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Abstract: Polymer injection-molding is one of the most used manufacturing processes for the
production of plastic products. Its electricity consumption highly influences its cost as well as
its environmental impact. Reducing these factors is one of the challenges that material science and
production engineering face today. However, there is currently a lack of data regarding electricity
consumption values for injection-molding, which leads to significant errors due to the inherent high
variability of injection-molding and its configurations. In this paper, an empirical model is proposed
to better estimate the electricity consumption and the environmental impact of the injection-molding
process. This empirical model was created after measuring the electricity consumption of a wide
range of parts. It provides a method to estimate both electricity consumption and environmental
impact, taking into account characteristics of both the molded parts and the molding machine. A case
study of an induction cooktop housing is presented, showing adequate accuracy of the empirical
model and the importance of proper machine selection to reduce cost, electricity consumption, and
environmental impact.

Keywords: polymer material; injection-molding; manufacturing processes; electricity consumption;
environmental impact; empirical model

1. Introduction

Climate change is forcing companies to perform risk management as well as look for opportunities
to reduce the environmental impact of their operations [1,2].

The concern regarding the achievement of sustainable development is patent in the literature.
Strategies to achieve a cleaner industrial sector have been discussed using, for example, analytical tools
that help in the decision-making of an industrial process [3] or linking lean manufacturing practices
with the lifecycle assessment methodology in order to reduce the environmental impact [4].

Polymer injection-molding is a standard manufacturing process that is typically characterized
by high production volumes [5]. Electricity is required during several steps of this process, from the
movements of the machine that allow the closure of the mold, filling the cavity, holding and ejecting
of the part, to the plasticizing phase of the polymer and the needs of cooling for both the machine
and its parts. In order to carry out these steps of the cycle, injection-molding machines are composed
of two different units: the injection unit and the clamping unit. The injection unit is responsible for
heating the polymer up to the injection temperature by rotating the screw and using electric resistors.
The clamping unit works as a press supplying a clamping force that allows the closure of the mold
during filling. To avoid defects in the parts due to partial mold opening, this clamping force should be
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higher than the one exerted by the injection pressure during the filling phase of the molding process.
A wide range of injection machines are used in the industry, with their clamping force being the main
distinguishing characteristic. According to the way the movements of the machines are powered, we
can divide them into three groups: hydraulic (pumps), hybrid (hydraulic with another mechanism to
help the hydraulic system), and electric (servomotors), with the last one being the most well recognized
for its more efficient technology.

As injection-molding is an important manufacturing process, analyzing its environmental
impact—and identifying ways to reduce it—is of interest to achieve a more sustainable development
in the industrial sector.

As discussed in earlier work by the authors, the electricity consumption of the injection-molding
process is the main factor that generates environmental impact [6,7]. Due to this, achieving savings
in the electricity consumption will not only directly reduce the environmental impact but will also
reduce the economic cost.

Therefore, injection-molding producers should have the goal of possessing an in-depth knowledge
of their machines in order to ably optimize their consumption, while obtaining these two clearly
important benefits.

Life Cycle Assessment (LCA) is a methodology that allows researchers to quantify the
environmental impact of a product, process, or service. LCA studies have been applied to a wide range
of products in most work fields [8–14]. Increasing knowledge about the injection-molding process will
also lead to an improvement in the LCA field because databases such as EcoInvent, which are used in
the Life Cycle Inventory (LCI) phase, are key to the results obtained in LCA studies.

EcoInvent LCI dataset for the injection-molding process is created by calculating the
average of three processes—injection-molding of poly(vinyl chloride) (PVC), polypropylene (PP),
and polyethylene terephthalate (PET)—and considering an average electricity consumption
(1.47 kWh/kg) as well as an average consumption of water, lubricating oils, chemicals, fillers,
solvents, packaging materials, natural gas for the factory, generated waste, etc. [15]. However, as
previously explained, the highest contribution to the environmental impact is caused by the electricity
consumption [6,7].

