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Abstract: Ceria/spinel-based lean NOx trap compositions with and without barium were modified
with MnOx via incipient wetness impregnation. The effect of the MnOx layer on the aged materials
(850 ◦C) as to the NOx storage and release properties was investigated via NOx adsorption (500 ppm
NO/5% O2/balance N2) carried out at 300 ◦C in a dual-bed with a 1% Pt/Al2O3 catalyst placed
upstream of the samples to generate sufficient amounts of NO2 required for efficient NOx storage.
Subsequent temperature programmed desorption (TPD) experiments were carried out under N2 from
300 ◦C to 700 ◦C. The addition of MnOx to the barium free composition led to a slightly reduced
NOx storage capacity but all of the ad-NOx species were released from this material at significantly
lower temperatures (∆T ≈ 100 ◦C). The formation of a MnOx layer between ceria/spinel and barium
had a remarkable effect on ageing stability as the formation of BaAl2O4 was suppressed in favour
of BaMnO3. The presence of this phase resulted in an increased NOx storage capacity and lower
desorption temperatures. Furthermore, NOx adsorption experiments carried out in absence of the
Pt-catalyst also revealed an unexpected high NOx storage ability at low NO2/NO ratios, which could
make this composition suitable for various lean NOx trap catalysts (LNT) related applications.

Keywords: ceria; manganese; barium; spinel; lean NOx trap; passive NOx adsorber; NOx storage;
NO oxidation

1. Introduction

The implementation of stricter environmental legislations for passenger cars globally, like Euro
6d, US Tier 3 and China 6B calls for improved catalytic systems for emission control [1]. A lot of
attention is drawn to the development of improved NOx abatement systems (deNOx) for lean-burn
engines. As these engines operate at λ > 1, the abatement of NOx requires dedicated technologies,
such as selective catalytic reduction (SCR) and lean NOx trap catalysts (LNT), also known as NOx

storage/reduction catalysts (NSR) [2,3].
In SCR systems, an aqueous urea solution is injected into the exhaust gas via an onboard-tank

leading to the formation of NH3, which then reacts with NOx over the catalyst via the standard (1) and
fast (2) SCR reactions. Currently, the most common SCR catalysts are metal-substituted zeolites, like
Fe-ZSM-5 or Cu-CHA [4].

4NO + 4NH3 + O2→ 4N2 + 6H2O (1)

NO + NO2 + 2NH3→ 2N2 + 3H2O (2)
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The fast SCR reaction (2) is significantly more effective than reaction (1) at low temperatures in
the range of 250–300 ◦C but it requires the presence of NO2. Therefore, the SCR catalyst is typically
positioned downstream of the diesel oxidation catalyst (DOC), which effectively increases the NO2/

NOx ratio [5,6]. Once the NO2 concentration exceeds a certain threshold, the NO2-SCR reaction (3)
also takes place.

4NH3 + 3NO2→ 7/2N2 + 6H2O (3)

The NOx abatement mechanism of lean NOx traps is based on alternating lean/rich cycles with long
lean phases, in which NOx emissions from the exhaust gases are adsorbed on the catalyst. The stored
ad-NOx species are desorbed and reduced to nitrogen on catalytically active noble metals in subsequent
short rich periods at elevated temperatures [7]. Most common lean NOx trap catalysts contain a high
surface-area material like γ-Al2O3, mixtures of BaO and CeO2 and noble metals, typically Pt or Pd and
Rh [8,9].

Barium species, such as BaO or BaCO3 act as the primary NOx storage component. They can
adsorb large amounts of NOx in the form of surface nitrites and nitrates during lean operation which
involves the progressive oxidation from NO to NO2 and finally NO3

−. The mechanism of NOx

adsorption on barium species has been investigated intensively [10–15]. According to these studies,
the NOx adsorption takes place via two pathways in parallel. In the “nitrite” route, NO is catalytically
oxidized and directly stored on barium sites in form of nitrite ad-species which can be further oxidized
to nitrates.

The “nitrate” route is initiated by the catalytic oxidation of NO to NO2 (4) which then react on
barium sites in a disproportionation reaction, resulting in the formation of nitrate and NO (5).

