traditional TFA are too stiff. Modifications to Equations (131)–(132) were proposed
with the correction tensors Kr, r = f , m, as shown in Equations (139) and (140) [57,95].

dεr = Ardε + ∑
s

DrsKsdε
pla
s , r, s = f , m (139)

dσr = Brdσ−∑
s

FrsLsKsdε
pla
s , r, s = f , m (140)

The correction tensors can be obtained by solving Equation (141).

∑
s

DrsKs
(

Mtan
s −Ms

)
Ltan

s Atan
s = Atan

r − Ar, r, s = f , m (141)

where Mtan
s , Ltan

s are the instantaneous tangent compliance and stiffness tensors of the constituents.
Since the fiber is linearly elastic, only Mtan

m needs to be updated. Atan
r are the instantaneous strain

concentration tensors calculated from Mtan
s , Ltan

s , and the related Eshelby tensor. As indicated by
Chaboche [57], Equation (141) is indeterminate. But it can be solved by choosing Ks = I for the stiffer
constituent phase. For a two phase composite with the elastic fibers as reinforcement, we can get
Equations (142) and (143).

K f = I (142)

Km =
(

I −MmL f

)(
I − A−1

m

)((
Atan

m
)−1 − (Am)

−1
)(

I −MmLtan
m
)−1 (143)

4.3.4. Affine Formulation

Zaoui and Masson [219] and Masson et al. [218] proposed a new linearization, namely an
affine formulation, to improve the prediction accuracy of the viscoplastic behavior of a composite.
Chaboche [95] presented a compact version of the affine formulation for an elasto-plastic case.
Equations (144)–(147) are the corresponding formulations.

σ = Ltanε + τ (144)

ε = Mtanσ + η (145)
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σr = Ltan
r εr + τr, r = f , m (146)

εr = Mtan
r σr + ηr, r = f , m (147)

where τ, τr and η, ηr are the pre-stresses and pre-strains of the composite and its constituents.
The tangent instantaneous compliance tensor Mtan

m is given in Equation (112), and Ltan
m =

(
Mtan

m
)−1.

The instantaneous effective compliance and stiffness tensors Mtan and Ltan are obtained from a selected
homogenization model. The localization equations are given by Equations (148)–(150).

εr = Atan
r ε + Atan

r Stan Mtan
m (τ − τr) (148)

τ = ∑
r

Vr
(

Atan
r
)T

τr, r = f , m (149)

η = ∑
r

Vr
(

Btan
r
)T

ηr, r = f , m (150)

In Equation (148), Stan is given by Equation (117). The instantaneous concentration tensors Atan
r

and Btan
r can be calculated from a selected homogenization model, e.g., Mori–Tanaka model.

4.3.5. Incremental-Secant Scheme

Wu et al. [112] proposed a novel incremental-secant linearization for elasto-plastic responses of a
composite. It is claimed that the linearization is applicable to non-monotonic and non-proportional
loads [112–114]. Figure 19 illustrates the idea of the linearization.
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Consider a composite at the nth load step with a total stress and strain tensors, σn and εn.
The corresponding stress and strain increments are ∆σn+1, ∆εn+1. Then the total stress and strain
tensors in the next step are given by Equations (151) and (152).

εn+1 = εn + ∆εn+1 (151)

σn+1 = σn + ∆σn+1 (152)

The subscripts n and (n + 1) denote quantities of the nth and (n + 1)th load steps, respectively.
In the incremental-secant scheme, a fictitious elastic unload process is introduced at the nth load
step. It should be noted that the residual stresses in constituent phases can be nonzero due to the
heterogeneity even no homogenized residual stress exists in the composite. From a fictitious unload
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state (σres
n , εres

n ), a secant reload procedure is applied from the nth to the (n + 1)th step. Thus, Equations
(153)–(155) are obtained.

εn+1 = εres
n + ∆εrel

n+1 (153)

σn+1 = σres
n + ∆σrel

n+1 (154)

∆σrel
n+1 = Lsec

n+1∆εrel
n+1 (155)

εres
n and σres

n are the residual strains and stresses after unload. Lsec
n+1 is the secant stiffness tensor at the

(n + 1)th load step, viewing (σres
n , εres

n ) as a starting point. ∆εrel
n+1 and ∆σrel

n+1 are the reload strain and
stress increments. It is assumed that at the nth step, all the quantities required are known. Given a
total strain εn+1 for the next load step, the strain increment ∆εrel

n+1 can be obtained from Equation (153).
Consequently, the reload stress increment ∆σrel

n+1 is reached by Equation (155), and the total stress
σn+1 is obtained from Equation (154). It should be noted that the homogenized residual stress of
the composite is zero, namely σres

n = 0. Thus, in Equation (155), the only unknown argument is the
effective secant stiffness tensor Lsec

n+1. It can be obtained from the secant properties of the constituents
through Equations (156)–(157).

σi
n+1 − σi−res

n = Li−sec
n+1 ∆εi−rel

n+1 , i = f , m (156)

∆εi−rel
n+1 = Ai−sec

n+1 ∆εrel
n+1, i = f , m (157)

The secant stiffness tensor Li−sec
n+1 and the secant global strain concentration tensor Ai−sec

n+1 depend
on the stresses of the phases σi

n+1. Thus, Li−sec
n+1 , Ai−sec

n+1 , and σi
n+1 can be obtained by solving Equations

(156) and (157) iteratively. Then the homogenized stresses of the composite σn+1 can be determined
from Equations (154) and (155), in which the Lsec

n+1 is evaluated from Li−sec
n+1 and Ai−sec

n+1 by a selected
homogenization theory. Alternatively, σn+1 can also be obtained from Equation (158).

σn+1 = Vf σ
f
n+1 + Vmσm

n+1 (158)

To continue the calculation to next load step, it is necessary to get the residual stresses and
strains of the composite and the constituents. The residual stresses of the composite are zero, and the
corresponding residual strains are given by Equations (159) and (160):

εres
n+1 = εn+1 − ∆εunl

n+1 (159)

∆εunl
n+1 = Melaσn+1 (160)

where ∆εunl
n+1 are the unload strains shown in Figure 19. Mela is the elastic effective compliance tensor

of the composite evaluated by a selected homogenization theory. The residual strains and stresses of
the constituents are given by Equations (161) and (162).

εi−res
n+1 = εi

n+1 − ∆εi−unl
n+1 (161)

σi−res
n+1 = σi

n+1 − Lela
i ∆εi−unl

n+1 (162)

The unload strains of the constituents are found as Equation (163).

∆εi−unl
n+1 = Ai−ela

n+1 ∆εunl
n+1, i = f , m (163)

In this way, the calculation process continues.

4.3.6. Quantitative Comparison on the Linearizations

Before a quantitative study, the applicability of the five linearization models should be briefly
introduced. Applicability of a linearization model can be assessed in three aspects, i.e., whether they
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are applicable to non-monotonic and non-proportional loads, whether a tension-shear coupling can
be considered, and whether a numerical integration on an Eshelby tensor can be avoided. Table 9
summarizes the applicability of different linearization models. Essentially, if a linearization is in an
incremental form, it is applicable to non-monotonic and non-proportional loading cases. Rewriting an
elastoplastic compliance tensor into four blocks, a non-zero off-diagonal block implies that the model
can account for a tension-shearing coupling. The third aspect depends on whether Equation (117)
is used.

Table 9. Comparison for the linearization methods.