Not many studies with experimental data of injection-molding and its electricity consumption
can be found in the literature. Mianehrow and Abbasian published an interesting study of monitoring
energy [16], which analyzed how different factors, such as machine technology or process-related
parameters, affect electricity consumption, with the cycle time and throughput (kg processed per
hour) being the most important factors. More studies have been published in recent years regarding
the environmental impact of the injection-molding process. Thiriez reviewed the complete process,
including the compounding of the raw material. In this research, it was indicated that the type of
injection-molding machine has a significant impact on the electricity consumption of the process,
as will also be seen in this paper [17]. Other authors focused their research on the environmental
performance of biodegradable polymers by studying its manufacturing process. They highlighted the
necessity of following a holistic approach, considering, at the same time, the influence of the process
when designing a part [18,19]. Studies concerning the estimation of electricity consumption of the
injection-molding process have been carried out using a theoretical approach instead of experimental,
such as the one used in this paper [20,21]. Spiering et al. remarked the importance of deeply analyzing
the life cycle inventories of manufacturing processes [22].

In this research work, results from experimental measurements have been analyzed in order
to define an empirical model that allows the estimation of electricity consumption of a specific
injection-molding process depending on several parameters. Through this empirical model, a more
precise value can be obtained to further assess the environmental impact and the costs related to this
manufacturing process.
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Moreover, the environmental impact of the manufacturing process of the parts used to build
the model will be calculated in Section 3.2 using these electricity consumption values as the key
for calculation.

A case study will also be carried out in Section 3.3, comparing several scenarios for the
manufacturing of a plastic component. Employing this case study, the empirical model can be
validated for values outside the ones originally used to create the model, showing the applicability of
this model and the implemented methodology.

2. Materials and Methods

As the purpose of this paper was to obtain an empirical model, a spreadsheet was used to analyze
and represent all the experimental data. Many tendencies were observed and studied. In the following
subsections, the steps that were followed and the parameters selected to build the empirical model are
explained in detail.

2.1. Experimental Data Analysis

As indicated by the authors in Reference [23], several tendencies could be analyzed from the
36 experimental measurements that were carried out. Twelve different injection-molding machines
were analyzed in these measurements—from an all-electric injection machine with a clamping force of
850 kN, to a large injection-molding machine (80,000 kN clamping force).

One of the most significant tendencies was that the higher the throughput (kg/h) of the process,
the lower was the SEC (specific energy consumption, kWh/kg) obtained for the injected part. On the
other hand, each injection-molding machine showed slightly different tendencies as their technology
and efficiency were not the same.

After analyzing all the experimental measurements and considering the high variability
depending on the characteristics of the parts and the machine, it was proposed to develop an empirical
model in order to predict SEC of other components when energy consumption measurement is
not possible.

Analyzing the studied tendencies for the experimental measurements, the following parameters
were selected to build this empirical model:

• Percentage of the machine’s utilization (%): relation between part injected volume and maximum
volume that can be injected in one shot

• Machine’s efficiency (%)
• Throughput (kg/h)
• Polymer material (Specific heat [kJ/kg·K]·∆T)

With these four parameters, the following factors were considered: the influence of
injection-molding machine (i.e., its technology), how well the machine and the process are optimized
concerning the injected part, and the properties of the polymer material. All these factors were
determined as relevant in electricity consumption after analyzing all the experimental measurements.

A total of 36 measurements were used using different thermoplastics, such as high-density
polyethylene, polypropylene, polycarbonate, polyamide with several percentages of fillers, etc.
Further details regarding these data (parts injected, measurement equipment to obtain consumption
values, etc.) are further detailed in an earlier published work by the authors [23].

In the following section, the building of the empirical model and the obtained results will
be explained.

2.2. Empirical Model

After analyzing all the measurements, an empirical model was developed to obtain a part
SEC, depending on the percentage of the machine’s utilization as well as its material and efficiency.
In order to do that, several steps were conducted to develop an empirical model. First, the electricity



Materials 2018, 11, 1740 4 of 12

consumption (SEC) was modeled considering the percentage of utilization and the machine’s efficiency.
Figure 1 shows all experimental measurements in blue dots. The low, medium, and high-efficiency
lines show the limits of the SEC depending on the efficiency of the injection machine.
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Figure 1. Empirical model.

Table 1 shows the electricity consumption values obtained by the model for the three cases shown
in Figure 1: low, medium, and high-efficiency machines.

Table 1. Estimated electricity consumption in kWh/kg for different values of machine efficiency and %
of utilization.