NO + 1/2O2→ NO2 (4)

3NO2 + BaO→ Ba(NO3)2 + NO (5)

The regeneration of NOx storage sites occurs during rich periods and forms harmless nitrogen
via the reduction of NOx species with hydrogen. Cumaranatunge et al. proposed a mechanism
that involves the intermediate generation of ammonia [16]. This mechanism has been confirmed
in following studies in which various analytical techniques were applied [17,18]. The fundamental
chemical reactions can be summarized as:

Ba(NO3)2 + 8H2→ 2NH3 + BaO + 5H2O (6)

3Ba(NO3)2 + 10NH3→ 8N2 + 3BaO + 15H2O (7)

The addition of ceria, which has become a major component in catalyst compositions leads to
superior NOx storage efficiencies, especially at temperatures below 300 ◦C [19,20]. Furthermore, ceria
plays a substantial role in the water-gas-shift reaction as it provides hydrogen for the regeneration
during rich periods and it has a positive impact on the NOx storage/release chemistry due to its interplay
with platinum [21–24]. The mechanisms of NOx storage on ceria under lean conditions involve the
formation of various ad-NOx species, such as linear, bidentate and chelating nitrites and nitrates. It was
observed that the low-temperature (<100 ◦C) adsorption of NO on ceria primarily leads to the generation
of surface nitrites whereas at higher temperatures nitrates are preferentially formed [19,25,26]. On the
contrary, Ryou et al. did not observe the formation of nitrates on Pd/CeO2 at 120 ◦C and they
proposed that the presence of water suppresses the oxidation of nitrites [27]. The adsorption of
NO2 on ceria was studied in detail by Flitschew et al. who combined the well-established diffuse
reflectance infrared Fourier transform spectroscopy (DRIFTS) with in-situ Raman spectroscopy [28,29].
The authors elaborated that NO2 storage on ceria proceeds mainly in two pathways which both lead
to the formation nitrate species. The first route involves the adsorption of NO2 on cerium(III) sites
which are thereby oxidized and transformed to active Ce(IV)-O species (8) which can then react with
additional NO2 to form nitrates (9). In the second pathway, NO2 reacts directly with Ce(IV)-O sites
without the contribution of cerium(III) (9).
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Ce(III) + NO2→ Ce(IV) · · · O2−+ NO (8)

Ce(IV) · · · O2− + NO2→ Ce(III) · · · O-NO2
− (9)

Fine-tuning of the regeneration parameters, like temperature and modes of fuel-injection is a
demanding task and crucial for the performance such as the long-time durability of the catalyst.
Incomplete regeneration inevitably leads to catalyst degradation over time as relevant surface sites
remain occupied with adsorbed NOx species. On the contrary, excess H2 formed during long rich
cycles and low temperatures leads to the generation of high levels of ammonia. This can be a serious
concern in LNT-only systems [18,30]. Another important aspect to be considered is the additional
fuel-consumption required to enrich the exhaust gas, which eventually leads to increased CO2 emissions.
Therefore, NOx storage compounds that can effectively be regenerated are urgently needed.

The synergetic combination of passive SCR with LNT catalysts is an efficient solution to attain low
NOx tailpipe emissions and to cope with high levels of NH3, which may result from the total reduction
of NOx. This approach has become a widespread and well-studied technology for several years [31–38].
The low-temperature performance of LNT complements SCR and the ammonia generated during the
rich regeneration phase can replace or supplement urea required for the SCR reactions.

One major deactivation mechanism of LNT catalysts is the solid acid-base reaction between Al2O3

and BaO at elevated temperatures resulting in the formation of BaAl2O4 and thus causing a loss of
NOx adsorption sites [39,40]. Improvements in this regard have been reported via the replacement of
alumina with the less acidic spinel (MgAl2O4), leading to the formation of BaAl2O4 only at higher
temperatures [41,42]. In addition, the use of spinel in LNT catalysts has been described to improve the
low temperature NOx storage efficiency and to contribute to enhanced SOx tolerance via the formation
of sulphates with low thermal stability [43].

Another reported deactivation mechanism results from reaction of BaO and CeO2 yielding BaCeO3,
which was detected in LNT formulations prepared by the impregnation of ceria with barium salts [44].

Despite the technological and chemical improvements achieved over the past 20 years, deactivation
at elevated temperatures and optimized NOx storage/release properties are perpetual challenges in the
design of new formulations for LNT catalysts.