Approaches Non-Monotonic and
Non-Proportional Load

Tension-Shear
Coupling

Numerical Integration
on ESHELBY TENSOR

Tangent model Yes Yes Yes
Secant model No No No
TFA model Yes No No

Affine formulations No Yes Yes
Incremental-secant scheme Yes No No

A quantitative comparison is made taken experimental results of E-glass/Epoxy, IM7/8551-7,
and AS4/Peek UD composites as benchmark. The matrix behavior in the secant and the
incremental-secant linearizations is taken as isotropic, whereas that in the other four linearizations
can be either isotropic [212] or anisotropic. For a consistency in the comparison, the matrix is
assumed to be elasto-plastically isotropic. Each linearization is incorporated with Mori–Tanaka
model. Results are shown in Figures 20–22. Again, the comparison results are restricted to static,
monotonic, and proportional load cases.
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Figure 22. Comparison among linearizations–AS4/Peek UD composite. (a) 30◦ off-axis tension; (b) 45◦

off-axis tension; (c) 60◦ off-axis tension.

Since all the five linearizations are combined with Mori–Tanaka model, errors induced by the
predicted elastic moduli and yield points cannot be reflected. As for the predicted asymptotic tangent
modulus, ET

asy or GT
asy, it is seen that the affine formulation delivers a relative soft response, whereas the

TFA’s predictions are stiffer for the cases in Figure 22a,b. The other four theories present similar results.
Overall, the results from all of the five theories are stiff compared with the experiments, especially for
the in-plane shear cases.

4.4. Comparison on Modifications of a Plastic Eshelby Tensor

Generally speaking, the Eshelby tensor for an anisotropic material should be obtained from
a numerical integration. However, some works reported that the precise Eshelby tensor would
overestimate the instantaneous stiffness of a composite [95,210–212]. Besides, the numerical integration
is time consuming compared with an explicit one. Thus, several modifications on a plastic Eshelby
tensor are proposed, e.g., an isotropic matrix approach, an isotropic Eshelby tensor approach,
and Peng’s approach. Including the numerical integration, which is called an anisotropic Eshelby
tensor approach, the four methods are compared.

In this section, all the modifications on Eshelby tensor are incorporated with Mori–Tanaka model,
first-moment equivalent stress, and tangent linearization.

4.4.1. Anisotropic Eshelby Tensor Approach

In this approach, an elastoplastic compliance or stiffness tensor of the matrix is evaluated by
the J2 flow rule shown in Equations (112)–(114). The corresponding Eshelby tensor is obtained from
Equation (117), and the effective properties of the composite are derived from Equation (109).
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4.4.2. Isotropic Matrix Method

González and LLorca [212] demonstrated that an elastoplastic tangent stiffness tensor of the
matrix can be expressed as isotropic if the composite is subjected to an asymmetrically proportional
load. In such a case, Mtan

m and Stan can be directly obtained by replacing the secant moduli Esec
m , Gsec

m ,
and υsec

m in Equations (98)–(105) with the tangent ones, Etan
m , Gtan

m , and υtan
m .

4.4.3. Isotropic Eshelby Tensor Method

It was suggested by Doghri and Ouaar [65] that a better evaluation of elastoplastic behavior of a
composite could be achieved if the elasto-plastic response of the matrix remain anisotropic, but the
corresponding Eshelby tensor is defined through an isotropic manner. Specifically, the expressions
of Mtan

m are the same by Equations (112)–(114). The Eshelby tensor is obtained by replacing Esec
m , Gsec

m ,
and υsec

m in Equations (103)–(105) with Etan
m , Gtan

m , and υtan
m .

4.4.4. Peng’s Approach

Peng et al. [116] presented a new method to determine an Eshelby tensor for the elastoplastic
behavior of a composite. In Peng’s approach, a reference elastic medium is introduced,
whose configuration and properties are identical to the elastoplastic matrix in the composite. It is
assumed that the elastoplastic behavior of the composite can be characterized by two kinds of
eigenstrains. One is induced by the inhomogeneity, and the other by the plastic deformation of
the matrix. Based on this, a new determination of the Eshelby tensor is given by Equation (164) [116].

S∗ =
[
MmLtan

m
]−1Sm

[
MmLtan

m
]

(164)

where Mm is an elastic compliance tensor of the matrix, and Sm is the corresponding elastic Eshelby
tensor. Ltan

m is an instantaneous tangent stiffness tensor of the matrix. If Mori–Tanaka model is
employed, the effective compliance tensor of the composite can be obtained by replacing Stan

m in
Equations (109)–(111) with S∗ shown in Equation (164).

4.4.5. Quantitative Comparison on Modifications of the Eshelby Tensor

Features of the four approaches to elasto-plastic behavior of a composite are summarized in
Table 10. Amongst, the isotropic Eshelby tensor and Peng’s approaches can meet all the three aspects
mentioned previously. Quantitative comparisons for the four approaches are shown in Figure 23.

Table 10. Applicability of different determinations of an Eshelby tensor.

Approaches Non-Monotonic and
Non-Proportional Load

Tension-Shear
Coupling

Numerical Integration
on Eshelby Tensor

Anisotropic Eshelby tensor Yes Yes Yes
Isotropic matrix No No No

Isotropic Eshelby tensor Yes Yes No
Peng approach Yes Yes No
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Figure 23. Comparison among the four approaches to determine an Eshelby tensor. (a) Longitudinal
tension—(IM7/8551-7 UD composites); (b) Transverse compression—(IM7/8551-7 UD composites);
(c) In-plane shear—(IM7/8551-7 UD composites); (d) 30◦ off-axis tension—(AS4/Peek UD composite);
(e) 45◦ off-axis tension—(AS4/Peek UD composite); (f) 60◦ off-axis tension—(AS4/Peek UD composite).

From Figure 23a–f, we can see that the anisotropic Eshelby tensor approach presents much stiffer
responses than the other three. However, the isotropic Eshelby tensor approach resulted in the σ11− ε22

curves in Figure 23a,d–f to be somewhat physically unacceptable. Table 11 lists the stresses of the
constituent fiber and matrix predicted by the four approaches under some loads.
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Table 11. Stresses of constituent fiber and matrix under longitudinal tension.

Longitudinal Tension σ
f
11 σ

f
22 σ

f
33 σm

11 σm
22 σm

33

IM7/8551-7
(2500 MPa)

Anisotropic Eshelby tensor 4132 −3 −3 51.7 4.6 4.6
Isotropic Eshelby tensor 4303 191 191 −204 −286 −286

Isotropic Matrix 4133 −2.4 −2.4 50.8 3.5 3.5
Peng’s approach 4131 −3 −3 53.5 4.5 4.5

E-Glass/Epoxy
(1300 MPa)

Anisotropic Eshelby tensor 2107 −4 −4 89 6 6
Isotropic Eshelby tensor 2140 36 36 41 −53 −53

Isotropic Matrix 2109 −3.4 −3.4 86 5.1 5.1
Peng’s approach 2107 −4 −4 89 6 6

Table 11 indicates that the anisotropic Eshelby tensor, the isotropic matrix, and Peng’s approaches
give similar predictions for the constituent stresses. However, the signs of the majority stress
components predicted by the isotropic Eshelby tensor model are changed and the corresponding
magnitudes are much larger than those by the three other approaches. Furthermore, a predicted
tri-axial tension and tri-axial compression may be attained by the fiber and matrix, respectively,
even though a composite is subjected to a longitudinal tension. Due to these, a further development in
the isotropic Eshelby tensor model is expected.

Also, the σ11 − ε22 curves predicted by Peng’s approach in Figure 23b looks quite different from
the experiments. Besides, the tendency of the predicted curves by Peng’s approach in other cases
was consistent with the experiments. Thus, Peng’s approach can be seen a reliable method to a large
extent. But attention should be paid to the Peng’s approach when dealing with a Poisson’s effect of a
composite under a transverse load.