% of Utilization Low-Efficiency SEC Medium-Efficiency SEC High-Efficiency SEC

0 6.000 5.000 4.000
10 2.372 1.581 0.791
20 1.677 1.118 0.559
30 1.369 0.913 0.456
40 1.186 0.791 0.395
50 1.061 0.707 0.354
60 0.968 0.645 0.323
70 0.896 0.598 0.299
80 0.839 0.559 0.280
90 0.791 0.527 0.264
100 0.750 0.500 0.250
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Values of Table 1 were obtained from Equation (1), which was determined by a regression analysis
of Figure 1:

SEC (KWh/kg) = (7.5 − 5 × E/100) × (η)−0.5 (1)

where E is the efficiency of the injection machine, and η is the percentage of utilization of the
injection-molding machine, which is defined as Equation (2):

η = w×100/ρ× Vmax (2)

where w is the part’s weight in grams, ρ is the density of the polymer material (g/cm3), and Vmax is
the maximum value that the injection-molding machine is able to inject (cm3)—a value that can be
obtained from the machine datasheet. In addition, a value for 0% of utilization has been included in
Table 1 as a reference because the SEC of an obtained part cannot be infinite.

In this second step, two correction factors were introduced in order to modify the previously
shown efficiency and increase the accuracy of the model. The first correction factor was related to
the throughput of the process. A higher throughput would lead to a more optimized process (higher
value of efficiency and, therefore, lower electricity consumption). An empirical value was calculated
to estimate the average throughput depending on the clamping force (Fc) of the injection-molding
machine using a linear regression with a correlation factor of 0.93 (Equation (3)):

Average Throughput (kg/h) = 0.0052× Fc (kN) (3)

This way, the Correction Factor of the Throughput (CFT) would be defined as Equation (4), with
tc being the cycle time in seconds:

CFT = (w×3.6/tc)/0.0052× Fc (kN) (4)

Equation (5) defines the second correction for the modified efficiency, which adds the influence of
the material, i.e., the Correction Factor of the Polymer (CFP):

CFP = (ce× (Ti − Ta))/350.255 (5)

This CFP was calculated using the specific heat of the polymer material (ce) and the difference
between injection temperature (Ti) and ambient temperature (Ta). The 350.255 coefficient was an
experimental value obtained as an average of the factor ce × (Ti − Ta) in the measurements.

Therefore, the modified machine’s efficiency, E’, which replaces E in Equation (1), was defined
in the model with Equation (6), where the influence of the throughput was higher than that of the
polymer material:

E’ = E × (CFT)0.15/(CFP)0.1 (6)

The considered efficiency for each injection-molding machine was selected considering its
technology and manufacturing year, as shown in Table 2. The 0.15 and 0.1 exponents of
Equation (6) were obtained by minimizing the error of the empirical model versus the 36
experimental measurements.

Taking all these factors into account, the final equation of the empirical model is shown in
Equation (7):

SEC = (7.5 − (5 × (E/100) × (((w × 3.6/tc)/(0.0052 × Fc))0.15/(ce× (Ti − Ta)/350.255)0.1))) × (w × 100/(ρ × Vmax))−0.5 (7)
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Table 2. Machine efficiency values for the empirical model, E.

Injection-Molding Machine Clamping Force (kN) Manufacturing Year Efficiency (E)

A 80,000 2005 70
B 52,000 2005 70
C 30,000 2000 65
D 20,000 2010 75
E 16,500 2010 75
F 12,000 1999 65
G 10,000 2008 70
H 7500 2005 70
I 4000 1996 60
J 2000 1999 65
K 1250 1999 65
L 850 (All-electric) 2002 100

2.3. Environmental Impact Assessment

Using the methodology proposed in [7], the environmental impact of the process can be very
precisely calculated with the value of SEC. The functional unit is the processing of 1 kg of polymer
through an injection machine.

When applying this methodology, a customized dataset was created to assess the environmental
impact of the process. This customized dataset was built analyzing the original data of EcoInvent,
which creates it as an average of the processing values of three polymers: PVC, PP, and PET [15].
After analyzing these values, a customized dataset was proposed using the values for the most
conventional plastic—PP—and excluding inputs not directly related to the processing, such as
packaging materials or fuels for factory heating. In this way, elements such as lubricant and water
or the infrastructure of the factory were considered as well as the plastic waste generated and the
electricity consumption of the process (which in this case will be replaced by measured or modeled
values for each part to obtain a more accurate result). The typical European electrical mix was
used [24]. ReCiPe EndPoint (H/A) was used as a calculation methodology as it considers several
impact categories and normalizes and weighs all the results to obtain only one value in millipoints
(mPt), which allows an easier interpretation of the result [25]. In addition, the Global Warming
Potential category (equivalent kilograms of CO2) IPCC 2013 100a GWP was calculated due to its high
social relevance [26].