In this regard, the addition of manganese to LNT compositions aiming at improved performance
has been proposed and studied by several authors. MnOx –CeO2 mixed oxides present high oxygen
storage abilities and improved redox properties. They are typically obtained by coprecipitation, sol-gel
synthesis or similar routes leading to highs level of homogeneity. The interesting properties predestine
these mixed oxides for a substitution of pure ceria in various applications and their superior ability to
oxidize soot and NO has already been reported [45–47]. Le Phuc et al. observed significantly improved
performance of MnOx-CeO2 containing Pt/Mn-Ce/Ba/Al LNT catalysts in NOx reduction during rich
phases, which they attributed to the improved oxygen mobility of the mixed oxide as compared to
pure CeO2 [48].

In another work, Le Phuc studied the contribution of crystalline Mn2O3 as to the NOx storage
performance in Mn/Ba/Al compositions which were investigated in the fresh state, that is, without
applying thermal ageing prior to testing [49]. It was found that the manganese sesquioxide only led
to improved NOx storage performance in a narrow compositional range whereas higher or lower
concentrations had a detrimental effect on the storage efficiency.

Zhang et al. detected the formation of BaMnO3 in the system Pd/Mn/Ba/Al. The presence of this
phase led to superior NO oxidation abilities and NOx storage performances of the fresh catalysts [50].
Similar but not identical observations were made by Xiao et al, who noticed the occurrence of BaMnO3

only after calcination at 800 ◦C [51]. This is in accordance with our own investigations, in which we
detected this phase in the system Al/Mg/Ce/Mn/Ba after calcination at 850 ◦C [52].

However, the impact of ageing at elevated temperature as to the NOx storage/release properties of
the manganese modified formulations has not been reported yet.
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In this work, we present a novel route for the preparation of manganese modified LNT compositions
leading to a MnOx layer on ceria/spinel mixtures rather than homogeneous MnOx-CeO2 mixed oxides.
Firstly, the impact on this route in altering the NOx storage/release properties of the resulting
spinel/ceria/manganese compositions is investigated. Secondly, the stabilizing function of the MnOx

layer as a protective barrier between spinel/ceria and barium is rationalized. The materials described
herein were thermally aged at 850 ◦C prior to testing in order to study their thermal stability, which is
a common procedure to simulate catalyst ageing under real conditions [53]. NOx storage experiments
were carried in a dual-bed with a 1% Pt/Al2O3 catalyst placed upstream from the samples. This
arrangement mimics a diesel oxidation catalyst, which is typically present in state-of-the-art lean-burn
catalyst systems and generates high concentrations of NO2. It was shown in previous studies that NO2

can be stored much more efficiently than NO on barium and cerium species [19,54].
In order to study the NO oxidation ability provided by the manganese species, additional NOx

adsorption experiments were carried out in absence of the Pt/alumina catalyst.
The thermal stability of the ad-NOx species is important to estimate how efficiently the corresponding

NOx storage sites can be regenerated. Therefore, the NOx release properties of our new formulations
were investigated in temperature programmed desorption (TPD) experiments.

2. Materials and Methods

2.1. Sample Preparation

MnOx modified carriers with loadings of 9 wt% (calculated as MnO2) were prepared by
incipient wetness impregnation of homogeneous compositions MgAl2O4/CeO2 (PURALOX MG20 Ce20,
commercially available from SASOL) using an aqueous solution of manganese acetate tetrahydrate.
The dried samples were then calcined in air at 600 ◦C.

Both, the Mn-free and the Mn-modified materials were used as starting materials for further
wet-impregnation with a barium acetate solution to obtain a loading of approximately 15 wt% BaO.
All samples were aged in air at 850 ◦C for 4 h prior to analyses. Henceforth, the samples are referred to
as MgCe (PURALOX MG20 Ce20), MgCe-Mn (MgCe modified with MnOx), MgCe-Ba (MgCe modified
with BaO) and MgCe-Mn-Ba (MgCe subsequently modified with MnOx and BaO). The chemical
compositions of the samples are summarized in Table 1.

Table 1. Chemical composition (wt%) of the samples determined by Inductively Coupled Plasma
(ICP) analysis.