As mentioned in Section 4, the prediction accuracy can be improved by making use of a
second-moment estimation or SCFs of the matrix. Both may be efficient to decrease the too stiff
response predicted by the anisotropic Eshelby tensor approach. Considering a reliable applicability,
the anisotropic Eshelby tensor approach is still recommended over the three other approaches.

5. Conclusions

A review and comparative study is made for various elastoplastic micromechanics models of
a composite. The comparative study has been carried out regarding four aspects. They are the
selection of a homogenization, the modifications on yield stress, the selection of a linearization, and the
determination of an Eshelby tensor. Some conclusions can be drawn as follows.

In an elastic range, bridging model performs the best. In an elastoplastic range, Mori–Tanaka
model, SCM, bridging model, and Chamis model are often found applicable. Based on an isotropic
matrix assumption and a tangent linearization, all of the four models deliver stiffer results for
elastoplastic stress-strain curves of some composites. The deviation sources can be attributed to
threefold, i.e., the elastic modulus, the yield point, and the asymptotic tangent modulus.

The deviation resulted from an overestimated yield stress can be reduced by using a second
stress estimation or the SCFs of the matrix in the composite. The former is only useful when the
stress field fluctuation in the composite is significant. The latter can be applied to a more general
case. Further, a combination of the elastoplastic bridging model and the SCFs is recommended,
owing to its applicability for non-monotonic and non-proportional loads, higher prediction accuracy,
and computational efficiency with no evaluation of an Eshelby tensor. Nevertheless, both of the two
modifications are less efficient for an overestimated asymptotic tangent modulus.

Different linearizations can give different evaluations on the asymptotic tangent modulus
of an elasto-plastic response of the composite, but not significant in general. Thus, attention
should be focused on when to apply a linearization. More applications and developments on the
incremental-secant linearization are expected because it is efficient in computation, applicable for
complicated loads, good in accuracy, and flexible in combination with various homogenizations.
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Regarding four kinds of determinations for the Eshelby tensor in an elasto-plastic range,
the anisotropic Eshelby tensor approach delivers much stiffer results. The other three approaches
present better. But, the isotropic-matrix approach has only been demonstrated applicable to
asymmetrically proportional loads. The remaining two approaches need further development on their
prediction capability on a Poisson’s effect.

Unfortunately, most of the methods reviewed in this work cannot modify an overestimation on
the asymptotic tangent modulus to a satisfactory extent, especially for in-plane shear cases. This might
be because a perfect fiber/matrix interface bonding has been incorporated with all of the methods.
Furthermore, the plastic behavior parameters of a matrix have been determined only from a uniaxial
tensile stress-strain curve, defined by a so-called single-parameter plasticity theory. A two-parameter
plasticity theory, i.e., both measured uniaxial tensile and in-plane shear stress-strain curves of the
matrix are used to define its plastic behavior parameters, would be more pertinent. It is expected that
better predictions for elasto-plastic responses of a composite can be achieved from development in
both micromechanics models for the composite and plasticity theories for an isotropic matrix.
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Appendix A

The following tables show the detail information of the experimental data and simulation results
of different models.

Table A1. Experiment data for nine kinds of UD composites system.

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556
(Vf = 0.62)

Fiber 80 80 33.33 33.33 0.2
Matrix 3.35 3.35 1.24 1.24 0.35

Composite 53.5 17.7 5.83 6.32 0.28

E-Glass b/MY750
(Vf = 0.60)

Fiber 74 74 30.8 30.8 0.2
Matrix 3.35 3.35 1.24 1.24 0.35

Composite 45.6 16.2 5.83 5.79 0.28

S2-Glass/Epoxy
(Vf = 0.60)

Fiber 87 87 36.3 36.3 0.2
Matrix 3.2 3.2 1.19 1.19 0.35

Composite 52 19 6.7 6.7 0.3

T300/BSL914C
(Vf = 0.60)

Fiber 230 15 15 7 0.2
Matrix 4 4 1.48 1.48 0.35

Composite 138 11 5.5 3.93 0.28

T300/PR319
(Vf = 0.60)

Fiber 230 15 15 7 0.2
Matrix 0.95 0.95 0.35 0.35 0.35

Composite 129 5.6 1.33 1.86 0.32

AS carbon/Epoxy
(Vf = 0.60)

Fiber 231 15 15 7 0.2
Matrix 3.2 3.2 1.19 1.19 0.35

Composite 140 10 6 3.35 0.3

AS4/3501-6
(Vf = 0.60)

Fiber 225 15 15 7 0.2
Matrix 4.2 4.2 1.57 1.57 0.34

Composite 126 11 6.6 3.93 0.28
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Table A1. Cont.

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

IM7/8551-7
(Vf = 0.60)

Fiber 276 19 27 7 0.2
Matrix 4.08 4.08 1.48 1.48 0.38

Composite 165 8.4 5.6 2.8 0.34

G40-800/5260
(Vf = 0.60)

Fiber 290 19 27 7 0.2
Matrix 3.45 3.45 1.28 1.28 0.35

Composite 173 10 6.94 3.56 0.33
a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.

Table A2. Effective properties predicted by Eshelby model.

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf = 0.62) 50.8 7.15 2.67 2.42 0.28
E-Glass b/MY750 (Vf = 0.60) 45.7 7.01 2.61 2.37 0.28
S2-Glass/Epoxy (Vf = 0.60) 53.4 6.76 2.52 2.28 0.28
T300/BSL914C (Vf = 0.60) 139.5 7.08 2.94 2.49 0.27

T300/PR319 (Vf = 0.60) 138.4 1.98 0.75 0.67 0.28
AS carbon/Epoxy (Vf = 0.60) 139.8 5.91 2.40 2.05 0.27

AS4/3501-6 (Vf = 0.60) 136.6 7.30 3.09 2.60 0.27
IM7/8551-7 (Vf = 0.60) 167.1 7.73 3.07 2.50 0.29

G40-800/5260 (Vf = 0.60) 175.3 6.52 2.67 2.19 0.28
Average error 3.1% 44.3% 53.5% 45.5% 7.3%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.

Table A3. Effective properties predicted by SCM.

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf = 0.62) 50.9 18.91 11.34 6.96 0.23
E-Glass b/MY750 (Vf = 0.60) 45.8 16.80 9.80 6.15 0.24
S2-Glass/Epoxy (Vf = 0.60) 53.6 17.39 10.94 6.36 0.23
T300/BSL914C (Vf = 0.60) 139.7 8.99 6.25 3.43 0.25

T300/PR319 (Vf = 0.60) 138.4 4.19 4.18 1.55 0.24
AS carbon/Epoxy (Vf = 0.60) 139.9 8.06 5.82 3.06 0.25

AS4/3501-6 (Vf = 0.60) 136.7 9.14 6.37 3.53 0.25
IM7/8551-7 (Vf = 0.60) 167.3 10.37 9.36 3.52 0.26

G40-800/5260 (Vf = 0.60) 175.4 9.33 8.98 3.25 0.25
Average error 3.1% 14.3% 61.9% 11.5% 18.3%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.

Table A4. Effective properties predicted by Mori–Tanaka model.