3. Results and Discussion

After obtaining the empirical model, it was first compared against the experimental measurements
to analyze how this model behaves and then against a case study of a PP injection-molded component
of an induction cooktop that was not previously used to obtain the empirical model.

3.1. Empirical Model

Figure 2 displays the empirical model SEC results and compares them with measurement
data and with EcoInvent value for the electricity consumption of the injection-molding process
for 1 kg of thermoplastic. All the characteristics of the 36 combinations are shown in Table S1
(Supplementary Materials).

An average absolute error of 22.5% was obtained for the empirical model, which was lower than
the 86.8% absolute error obtained using EcoInvent value for this set of measured parts.
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Part #9 registered the maximum error in this empiric model (−37%). This part was injected in
one of the largest machines (C, 30,000 kN), had a high thickness, and required a high cycle time for its
processing, which led to very low kg/h and η values. As can be seen in Figure 1, for low values of
utilization, the model’s uncertainty increased as the electricity consumption result was much more
sensitive to changes in the modified machine’s efficiency (E’).Materials 2018, 11, x FOR PEER REVIEW  7 of 13 
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3.2. Environmental Impact

In Figure 3, the comparison of the environmental impact results is performed, considering the
measured, modeled, and EcoInvent value of electricity consumption for the injection-molding process
of 1 kg of polymer. Results are indicated in mPt per kg using the ReCiPe methodology [24].

Figure 3 shows the same tendency as the previous graphics because electricity consumption is the
most significant factor in the environmental impact results of this manufacturing process. Part#9 was
also the one that registered the higher difference in the ReCiPe results between the empirical model
and the measured values of SEC.

The average for the environmental impact results with ReCiPe methodology using the empirical
model was 45.1 mPt/kg (51.2 mPt/kg using measured SEC values), while the value using EcoInvent
SEC (constant value of 1.47 kWh/kg) was 70.7 mPt/kg.

For this set of parts, an average absolute error of 21.5% was obtained with the empirical model for
ReCiPe results, which was lower than the 81.7% absolute error obtained when using EcoInvent values.

Results obtained with Carbon Footprint methodology [26] are shown in Figure 4. Again,
they followed the same tendencies as the previous ones due to the importance of electricity
consumption in the results. The average results with this methodology was 0.56 equivalent kilograms
of CO2 using measured SEC values, 0.49 for the empirical model, and 0.77 using EcoInvent electricity
value. The average absolute error for the empirical model was 21.2%, which was much more accurate
than the 80.1% achieved with the EcoInvent dataset.
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3.3. Case Study: Induction Cooktop Housing

In the following section, a case study for an induction-hob-injected plastic component (Figure 5)
is presented. This element is used as a housing for the electronic boards of an induction cooktop,
and their general dimensions are 534 × 472 mm2. As more than a million units of this component are
produced each year, assessing its consumption and its environmental impact is of interest.

In the case under investigation here, two polypropylene materials were studied: virgin
polypropylene versus an equivalent recycled one [27]. The components were injected using two
different injection-molding machines; therefore, four different scenarios were analyzed. This fact
allowed the behavior, particularly, the errors of the empirical model, to be checked by measuring new
data that had not been previously used in the process of model adjustment, as shown in Section 2.2.
The two injection-molding machines used will be addressed from now on as “M” and “N” machines.

Table 3 shows the main data for the four scenarios combining the two materials and the two
injection-molding machines. “M” injection-molding machine had 8000 kN of clamping force and
a toggle clamp system, whereas “N” injection-molding machine had 5500 kN of clamping force.
Both machines were manufactured in 2015. Considering the assigned values in Table 2 and the
characteristics of “M” and “N” machines, values of E of 85 and 75, respectively, were assigned to
compare the characteristics of these machines with the ones that have already been characterized and
were used to develop the empirical model. A higher efficiency was assigned to the “M” machine as it
had a toggle clamp system that allowed savings in the machine movements.Materials 2018, 11, x FOR PEER REVIEW  10 of 13 
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Table 3 shows the maximum volume that could be plasticized in the injection unit of each
machine. The capacity of machine “N” was much more adjusted to the volume of the component than
the machine “M” (1500 vs. 3240 cm3). Cycle time, gross injected weight, specific heat of the polymers,
and the differences of injection and ambient temperature were also included.