Sample Al2O3 MgO CeO2 MnO2 BaO

MgCe 63.0 17.0 20.0 0 0
MgCe-Mn 58.3 14.9 17.7 9.1 0
MgCe-Ba 52.8 14.7 17.0 0 15.5

MgCe-Mn-Ba 48.4 13.3 15.5 7.3 15.5

2.2. Sample Characterization

Surface area (Brunauer-Emmett-Teller method, BET) and porosity measurements were performed
by nitrogen adsorption at −196 ◦C using a Micromeritics Tri-Star 3000 system. The samples were
outgassed overnight at 300 ◦C under vacuum prior to the measurements. X-ray powder diffraction
was conducted on a Phillips X’Pert diffractometer using Cu-Kα radiation (λ = 1.540598 Å). Powder
diffractograms were recorded between 5◦ and 90◦ (2θ), with a step-width of 0.02◦. The sample
compositions were determined after digestion in an MLS 1200 microwave apparatus by Inductively
Coupled Plasma Atomic Emissions Spectrometer (ICP-OES) using a Spectroflame instrument
(SPECTRO). X-ray photoelectron spectra (XPS) were obtained using a K-alpha spectrophotometer
(Thermo-Scientific), with a high-resolution monochromator. It comprises a source of electrons and
ions for automated load compensation. The X-ray radiation source is equipped with an Al anode
(1486.6 eV). The pressure of the analysis chamber was constantly set at 5 × 10−9 mbar. The detector
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was kept in constant energy mode with a pass energy of 200 eV for the survey spectrum and 50 eV
for the sweep in each individual region. The binding energy was adjusted using the C-1s transition,
appearing at 284.6 eV. Binding energy values measured are accurate to ±0.2 eV. The values of binding
energy and kinetic energy were adjusted with the Peak-Fit software of the spectrophotometer. The
Mg-1s, Al-2p, Ce-3d, Mn-2p, Ba-3d regions (along with C-1s and O-1s regions) were employed to
analyse the surface composition of the carriers in the present study.

2.3. NOx Storage/Release Tests

NOx adsorption experiments were conducted in a quartz tubular reactor connected to specific
NDIR-UV gas analysers for NO, NO2, CO, CO2 and O2, with the measurement data recorded every
10 seconds. The NOx adsorption (500ppm NO/5%O2/balance N2) was performed at 300 ◦C in a
dual-bed configuration with a 1% Pt/Al2O3 commercial catalyst (supplied by Sigma-Aldrich) placed
upstream of the sample using a global flow gas of 500 mL/min. The catalyst effectively oxidizes NO to
NO2, which is required for effective NOx storage. Subsequent temperature programmed desorption
(TPD) experiments were carried out under N2 from 300 ◦C to 700 ◦C (5 ◦C/min) in order to study
the thermal stability of the various stored NOx species. Besides NOx storage ability, this is another
important aspect in order to assess the suitability of the different materials for the development of new
LNT catalysts.

In addition, NOx adsorption experiments in single-bed configuration were performed without
the Pt/alumina catalyst in order to study the NO oxidation ability of the individual samples and to
gain further insight into the role of the individual manganese species in the NOx storage processes.

3. Results

3.1. Structural Properties

The phase composition of the samples was analysed by powder X-ray diffraction. It can be seen
in Figure 1 that all samples contain MgAl2O4 and CeO2 in crystalline form.
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Figure 1. Powder X-ray diffraction (XRD) patterns of (a) MgCe and MgCe-Mn (b) MgCe-Ba and
MgCe-Mn-Ba with simulated reflection positions of MgAl2O4, CeO2, BaAl2O4 and BaMnO3. For better
clarity, the reflections of MgAl2O4 and CeO2 are not marked in (b).

The addition of MnOx to the MgAl2O4/CeO2 composition does not lead to the occurrence of
additional reflections in the powder pattern, thus pointing to a homogeneous dispersion of the MnOx

species among the surface without the formation of additional crystalline domains detectable by X-ray
diffraction (XRD).