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf = 0.62) 50.9 11.7 4.60 4.06 0.25
E-Glass b/MY750 (Vf = 0.60) 45.8 11.02 4.32 3.83 0.25
S2-Glass/Epoxy (Vf = 0.60) 53.5 10.78 4.23 3.72 0.25
T300/BSL914C (Vf = 0.60) 139.6 8.57 4.35 3.21 0.26

T300/PR319 (Vf = 0.60) 138.4 3.02 1.30 1.06 0.25
AS carbon/Epoxy (Vf = 0.60) 139.9 7.48 3.67 2.77 0.26

AS4/3501-6 (Vf = 0.60) 136.7 8.76 4.53 3.32 0.26
IM7/8551-7 (Vf = 0.60) 167.3 9.67 4.92 3.23 0.27

G40-800/5260 (Vf = 0.60) 175.4 8.47 4.36 2.92 0.25
Average error 3.1% 28.2% 25.2% 26.9% 14.6%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.
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Table A5. Effective properties predicted by GSCM.

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf = 0.62) 50.9 12.87 4.6 4.65 0.25
E-Glass b/MY750 (Vf = 0.60) 45.8 12.03 4.32 4.33 0.25
S2-Glass/Epoxy (Vf = 0.60) 53.5 11.8 4.23 4.25 0.25
T300/BSL914C (Vf = 0.60) 139.6 8.77 4.35 3.32 0.26

T300/PR319 (Vf = 0.60) 138.4 3.27 1.29 1.19 0.25
AS carbon/Epoxy (Vf = 0.60) 139.9 7.72 3.67 2.9 0.26

AS4/3501-6 (Vf = 0.60) 136.7 8.93 4.54 3.42 0.25
IM7/8551-7 (Vf = 0.60) 167.3 10.1 4.92 3.42 0.27

G40-800/5260 (Vf = 0.60) 175.4 8.85 4.35 3.09 0.25
Average error 3.1% 25.1% 25.2% 22.4% 14.9%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.

Table A6. Effective properties predicted by rule of mixture.

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf = 0.62) 50.9 8.252 3.076 3.076 0.26
E-Glass b/MY750 (Vf = 0.60) 45.7 7.84 2.92 2.92 0.26
S2-Glass/Epoxy (Vf = 0.60) 53.5 7.58 2.82 2.82 0.26
T300/BSL914C (Vf = 0.60) 139.6 7.14 3.225 2.811 0.26

T300/PR319 (Vf = 0.60) 138.4 2.169 0.85 0.82 0.26
AS carbon/Epoxy (Vf = 0.60) 139.9 6.1 2.65 2.36 0.26

AS4/3501-6 (Vf = 0.60) 136.7 7.39 3.39 2.93 0.26
IM7/8551-7 (Vf = 0.60) 167.2 7.72 3.42 2.81 0.27

G40-800/5260 (Vf = 0.60) 175.4 6.78 2.99 2.51 0.26
Average error 3.1% 41.5% 48.1% 36.5% 12.9%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.

Table A7. Effective properties predicted by Chamis model.

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf = 0.62) 50.9 13.64 5.13 5.13 0.26
E-Glass b/MY750 (Vf = 0.60) 45.7 12.86 4.83 4.83 0.26
S2-Glass/Epoxy (Vf = 0.60) 53.5 12.60 4.73 4.73 0.26
T300/BSL914C (Vf = 0.60) 139.6 9.26 4.91 3.81 0.26

T300/PR319 (Vf = 0.60) 138.4 3.46 1.45 1.33 0.27
AS carbon/Epoxy (Vf = 0.60) 139.9 8.19 4.14 3.33 0.26

AS4/3501-6 (Vf = 0.60) 136.7 9.50 5.12 3.93 0.26
IM7/8551-7 (Vf = 0.60) 167.2 10.42 5.52 3.80 0.27

G40-800/5260 (Vf = 0.60) 175.4 9.43 4.88 3.49 0.26
Average error 3.1% 21.4% 18.1% 15.0% 12.9%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.

Table A8. Effective properties predicted by Halpin–Tsai equations.

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf = 0.62) 50.9 11.7 4.6 4.06 0.26
E-Glass b/MY750 (Vf = 0.60) 45.7 11.02 4.32 3.83 0.26
S2-Glass/Epoxy (Vf = 0.60) 53.5 10.78 4.23 3.72 0.26
T300/BSL914C (Vf = 0.60) 139.6 8.57 4.35 3.21 0.26

T300/PR319 (Vf = 0.60) 138.4 3.02 1.29 1.06 0.27
AS carbon/Epoxy (Vf = 0.60) 139.9 7.48 3.67 2.77 0.26

AS4/3501-6 (Vf = 0.60) 136.7 8.76 4.54 3.32 0.26
IM7/8551-7 (Vf = 0.60) 167.2 9.67 4.92 3.23 0.27

G40-800/5260 (Vf = 0.60) 175.4 8.47 4.35 2.92 0.26
Average error 3.1% 28.2% 25.2% 26.9% 12.9%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.
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Table A9. Effective properties predicted by bridging model (α = β = 0.3).

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf = 0.62) 50.9 18.1 6.28 6.24 0.26
E-Glass b/MY750 (Vf = 0.60) 45.7 16.8 5.84 5.8 0.26
S2-Glass/Epoxy (Vf = 0.60) 53.5 16.9 5.81 5.77 0.26
T300/BSL914C (Vf = 0.60) 139.6 9.6 5.35 3.66 0.26

T300/PR319 (Vf = 0.60) 138.4 4.41 1.82 1.55 0.27
AS carbon/Epoxy (Vf = 0.60) 139.9 8.7 4.64 3.29 0.26

AS4/3501-6 (Vf = 0.60) 136.7 9.7 5.54 3.76 0.26
IM7/8551-7 (Vf = 0.60) 167.2 11.2 6.46 3.76 0.27

G40-800/5260 (Vf = 0.60) 175.4 10.2 5.8 3.51 0.26
Average error 3.1% 12.4% 14.6% 9.0% 12.9%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.

Table A10. Effective properties predicted by FEM.

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf = 0.62) 50.9 16.26 4.96 6.49 0.25
E-Glass b/MY750 (Vf = 0.60) 45.8 14.9 4.58 5.89 0.25
S2-Glass/Epoxy (Vf = 0.60) 53.5 14.86 4.5 5.89 0.25
T300/BSL914C (Vf = 0.60) 139.6 9.42 4.5 3.71 0.26

T300/PR319 (Vf = 0.60) 138.4 3.98 1.38 1.58 0.25
AS carbon/Epoxy (Vf = 0.60) 139.9 8.45 3.82 3.32 0.26

AS4/3501-6 (Vf = 0.60) 136.7 9.54 4.68 3.79 0.25
IM7/8551-7 (Vf = 0.60) 167.2 10.88 5.15 3.79 0.27

G40-800/5260 (Vf = 0.60) 175.4 9.63 4.57 3.47 0.25
Average error 3.1% 15.9% 22.1% 8.8% 15.4%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.

Table A11. Effective properties predicted by finite volume direct averaging micromechanics (FVDAM).

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf =0.62) 50.9 16.26 4.95 6.49 0.25
E-Glass b/MY750 (Vf =0.60) 45.8 14.90 4.57 5.89 0.25
S2-Glass/Epoxy (Vf = 0.60) 53.5 14.86 4.50 5.89 0.25
T300/BSL914C (Vf = 0.60) 139.6 9.42 4.51 3.71 0.26

T300/PR319 (Vf = 0.60) 138.4 3.97 1.38 1.57 0.25
AS carbon/Epoxy (Vf = 0.60) 139.9 8.44 3.83 3.32 0.25

AS4/3501-6 (Vf = 0.60) 136.7 9.53 4.70 3.79 0.25
IM7/8551-7 (Vf = 0.60) 167.2 10.87 5.18 3.78 0.27

G40-800/5260 (Vf = 0.60) 175.4 9.62 4.60 3.47 0.25
Average error 3.1% 14.9% 22% 8.9% 15.3%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.