Ultimately, the different SEC of measurements can be compared in Table 3 with those obtained
with the empirical model and with EcoInvent data.

Machine “M” registered higher measured SEC values than that for “N”. The empirical model
correctly predicted this point as machine “N” was better adjusted for the processing of this part.
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Table 3. Case study data summary.

Scenario #1 #2 #3 #4

Polymer Material Virgin PP Recycled PP Virgin PP Recycled PP

Injection-Molding Machine M M N N

Fc (kN) 8000 (with toggle
clamp system)

8000 (with toggle
clamp system) 5500 5500

Manufacturing Date 2015 2015 2015 2015

E 85 85 75 75

Vmax (cm3) 3240 3240 1500 1500

Cycle time (s) 51.41 60.81 38 39

w (g) 595 603.2 606 615

ρ (g/cm3) 1.23 1.25 1.23 1.25

ce (KJ/kg. K) 1.5 1.5 1.5 1.5

Ti − Ta (K) 228 228 228 228

Measured SEC (kWh/kg) 0.838 0.785 0.59 0.601

Modeled SEC (kWh/kg) 0.835 0.861 0.578 0.580

Model Abs. Error 0.4% 9.7% 2.0% 3.5%

EcoInvent Abs. Error 75.4% 87.3% 149.2% 144.6%

The model estimation was, as expected, more accurate than the EcoInvent value with an average
absolute deviation of 3.9% compared to the 114% of EcoInvent’s deviation for these four scenarios.
Depending on the machine used, the recycled material obtained a higher or lower value than the
virgin material as there were minor differences between both materials. It can also be observed that
the cycle times for the recycled materials were higher. This increase was required to meet dimensional
requirements as both materials have slightly different shrinkage rates.

In Table 4, the environmental impact results per part are represented for the four proposed
scenarios using the previously explained methodology and the measured data of electricity
consumption. Results are displayed in mPt ReCiPe and IPCC 2013. Although there were no significant
differences in the environmental impact of processing virgin or recycled material, under a holistic
approach and taking into account the complete life cycle, the use of recycled material would help to
reduce the environmental impact.

Table 4. Scenarios Assessment: Environmental impact of processing a plastic part.

Environmental Impact of Part Processing #1 #2 #3 #4

mPt ReCiPe/Part 24.41 23.24 17.80 18.38
kg eq. CO2/Part 0.266 0.253 0.194 0.200

4. Conclusions

In this paper, an empirical model was proposed to achieve better estimations of the electricity
consumption of the injection-molding process. Databases such as EcoInvent provide an average
electricity consumption value (1.47 kWh/kg) for the injection-molding process; however, considering
this value as a constant for every injected molded part leads to significant errors as the variability
in these processes is very high. Experimental measurements revealed that SEC highly depended
on the polymer material, the injection-molding machine used, and the parameters of the process.
Our empirical model obtained an average SEC absolute error of 22.5%, which was much lower than
the 86.8% obtained when using EcoInvent data.
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These empirical modeled SEC values were used to calculate the environmental impact of the parts
as electricity consumption is the main factor for the injection-molding process. It was observed that
the influence of the injection-molding machine and the parameters of the process were higher than the
influence of the polymer material. This observation is valid for assessing the energy consumption and
the environmental impact.

A case study using an induction cooktop PP housing showed that the empirical model provided
good estimations for the SEC values. This validated the model as it was checked analyzing
measurements that had not been previously used to develop it.

For the component, two PP materials (virgin and recycled) were analyzed and they were processed
in two different injection-molding machines. Components processed in machine “M” had higher
cycle times and a lower percentage of utilization as it had a higher capacity than the “N” machine.
Both factors led to an increase in the SEC, showing the importance of proper machine selection.

This study has demonstrated that each injection-molding machine has a distinctive electricity
consumption profile due to its efficiency. Therefore, plastic processing companies should carry out a
benchmark of their injection machines in order to correctly characterize their efficiency and be able to
enhance the machine selection process.

Although the developed empirical model provided appropriate results, future lines of research
will be focused on increasing the number of experimental measurements in other injection-molding
machines with different clamping forces and technologies in order to improve the empirical model
and, therefore, the SEC and environmental impact calculations.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/9/1740/
s1, Table S1: Measured Parts Characteristics and Injection-Molding Machine.
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