The Ba-containing samples with and without manganese exhibit remarkable differences.
In MgCe-Ba, a substantial formation of crystalline BaAl2O4 is observed. This phase is also present
in MgCe-Mn-Ba but the intensity of the relevant reflections is decreased in the X-ray pattern of
this material. Most importantly, the formation of BaMnO3 is detected in MgCe-Mn-Ba. This phase
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adopting the perovskite structure is more accurately described as BaMnO3-δ, reflecting the possible
formation of vacancies in the oxygen sublattice in conjunction with a partial reduction of manganese
(IV). The presence of this phase indicates a close proximity of barium and manganese achieved via the
preparation procedure and is in accordance with previous studies, in which the occurrence of BaMnO3

in the systems Ba/MnOx-CeO2 and Mn/Ba/Al2O3 was also reported [48,50,51,55,56]. No indication
of crystalline binary manganese oxides is found in the XRD pattern of MgCe-Mn-Ba. Other authors,
however, reported on the occurrence of isolated and crystalline species Mn2O3 or MnO2 in similar
systems [49,50]. Remarkable structural and compositional differences of manganese modified supports
as a function of the use of either Mn-acetate or Mn-nitrate for preparation were observed and studied
by Kapteijn et al., underlining the crucial role of the preparation route as to the resulting phase
composition and arrangement [57]. No indication of the presence of BaCeO3 is found in either sample,
proving that the formation of this phase is thermodynamically unfavoured under the conditions of
preparation and ageing.

Data on the physical properties of all samples is summarized in Table 2.

Table 2. Physical properties of the samples studied in this work.

Sample SBET (m2/g) rP (nm) VP (cm3/g)

MgCe 96 13 0.64
MgCe-Mn 104 10 0.53
MgCe-Ba 68 11 0.37

MgCe-Mn-Ba 59 11 0.31

Incorporation of about 15% of BaO on the solid precursors by means of wet impregnation followed
by aging at 850 ◦C leads to a significant decrease in BET surface areas and pore volumes of the resulting
samples. Nevertheless, the large average pore radius present in all samples is a good indication of
their suitability as functional supports for LNT catalysts.

The analysis of the XPS results (Table 3) becomes complex because the samples suffer from
significant levels of carbon contamination due to the presence of carbonates. Carbonation also
inevitably occurs under real exhaust conditions. Therefore, purging of the samples via heat treatment
in inert gas prior to the NOx storage tests was not applied. Considering the sequential preparation of
the samples, both the atomic surface analysis and the metal ratios broadly reflect the decrease in Al,
Mg and Ce content after addition of manganese and barium. In addition, the decrease in manganese
content after subsequent impregnation with barium is reflected by the XPS results.

Table 3. Surface atomic contents and ratios estimated by X-ray photoelectron spectroscopy (XPS).

Element
Sample

MgCe MgCe-Mn MgCe-Ba MgCe-Mn-Ba

C 33.46 43.7 50.4 58.1
O 40.0 37.7 35.5 30.1
N 0.4 0.3 0.7 0.5
Al 17.3 11.1 10.5 8.5
Ce 2.9 2.5 0.7 0.5
Mg 2.3 2.3 1.1 1.0
Mn 0.0 2.5 0.0 0.7
Ba 0.0 0.0 1.2 0.8

Al/(Al + Ce + Mg + Mn + Ba) 1 0.77 0.60 0.78 0.74
Ce/(Al + Ce + Mg + Mn + Ba) 1 0.13 0.14 0.05 0.04
Mg/(Al + Ce + Mg + Mn + Ba) 1 0.10 0.13 0.08 0.09
Mn/(Al + Ce + Mg + Mn + Ba) 1 - 0.13 - 0.06
Ba/(Al + Ce + Mg + Mn + Ba) 1 - - 0.09 0.07

1 The ratios were calculated based on the content of the elements.
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3.2. NOx Storage

3.2.1. Dual-bed Experiments

The results of the NOx adsorption tests measured in dual-bed configuration are displayed in
Table 4.

Table 4. Amounts of NOx stored on the samples in dual-bed experiments.

Samples
without Ba

NOx Stored
(10−3 mmol/m2

carrier)
Samples
with Ba

NOx Stored
(10−3 mmol/m2

carrier)

MgCe 3.23 MgCe-Ba 4.41
MgCe-Mn 2.60 MgCe-Mn-Ba 6.27

The total NOx retention capacity expressed as mmol of NOx stored/m2 of carrier follows the
order—MgCe-Mn < MgCe < MgCe-Ba << MgCe-Mn-Ba. It is worth mentioning that the surface areas of
the samples with barium are significantly lower, resulting in a different order of NOx retention capacity
if expressed as mmol of NOx stored/g of carrier—MgCe-Mn < MgCe-Ba < MgCe << MgCe-Mn-Ba.
This is of importance as the reduction in surface area upon Ba-addition and ageing clearly contribute
to the deactivation of the support in terms of NOx storage ability. In order to study the role of the
different species present in the samples, the surface area related expression is applied in this work.