Table A12. Effective properties predicted by generalized method of cells (GMC).

Composites E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12

E-Glass a/LY556 (Vf = 0.62) 50.9 15.40 4.57 6.02 0.25
E-Glass b/MY750 (Vf = 0.60) 45.8 14.16 4.21 5.49 0.25
S2-Glass/Epoxy (Vf = 0.60) 53.5 14.09 4.13 5.47 0.25
T300/BSL914C (Vf = 0.60) 139.6 9.20 4.21 3.58 0.26

T300/PR319 (Vf = 0.60) 138.4 3.78 1.27 1.47 0.25
AS carbon/Epoxy (Vf = 0.60) 139.9 8.21 3.56 3.19 0.26

AS4/3501-6 (Vf = 0.60) 136.7 9.33 4.39 3.67 0.25
IM7/8551-7 (Vf = 0.60) 167.2 10.57 4.78 3.65 0.27

G40-800/5260 (Vf = 0.60) 175.4 9.35 4.24 3.35 0.25
Average error 3.1% 18.4% 27.0% 11.8% 15.0%

a E-Glass 21 × K43 Gevetex; b Silenka E-Glass 1200tex.
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61. Tosun-Felekoğlu, K.; Felekoğlu, B.; Ranade, R.; Lee, B.Y.; Li, V.C. The role of flaw size and fiber distribution
on tensile ductility of PVA-ECC. Compos. Part B Eng. 2014, 56, 536–545. [CrossRef]

62. Brito-Santana, H.; de Medeiros, R.; Rodriguez-Ramos, R.; Tita, V. Different interface models for calculating
the effective properties in piezoelectric composite materials with imperfect fiber–matrix adhesion.
Compos. Struct. 2016, 151, 70–80. [CrossRef]

63. Hörrmann, S.; Adumitroaie, A.; Viechtbauer, C.; Schagerl, M. The effect of fiber waviness on the fatigue life
of CFRP materials. Int. J. Fatigue 2016, 90, 139–147. [CrossRef]

64. Espinosa-Almeyda, Y.; Camacho-Montes, H.; Rodríguez-Ramos, R.; Guinovart-Díaz, R.; López-Realpozo, J.C.;
Bravo-Castillero, J.; Sabina, F.J. Influence of imperfect interface and fiber distribution on the antiplane
effective magneto-electro-elastic properties for fiber reinforced composites. Int. J. Solids Struct. 2017, 112,
155–168. [CrossRef]

65. Doghri, I.; Ouaar, A. Homogenization of two-phase elasto-plastic composite materials and structures—Study
of tangent operators, cyclic plasticity and numerical algorithms. Int. J. Solids Struct. 2003, 40, 1681–1712.
[CrossRef]

66. Rekik, A.; Bornert, M.; Auslender, F. A critical evaluation of local field statistics predicted by various
linearization schemes in nonlinear mean-field homogenization. Mech. Mater. 2012, 54, 1–17. [CrossRef]

67. Kanaun, S. An efficient homogenization method for composite materials with elasto-plastic components.
Int. J. Eng. Sci. 2012, 57, 36–49. [CrossRef]

68. Hou, T.Y.; Wu, X.-H. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and
Porous Media. J. Comput. Phys. 1997, 134, 169–189. [CrossRef]

69. Ghosh, S.; Lee, K.; Raghavan, P. A multi-level computational model for multi-scale damage analysis in
composite and porous materials. Int. J. Solids Struct. 2001, 38, 2335–2385. [CrossRef]

70. Kanouté, P.; Boso, D.P.; Chaboche, J.L.; Schrefler, B.A. Multiscale Methods for Composites: A Review.
Arch. Comput. Methods Eng. 2009, 16, 31–75. [CrossRef]

71. Ye, J.; Qiu, Y.; Chen, X.; Ma, J. Initial and final failure strength analysis of composites based on a
micromechanical method. Compos. Struct. 2015, 125, 328–335. [CrossRef]

72. Ghorbani Moghaddam, M.; Achuthan, A.; Bednarcyk, B.A.; Arnold, S.M.; Pineda, E.J. A Multiscale
Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized
Method of Cells (GMC) for Metallic Polycrystals. Materials 2016, 9, 335. [CrossRef] [PubMed]

73. Patel, D.K.; Hasanyan, A.D.; Waas, A.M. N-Layer concentric cylinder model (NCYL): An extended
micromechanics-based multiscale model for nonlinear composites. Acta Mech. 2016, 228, 275–306. [CrossRef]

74. García-Carpintero, A.; Herráez, M.; Xu, J.; Lopes, C.S.; González, C. A Multi Material Shell Model for the
Mechanical Analysis of Triaxial Braided Composites. Appl. Compos. Mater. 2017, 24, 1425–1445. [CrossRef]

75. Hettich, T.; Hund, A.; Ramm, E. Modeling of failure in composites by X-FEM and level sets within a
multiscale framework. Comput. Methods Appl. Mech. Eng. 2008, 197, 414–424. [CrossRef]

http://dx.doi.org/10.1016/j.compscitech.2006.02.031
http://dx.doi.org/10.1016/0022-5096(65)90010-4
http://dx.doi.org/10.1016/0001-6160(73)90064-3
http://dx.doi.org/10.1016/S0749-6419(00)00056-5
http://dx.doi.org/10.1016/j.compositesb.2009.03.007
http://dx.doi.org/10.1115/1.4001911
http://dx.doi.org/10.1016/j.compscitech.2014.04.004
http://dx.doi.org/10.1016/j.compositesb.2013.08.089
http://dx.doi.org/10.1016/j.compstruct.2016.02.003
http://dx.doi.org/10.1016/j.ijfatigue.2016.04.029
http://dx.doi.org/10.1016/j.ijsolstr.2017.01.016
http://dx.doi.org/10.1016/S0020-7683(03)00013-1
http://dx.doi.org/10.1016/j.mechmat.2012.05.011
http://dx.doi.org/10.1016/j.ijengsci.2012.04.005
http://dx.doi.org/10.1006/jcph.1997.5682
http://dx.doi.org/10.1016/S0020-7683(00)00167-0
http://dx.doi.org/10.1007/s11831-008-9028-8
http://dx.doi.org/10.1016/j.compstruct.2015.02.030
http://dx.doi.org/10.3390/ma9050335
http://www.ncbi.nlm.nih.gov/pubmed/28773458
http://dx.doi.org/10.1007/s00707-016-1696-0
http://dx.doi.org/10.1007/s10443-017-9593-9
http://dx.doi.org/10.1016/j.cma.2007.07.017


Materials 2018, 11, 1919 47 of 55

76. Ernst, G.; Vogler, M.; Hühne, C.; Rolfes, R. Multiscale progressive failure analysis of textile composites.
Compos. Sci. Technol. 2010, 70, 61–72. [CrossRef]

77. Greco, F.; Leonetti, L.; Lonetti, P. A two-scale failure analysis of composite materials in presence of
fiber/matrix crack initiation and propagation. Compos. Struct. 2013, 95, 582–597. [CrossRef]

78. Talebi, H.; Silani, M.; Bordas, S.P.A.; Kerfriden, P.; Rabczuk, T. A computational library for multiscale
modeling of material failure. Comput. Mech. 2013, 53, 1047–1071. [CrossRef]

79. Spahn, J.; Andrä, H.; Kabel, M.; Müller, R. A multiscale approach for modeling progressive damage of
composite materials using fast Fourier transforms. Comput. Methods Appl. Mech. Eng. 2014, 268, 871–883.
[CrossRef]

80. DorMohammdi, S.; Godines, C.; Abdi, F.; Huang, D.; Repupilli, M.; Minnetyan, L. Damage-tolerant composite
design principles for aircraft components under fatigue service loading using multi-scale progressive failure
analysis. J. Compos. Mater. 2017, 51, 2181–2202. [CrossRef]

81. Zhai, J.; Zeng, T.; Xu, G.-D.; Wang, Z.-H.; Cheng, S.; Fang, D.-N. A multi-scale finite element method for
failure analysis of three-dimensional braided composite structures. Compos. Part B Eng. 2017, 110, 476–486.
[CrossRef]

82. Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures; North-Holland
Publishing Company: Amsterdam, The Netherlands, 1978; Volume 5.

