Supporting Information

Influence of PEG stoichiometry on structure-tuned formation of self-assembled submicron nickel particles

Bingxue Pu¹, Liping Wang¹, Heng Guo¹, Jian Yang¹, Haiyuan Chen¹, Yajun Zhou¹, Jin Yang¹, Bin Zhao^{2*} and Xiaobin Niu^{1*}

- ¹ School of Micro-electronics and Solid-state Electronics, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
- ² School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, 250101, China E-mail: xbniu@uestc.edu.cn, <u>zbkite@sdjzu.edu.cn</u>.

Fig.S1 shows the XRD patterns of Ni-P_{1.5}/T₁₆₀/H₁₅, the samples have characteristic diffraction peaks at 11.3 °,22.7 °, 34.4 ° and 45.9 ° corresponding to Ni (003), (006),(012) and (110), which match well with the values of the FCC phase α *-Ni(OH)₂·0.75H₂O (JCPDS Card No. 04-0850).

Fig.S1 XRD patterns of Ni-P_{1.5}/T₁₆₀/H₁₅.

Fig.S2 shows the XRD patterns of Ni-P_{1.5}/ T_{200}/H_{15} (a), and Ni-P_{1.5}/ T_{200}/H_{15} (b). The XRD patterns indicate that the Ni-P_{1.5}/ T_{200}/H_{10} and Ni-P_{1.5}/ T_{200}/H_{15} contain a small amount of nickel hydroxide.

Fig.S2 XRD patterns of Ni-P_{1.5}/ T_{200}/H_{10} (a) and Ni-P_{1.5}/ T_{200}/H_{15} (b).

Fig.S3 shows the calculated reflection losses of pure paraffin with thicknesses of 5 mm. It can be inferred that pure paraffin can hardly cause any effect on the electromagnetic properties of the Ni-P₉/ T_{200}/H_{15} .

Fig.S3 The calculated reflection losses of pure paraffin with thicknesses of 5 mm.