In the case of the Ba-free samples, the presence of MnOx slightly reduces the NOx storage capacity,
thus illustrating that the MnOx as such does not contribute to the NOx storage process at all or only to
a negligible extend. Apparently, relevant NOx storage sites of ceria and spinel are partially occupied
and thus inactivated by Mn-species. This can also be deduced from the XPS analyses revealing a lower
surface concentration of cerium and also a higher surface concentration of carbon species in the MnOx

modified samples. MgCe-Ba (less cerium and magnesium but barium on the surface) shows a marked
but unexpected small increase in NOx retention capacity compared to MgCe, which indicates that
only a small amount of unreacted (and X-ray invisible) BaO or BaCO3 is still present after ageing.
MgCe-Mn-Ba on the contrary, exhibits superior NOx storage ability, pointing to a significant stabilizing
and hence beneficial effect of MnOx on the Ba-assisted NOx storage process. The introduction of MnOx

as protective layer between BaO and spinel/ceria leads to the formation of BaMnO3 and reduces the
amount of undesired BaAl2O4 generated after ageing, as observed in the XRD pattern. Thus, the
occurrence of the perovskite phase most likely accounts for the high retained NOx storage ability
after ageing.

3.2.2. Single-bed Experiments

Single-bed experiments without the Pt/alumina catalyst were conducted to study the effect
of Mn-addition on NO oxidation ability. The absence of the noble metal catalyst is required as
its outstanding oxidation capacity does not allow for a proper investigation of the NO oxidation
contribution of the carriers. Table 5 compiles the NO and NO2 levels quantified for the samples MgCe
and MgCe-Mn during NOx adsorption in single-bed experiments. The adsorption curves obtained
for MgCe and MgCe-Mn observed in single-bed (SB) and dual-bed (DB) experiments are shown in
Figure 2).

Table 5. NO2/NO ratios and amounts of NOx stored on the different samples obtained under
single-bed configuration.

Sample NO2/NO Ratio NOx Stored (10−3 mmol/m2
carrier)

MgCe 0.07 1.27
MgCe-Mn 0.43 1.03
MgCe-Ba 0.08 1.40

MgCe-Mn-Ba 0.48 6.39
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dual-bed (DB) conditions. (a) NO and (b) NO2 profiles of MgCe and MgCe-Mn. (c) NO and (d) NO2

profiles of MgCe-Ba and MgCe-Mn-Ba. Profiles of Pt/alumina are included for comparison.

MgCe-Mn presents a significantly higher NO2 production than MgCe evident from the NO2/NO
ratios obtained in single-bed experiments, revealing its superior NO oxidation activity promoted by
MnOx addition. The ability of binary manganese oxides, especially Mn2O3, to oxidize NO has also
been observed and described in detail by Guo et al. [58]. Although the analysis of the oxidation state
of manganese is not part of this study, the presence of highly dispersed Mn2O3 species in MgCe-Mn
therefore appears to be a valid assumption.

Although the difference in NO2/NO ratios between MgCe-Ba and MgCe-Mn-Ba is in the same
range as in the Ba-free samples, a remarkable higher NOx storage ability is found in MgCe-Ba-Mn in
the single-bed experiments. The amount of stored NOx is in the same range as observed in dual-bed
experiments and is around 4.5 times higher than that observed for MgCe-Ba. The amounts of stored
NOx observed in single-bed and dual-bed experiments are summarized in Figure 3. The NO and
NO2 adsorption progressions shown in Figure 2c,d prove that the high NOx storage efficiency of
MgCe-Mn-Ba results from the effective NO2 production in conjunction with the availability of storage
sites. NO as such is only adsorbed to a negligible extend. The value of Ba-Mn interactions for fast NOx

storage has previously been reported by Zhang et al. [50]. They have found that the NO oxidation
ability of Mn-sites in close proximity to NOx storage sites of barium leads to very high NOx storage
efficiencies. It can be speculated that the perovskite BaMnO3, which accommodates manganese in the
rather high oxidation state +IV, combines both, high redox potential and efficient NOx storage sites
in one solid. The high activity of BaMnO3 for NO and soot oxidation has also been pointed out by
Gao et al. [55].
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3.3. NOx Release