83. Guedes, J.; Kikuchi, N. Preprocessing and postprocessing for materials based on the homogenization method
with adaptive finite element methods. Comput. Methods Appl. Mech. Eng. 1990, 83, 143–198. [CrossRef]

84. Fish, J.; Belsky, V. Multi-grid method for periodic heterogeneous media part 2: Multiscale modeling and
quality control in multidimensional case. Comput. Methods Appl. Mech. Eng. 1995, 126, 17–38. [CrossRef]

85. Fish, J.; Shek, K. Finite deformation plasticity for composite structures: Computational models and adaptive
strategies. Comput. Methods Appl. Mech. Eng. 1999, 172, 145–174. [CrossRef]

86. Yu, W.; Tang, T. Variational asymptotic method for unit cell homogenization of periodically heterogeneous
materials. Int. J. Solids Struct. 2007, 44, 3738–3755. [CrossRef]

87. Zhang, L.; Yu, W. Variational asymptotic homogenization of elastoplastic composites. Compos. Struct. 2015,
133, 947–958. [CrossRef]

88. Zhong, Y.; Qin, W.; Yu, W.; Zhou, X.; Jiao, L. Variational asymptotic homogenization of magneto-electro-elastic
materials with coated fibers. Compos. Struct. 2015, 133, 300–311. [CrossRef]

89. Suquet, P. Elements of homogenization for inelastic solid mechanics. In Homogenization Techniques for
Composite Media; Springer: Berlin/Heidelberg, Germany, 1987; Volume 272, pp. 193–278.

90. Fish, J.; Belsky, V. Multigrid method for periodic heterogeneous media Part 1: Convergence studies for
one-dimensional case. Comput. Methods Appl. Mech. Eng. 1995, 126, 1–16. [CrossRef]

91. Kalamkarov, A.L.; Andrianov, I.V.; Danishevsâ, V.V. Asymptotic homogenization of composite materials and
structures. Appl. Mech. Rev. 2009, 62, 030802. [CrossRef]

92. Yang, Y.; Lei, C.; Gao, C.-F.; Li, J. Asymptotic homogenization of three-dimensional thermoelectric composites.
J. Mech. Phys. Solids 2015, 76, 98–126. [CrossRef]

93. Zhao, J.; Li, H.; Cheng, G.; Cai, Y. On predicting the effective elastic properties of polymer nanocomposites by
novel numerical implementation of asymptotic homogenization method. Compos. Struct. 2016, 135, 297–305.
[CrossRef]

94. Zhang, Y.; Shang, S.; Liu, S. A novel implementation algorithm of asymptotic homogenization for predicting
the effective coefficient of thermal expansion of periodic composite materials. Acta Mech. Sin. 2017, 33,
368–381. [CrossRef]

95. Chaboche, J.L.; Kanoute, P.; Roos, A. On the capabilities of mean-field approaches for the description of
plasticity in metal matrix composites. Int. J. Plast. 2005, 21, 1409–1434. [CrossRef]

96. Klusemann, B.; Svendsen, B. Homogenization methods for multi-phase elastic composites: Comparisons
and benchmarks. Tech. Mech. 2010, 30, 374–386.

97. Klusemann, B.; Böhm, H.J.; Svendsen, B. Homogenization methods for multi-phase elastic composites
with non-elliptical reinforcements: Comparisons and benchmarks. Eur. J. Mech. A Solids 2012, 34, 21–37.
[CrossRef]

98. Saeb, S.; Steinmann, P.; Javili, A. Aspects of Computational Homogenization at Finite Deformations:
A Unifying Review From Reuss’ to Voigt’s Bound. Appl. Mech. Rev. 2016, 68, 050801. [CrossRef]

http://dx.doi.org/10.1016/j.compscitech.2009.09.006
http://dx.doi.org/10.1016/j.compstruct.2012.08.035
http://dx.doi.org/10.1007/s00466-013-0948-2
http://dx.doi.org/10.1016/j.cma.2013.10.017
http://dx.doi.org/10.1177/0021998317691812
http://dx.doi.org/10.1016/j.compositesb.2016.11.039
http://dx.doi.org/10.1016/0045-7825(90)90148-F
http://dx.doi.org/10.1016/0045-7825(95)00812-F
http://dx.doi.org/10.1016/S0045-7825(98)00228-X
http://dx.doi.org/10.1016/j.ijsolstr.2006.10.020
http://dx.doi.org/10.1016/j.compstruct.2015.07.117
http://dx.doi.org/10.1016/j.compstruct.2015.07.092
http://dx.doi.org/10.1016/0045-7825(95)00811-E
http://dx.doi.org/10.1115/1.3090830
http://dx.doi.org/10.1016/j.jmps.2014.12.006
http://dx.doi.org/10.1016/j.compstruct.2015.09.039
http://dx.doi.org/10.1007/s10409-016-0618-7
http://dx.doi.org/10.1016/j.ijplas.2004.07.001
http://dx.doi.org/10.1016/j.euromechsol.2011.12.002
http://dx.doi.org/10.1115/1.4034024


Materials 2018, 11, 1919 48 of 55

99. Matouš, K.; Geers, M.G.D.; Kouznetsova, V.G.; Gillman, A. A review of predictive nonlinear theories for
multiscale modeling of heterogeneous materials. J. Comput. Phys. 2017, 330, 192–220. [CrossRef]

100. Ghossein, E.; Lévesque, M. A comprehensive validation of analytical homogenization models: The case of
ellipsoidal particles reinforced composites. Mech. Mater. 2014, 75, 135–150. [CrossRef]

101. Liu, L.; Huang, Z.M. Stress concentration factor in matrix of a composite reinforced with transversely
isotropic fibers. J. Compos. Mater. 2012, 48, 81–98. [CrossRef]

102. Yao, Z.; Huang, Z.M. Stress concentration factor in the matrix reinforced with fiber having an interface layer.
J. Reinf. Plast. Compos. 2013, 32, 105–123. [CrossRef]

103. Huang, Z.-M.; Liu, L. Predicting strength of fibrous laminates under triaxial loads only upon independently
measured constituent properties. Int. J. Mech. Sci. 2014, 79, 105–129. [CrossRef]

104. Huang, Z.-M.; Liu, L. Assessment of composite failure and ultimate strength without experiment on
composite. Acta Mech. Sin. 2014, 30, 569–588. [CrossRef]

105. Huang, Z.-M.; Xin, L.-M. Stress concentration factors of matrix in a composite. Subjected to transverse loads.
In Proceedings of the ICCM2014, Cambridge, UK, 28–30 July 2014.