3.3.1. TPD after NOx Adsorption under Dual-bed Configuration

The temperature programmed desorption (TPD) of NOx, NO and NO2 after NO/O2 retention
under dual-bed configuration was analysed in the temperature range of 300–700 ◦C. Figure 4 shows
the TPD profiles of the different samples. The shape of the TPD profile of MgCe with two maxima—the
first one centred at about 360 ◦C and the second centred at about 450 ◦C—indicates that there are two
main ad-NOx species present on this sample. The individual contribution of NO and NO2 with the
quantification given in Table 6 reveals that a significant fraction of the stored NOx is released from this
sample in the form of NO2. The NO2 desorption takes places in a wide temperature window between
300 and 510 ◦C. The release of NO takes place in two steps, the first centred at about 350 ◦C and the
second centred at about 490 ◦C.

The presence of barium leads to distinct changes in the TPD profiles in MgCe-Ba and MgCe-Mn-Ba.
Significantly more NO is released from MgCe-Ba than from MgCe with the concentration of NO2

being almost identical. Similar to MgCe, the NO profile of MgCe-Ba shows two peaks. The first one is
centred at about 350 ◦C and shows a comparative shape and peak area than the corresponding peak in
MgCe. The second peak is centred at about 530 ◦C, with a much larger peak area. The NO release
is taking place between 440 ◦C and 610 ◦C, so that the maximum desorption temperature of NO is
increased by about 120 ◦C compared to MgCe. The concentrations and release temperatures of NO2

are very similar for MgCe and MgCe-Ba although the main contribution of NO2 in MgCe-Ba originates
from the desorption processes taking place between 400 ◦C and 520 ◦C.

Table 6. Released amounts of NOx, NO and NO2 after adsorption under dual-bed configuration.

Sample NOx Released
(10−3 mmol/m2

carrier)
NO Released

(10−3 mmol/m2
carrier)

NO2 Released
(10−3 mmol/m2

carrier)

MgCe 2.47 0.79 1.68
MgCe-Mn 0.97 0.78 0.19
MgCe-Ba 4.69 3.15 1.54

MgCe-Mn-Ba 4.76 4.39 0.37
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The observations made in the TPD profiles of MgCe and MgCe-Ba lead to the conclusion that
the active barium species form comparatively strongly bound ad-NOx species, which mainly form
NO upon decomposition. This is in line with studies from Lietti et al. [11,12], who reported that
NO is the main decomposition product of NOx species stored on barium, with TPD profiles very
similar to the high temperature peak shown in Figure 4e. This furthermore supports the assumption
(see Section 3.2.1) that there are still active barium species left on MgCe-Ba although only BaAl2O4 can
be detected in the X-ray pattern.

The presence of MnOx forming a layer on spinel/ceria displays unexpected substantial effects on
the NOx release chemistry of the samples with and without BaO. The NOx desorption is dominated
by NO in the Mn-containing samples with only minor contribution of NO2 in marked contrast to the
Mn-free samples. In the case of the Mn-Ba combination, an additional contribution of NO species
released in the range of 420–520 ◦C is observed, thus pointing to the generation of additional storage
sites. This contribution can be linked to the presence of BaMnO3 since this desorption peak is absent in
MgCe-Mn. Secondly, the NOx release process is much more efficient in the MnOx modified samples, in
particular in MgCe-Mn. As it can be seen in Figure 4a–c, the NOx desorption is taking place in the
narrow range 300–450 ◦C. The high temperature desorption of NO and NO2 is completely absent in
the MnOx modified sample. A similar observation is made in the TPD profile of MgCe-Mn-Ba, in
which the decreased fraction of NOx desorbed at higher temperatures upon manganese modification is
also apparent.

3.3.2. TPD after NOx Adsorption under Single-bed Configuration

Effects induced by MnOx addition are even more pronounced in the TPD profiles of MgCe and
MgCe-Mn after NOx storage under single-bed configuration (Figure 5 and Table 7).
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Table 7. Released amounts of NOx, NO and NO2 after adsorption under single-bed configuration.