106. Yao, Z.; Huang, Z.-M. Stress concentration factors in the matrix with different imperfect interfaces. Int. J.
Damage Mech. 2014, 23, 745–771. [CrossRef]

107. Huang, Z.M.; Xin, L.M. Strength Prediction of Laminated Composites upon Independent Constituent
Properties. In Key Engineering Materials; Trans Tech Publications: Zürich, Switzerland, 2016; pp. 153–156.

108. Huang, Z.-M.; Xin, L.-M. Stress Concentration Factor in Matrix of a Composite Subjected to Transverse
Compression. Int. J. Appl. Mech. 2016, 8, 1650034. [CrossRef]

109. Huang, Z.-M.; Xin, L.-M. In situ strengths of matrix in a composite. Acta Mech. Sin. 2016, 33, 120–131.
[CrossRef]

110. Pierard, O.; Doghri, I. An enhanced affine formulation and the corresponding numerical algorithms for the
mean-field homogenization of elasto-viscoplastic composites. Int. J. Plast. 2006, 22, 131–157. [CrossRef]

111. Azoti, W.L.; Koutsawa, Y.; Tchalla, A.; Makradi, A.; Belouettar, S. Micromechanics-based multi-site modeling
of elastoplastic behavior of composite materials. Int. J. Solids Struct. 2015, 59, 198–207. [CrossRef]

112. Wu, L.; Noels, L.; Adam, L.; Doghri, I. A combined incremental-secant mean-field homogenization scheme
with per-phase residual strains for elasto-plastic composites. Int. J. Plast. 2013, 51, 80–102. [CrossRef]

113. Wu, L.; Noels, L.; Adam, L.; Doghri, I. An implicit-gradient-enhanced incremental-secant mean-field
homogenization scheme for elasto-plastic composites with damage. Int. J. Solids Struct. 2013, 50, 3843–3860.
[CrossRef]

114. Wu, L.; Doghri, I.; Noels, L. An incremental-secant mean-field homogenization method with second statistical
moments for elasto-plastic composite materials. Philos. Mag. 2015, 95, 3348–3384. [CrossRef]

115. Wu, L.; Adam, L.; Doghri, I.; Noels, L. An incremental-secant mean-field homogenization method with
second statistical moments for elasto-visco-plastic composite materials. Mech. Mater. 2017, 114, 180–200.
[CrossRef]

116. Peng, X.; Tang, S.; Hu, N.; Han, J. Determination of the Eshelby tensor in mean-field schemes for evaluation
of mechanical properties of elastoplastic composites. Int. J. Plast. 2016, 76, 147–165. [CrossRef]

117. Nemat-Nasser, S.; Hori, M. Micromechanics: Overall Properties of Heterogeneous Materials; Elsevier: Amsterdam,
The Netherlands, 2013; Volume 37.

118. Hill, R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 1963, 11,
357–372. [CrossRef]

119. Bohm, H.J.; Eckschlager, A.; Han, W. Multi inclusion unit cell models for metal matrix composites with
randomly oriented discontinuous reinforcedments. Comput. Mater. Sci. 2002, 25, 42–53. [CrossRef]

120. Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D. Determination of the size of the representative volume
element for random composites: Statistical and numerical approach. Int. J. Solids Struct. 2003, 40, 3647–3679.
[CrossRef]

121. Heinrich, C.; Aldridge, M.; Wineman, A.S.; Kieffer, J.; Waas, A.M.; Shahwan, K. The influence of the
representative volume element (RVE) size on the homogenized response of cured fiber composites.
Model. Simul. Mater. Sci. Eng. 2012, 20, 075007. [CrossRef]

122. Monetto, I.; Drugan, W.J. A micromechanics-based nonlocal constitutive equation and minimum RVE size
estimates for random elastic composites containing aligned spheroidal heterogeneities. J. Mech. Phys. Solids
2009, 57, 1578–1595. [CrossRef]

http://dx.doi.org/10.1016/j.jcp.2016.10.070
http://dx.doi.org/10.1016/j.mechmat.2014.03.014
http://dx.doi.org/10.1177/0021998312469237
http://dx.doi.org/10.1177/0731684412453214
http://dx.doi.org/10.1016/j.ijmecsci.2013.08.010
http://dx.doi.org/10.1007/s10409-014-0040-y
http://dx.doi.org/10.1177/1056789513512345
http://dx.doi.org/10.1142/S1758825116500344
http://dx.doi.org/10.1007/s10409-016-0611-1
http://dx.doi.org/10.1016/j.ijplas.2005.04.001
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.002
http://dx.doi.org/10.1016/j.ijplas.2013.06.006
http://dx.doi.org/10.1016/j.ijsolstr.2013.07.022
http://dx.doi.org/10.1080/14786435.2015.1087653
http://dx.doi.org/10.1016/j.mechmat.2017.08.006
http://dx.doi.org/10.1016/j.ijplas.2015.07.009
http://dx.doi.org/10.1016/0022-5096(63)90036-X
http://dx.doi.org/10.1016/S0927-0256(02)00248-3
http://dx.doi.org/10.1016/S0020-7683(03)00143-4
http://dx.doi.org/10.1088/0965-0393/20/7/075007
http://dx.doi.org/10.1016/j.jmps.2009.05.005


Materials 2018, 11, 1919 49 of 55

123. Nguyen, V.D.; Béchet, E.; Geuzaine, C.; Noels, L. Imposing periodic boundary condition on arbitrary meshes
by polynomial interpolation. Comput. Mater. Sci. 2012, 55, 390–406. [CrossRef]

124. Hoang, T.H.; Guerich, M.; Yvonnet, J. Determining the Size of RVE for Nonlinear Random Composites in an
Incremental Computational Homogenization Framework. J. Eng. Mech. 2016, 142, 04016018. [CrossRef]

125. Siddiqui, M.; Arif, A.F.M. A Computational Approach for the Constitutive Modeling of Elastoplastic Behavior
of Metal Matrix Composites. Int. J. Comput. Methods 2016, 14, 1750058. [CrossRef]

126. Fish, J.; Shek, K.; Pandheeradi, M.; Shephard, M.S. Computational plasticity for composite structures based
on mathematical homogenization: Theory and practice. Comput. Methods Appl. Mech. Eng. 1997, 148, 53–73.
[CrossRef]

127. Pettermann, H.E.; Suresh, S. A comprehesive unit cell model a study of coupled effects in piezoelectric 1–3
composites. Int. J. Solids Struct. 2000, 37, 5447–5464. [CrossRef]

128. Sun, W.; Lin, F.; Hu, X. Computer-aided design and modeling of composite unit cells. Compos. Sci. Technol.
2001, 61, 289–299. [CrossRef]

129. Callister, W.D.; Rethwisch, D.G. Materials Science Engineering An Introduction; Wiley: New York, NY, USA,
2007; Volume 7.

130. Brockenbrough, J.R.; Suresh, S.; Wienecke, H.A. Deformation of metal-matrix composites with continuous
fibers: Geometrical effects of fiber distribution and shape. Acta Metall. Mater. 1991, 39, 735–752. [CrossRef]

131. Aboudi, J. Mechanics of Composite Materials: A Unified Micromechanical Approach; Elsevier: Amsterdam,
The Netherlands, 2013; Volume 29.

132. Aghdam, M.M.; Smith, D.J.; Pavier, M.J. Finite element micromechanical modelling of yield and collapse
behaviour of metal matrix composites. J. Mech. Phys. Solids 2000, 48, 499–528. [CrossRef]

133. Würkner, M.; Berger, H.; Gabbert, U. Numerical investigations of effective properties of fiber reinforced
composites with parallelogram arrangements and imperfect interface. Compos. Struct. 2014, 116, 388–394.
[CrossRef]

134. Xia, Z.; Zhang, Y.; Ellyin, F. A unified periodical boundary conditions for representative volume elements of
composites and applications. Int. J. Solids Struct. 2003, 40, 1907–1921. [CrossRef]

135. Xia, Z.; Zhou, C.; Yong, Q.; Wang, X. On selection of repeated unit cell model and application of unified
periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 2006, 43,
266–278. [CrossRef]

136. Qi, L.; Tian, W.; Zhou, J. Numerical evaluation of effective elastic properties of composites reinforced by
spatially randomly distributed short fibers with certain aspect ratio. Compos. Struct. 2015, 131, 843–851.
[CrossRef]

137. Song, W.; Krishnaswamy, V.; Pucha, R.V. Computational homogenization in RVE models with material
periodic conditions for CNT polymer composites. Compos. Struct. 2016, 137, 9–17. [CrossRef]

138. Wang, R.; Zhang, L.; Hu, D.; Liu, C.; Shen, X.; Cho, C.; Li, B. A novel approach to impose periodic boundary
condition on braided composite RVE model based on RPIM. Compos. Struct. 2017, 163, 77–88. [CrossRef]

139. Tyrus, J.M.; Gosz, M.; DeSantiago, E. A local finite element implementation for imposing periodic boundary
conditions on composite micromechanical models. Int. J. Solids Struct. 2007, 44, 2972–2989. [CrossRef]

140. Zhang, Y.; Xia, Z.; Ellyin, F. Two-scale analysis of a filament-wound cylindrical structure and application of
periodic boundary conditions. Int. J. Solids Struct. 2008, 45, 5322–5336. [CrossRef]

141. Jacques, S.; De Baere, I.; Van Paepegem, W. Application of periodic boundary conditions on multiple part
finite element meshes for the meso-scale homogenization of textile fabric composites. Compos. Sci. Technol.
2014, 92, 41–54. [CrossRef]

142. Kamarudin, K.-A.; Ismail, A.E. Prediction of elastic properties for unidirectional carbon composites: Periodic
boundary condition approach. In Proceedings of the International Integrated Engineering Summit (IIES
2014), Batu Pahat, Malaysia, 1–4 December 2014.

143. Espadas-Escalante, J.J.; van Dijk, N.P.; Isaksson, P. A study on the influence of boundary conditions in
computational homogenization of periodic structures with application to woven composites. Compos. Struct.
2017, 160, 529–537. [CrossRef]

144. Yuan, Z.; Lu, Z. Numerical analysis of elastic–plastic properties of polymer composite reinforced by wavy
and random CNTs. Comput. Mater. Sci. 2014, 95, 610–619. [CrossRef]

145. Wan, Y.; Wang, Y.; Gu, B. Finite element prediction of the impact compressive properties of three-dimensional
braided composites using multi-scale model. Compos. Struct. 2015, 128, 381–394. [CrossRef]

http://dx.doi.org/10.1016/j.commatsci.2011.10.017
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001057
http://dx.doi.org/10.1142/S021987621750058X
http://dx.doi.org/10.1016/S0045-7825(97)00030-3
http://dx.doi.org/10.1016/S0020-7683(99)00224-3
http://dx.doi.org/10.1016/S0266-3538(00)00218-9
http://dx.doi.org/10.1016/0956-7151(91)90274-5
http://dx.doi.org/10.1016/S0022-5096(99)00041-1
http://dx.doi.org/10.1016/j.compstruct.2014.05.012
http://dx.doi.org/10.1016/S0020-7683(03)00024-6
http://dx.doi.org/10.1016/j.ijsolstr.2005.03.055
http://dx.doi.org/10.1016/j.compstruct.2015.06.045
http://dx.doi.org/10.1016/j.compstruct.2015.11.013
http://dx.doi.org/10.1016/j.compstruct.2016.12.032
http://dx.doi.org/10.1016/j.ijsolstr.2006.08.040
http://dx.doi.org/10.1016/j.ijsolstr.2008.05.026
http://dx.doi.org/10.1016/j.compscitech.2013.11.023
http://dx.doi.org/10.1016/j.compstruct.2016.10.082
http://dx.doi.org/10.1016/j.commatsci.2014.08.031
http://dx.doi.org/10.1016/j.compstruct.2015.03.066


Materials 2018, 11, 1919 50 of 55

146. Rekik, A.; Auslender, F.; Bornert, M.; Zaoui, A. Objective evaluation of linearization procedures in nonlinear
homogenization: A methodology and some implications on the accuracy of micromechanical schemes. Int. J.
Solids Struct. 2007, 44, 3468–3496. [CrossRef]

147. Ghosh, S.; Lee, K.; Moorthy, S. Multiple scale analysis of heterogeneous elastic structures using
homogenization theory and voronoi cell finite element method. Int. J. Solids Struct. 1995, 32, 27–62.
[CrossRef]

148. Ghosh, S.; Moorthy, S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell
finite element method. Comput. Methods Appl. Mech. Eng. 1995, 121, 373–409. [CrossRef]

149. Ghosh, S.; Lee, K.; Moorthy, S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic
homogenization and Voronoi cell finite element model. Comput. Methods Appl. Mech. Eng. 1996, 132, 63–116.
[CrossRef]

150. Pineda, E.J.; Bednarcyk, B.A.; Waas, A.M.; Arnold, S.M. Progressive failure of a unidirectional fiber-reinforced
composite using the method of cells: Discretization objective computational results. Int. J. Solids Struct. 2013,
50, 1203–1216. [CrossRef]

151. Ghorbani Moghaddam, M.; Achuthan, A.; Bednarcyk, B.A.; Arnold, S.M.; Pineda, E.J. A multi-scale
computational model using Generalized Method of Cells (GMC) homogenization for multi-phase single
crystal metals. Comput. Mater. Sci. 2015, 96, 44–55. [CrossRef]

152. Ghorbani Moghaddam, M.; Achuthan, A.; Bednarcyk, B.A.; Arnold, S.M.; Pineda, E.J. Development
of a precipitate size-dependent crystal plasticity constitutive model for two-phase materials and its
implementation on a multi-scale computational framework. Mater. Sci. Eng. A 2016, 651, 893–903. [CrossRef]

153. Cavalcante, M.A.A.; Khatam, H.; Pindera, M.-J. Homogenization of elastic–plastic periodic materials by
FVDAM and FEM approaches—An assessment. Compos. Part B Eng. 2011, 42, 1713–1730. [CrossRef]

154. Cavalcante, M.A.A.; Pindera, M.-J. Generalized Finite-Volume Theory for Elastic Stress Analysis in Solid
Mechanics—Part I: Framework. J. Appl. Mech. 2012, 79, 051006. [CrossRef]

155. Cavalcante, M.A.A.; Pindera, M.-J. Generalized Finite-Volume Theory for Elastic Stress Analysis in Solid
Mechanics—Part II: Results. J. Appl. Mech. 2012, 79, 051007. [CrossRef]

156. Cavalcante, M.A.A.; Pindera, M.-J.; Khatam, H. Finite-volume micromechanics of periodic materials: Past,
present and future. Compos. Part B Eng. 2012, 43, 2521–2543. [CrossRef]

157. Beveridge, A.J.; Wheel, M.A.; Nash, D.H. A higher order control volume based finite element method to
predict the deformation of heterogeneous materials. Comput. Struct. 2013, 129, 54–62. [CrossRef]

158. Cavalcante, M.A.A.; Pindera, M.-J. Finite-volume enabled transformation field analysis of periodic materials.
Int. J. Mech. Mater. Des. 2013, 9, 153–179. [CrossRef]
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