Sample NOx Released
(10−3 mmol/m2

carrier)
NO Released

(10−3 mmol/m2
carrier)

NO2 Released
(10−3 mmol/m2

carrier)

MgCe 0.59 0.18 0.41
MgCe-Mn 0.36 0.32 0.04
MgCe-Ba 1.34 1.34 0

MgCe-Mn-Ba 5.05 4.61 0.44

The majority of stored NOx species is released from MgCe in the range of about 320–490 ◦C in the
form of NO2. The asymmetry of the NO2 peak indicates the presence of differently bound ad-NOx

species with the main population being desorbed at the peak maximum of about 440 ◦C.
TPD profiles of MgCe-Mn show a significant increase in NO desorption whereas the concentration

of released NO2 is close to zero. The high-temperature desorption peak of NO detected in MgCe is
not present in MgCe-Mn but a new one is observed ranging from 300–460 ◦C. This can be understood
in conjunction with the dual-bed experiments, see Section 3.3.1, Figure 4b. Upon the addition
of manganese, the low-temperature NO peak gains intensity whereas the high-temperature peak
disappears. The absence of the high-temperature NO peak and the low concentration of detectable
NO2 in MgCe-Mn are in accordance with the dual-bed experiments and support the theory of inhibited
ceria/spinel sites by manganese species.

The NOx-TPD profile of MgCe-Mn-Ba is very similar to the profile obtained after adsorption in
dual-bed experiments whereas the low-temperature peak associated with NO release is absent in the
profile of MgCe-Ba, thus illustrating the similarity of ad-NOx species formed on BaMnO3 with and
without the platinum oxidation catalyst. The presence and intensity of the low-temperature NO peaks
of MgCe-Mn and especially MgCe-Mn-Ba demonstrate that the corresponding ad-NOx species are only
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formed if considerable amounts of NO2 are available in the feed gas or in other words: if an effective
NO→ NO2 oxidant is present.

4. Discussion

The effect of MnOx addition to LNT compositions based on MgAl2O4/CeO2 on the NOx

storage/release properties was investigated at an adsorption temperature of 300 ◦C. The results
clearly show that both, compositions with and without barium, can be improved significantly by the
formation of a MnOx layer on the spinel/ceria mixture. The advantages of adding manganese are
different in both type of materials indicating that at least two directions in the development of novel
LNT catalysts may be pursued.

1. Barium-free compositions. The formation of a manganese oxide layer on MgAl2O4/CeO2 primarily
alters the chemical nature of the generated ad-NOx species, as they exhibit lower thermostabilities
than those generated without Mn-addition. This approach is clearly different from the formation of
MnOx-CeO2 mixed oxides, which is described in several studies [45–47].

The presence of the MnOx layer significantly narrows the temperature range, in which the full
amount of stored NOx is desorbed and lowers the maximum desorption temperature by about 100 ◦C.
This finding makes the manganese modified composition an appealing candidate for the development
of passive NOx adsorbers (PNA). In contrast to conventional LNT catalysts, passive NOx adsorbers are
regenerated at elevated temperatures without additional rich pulses. This approach has already been
described in the early 2000s [59,60] but has gained particular attention just recently due to the stricter
legal requirements for NOx emissions and the implementation of the more realistic and challenging
test procedure WLTP (Worldwide Harmonized Light-Duty Vehicles Test Procedure) for type approval.
PNAs in combination with passive SCR catalysts can effectively improve the cold start NOx conversion
at temperatures lower than 200 ◦C without causing additional fuel penalties [61]. The performance of
PNAs is determined by (a) the ability to store NOx at low temperatures of about 150 ◦C and (b) effective
NOx release in a narrow and low temperature range, so that the conversion over the SCR catalyst
such as the recovery of NOx storages sites can take place efficiently. Ceria- and manganese-based
PNAs have already been described in literature but our newly developed composition MgAl2O4/CeO2

with MnOx appears to be an interesting and sophisticated alternative due to its narrow NOx release
window from 300–450 ◦C [62,63]. Although the observed NOx release behaviour is very promising,
the assessment of the low-temperature NOx storage efficiency has not been investigated yet and is part
of ongoing studies.

2. Compositions with barium. In the case of Mn-free sample, BaAl2O4 is formed upon ageing at
850 ◦C, evidently leading to a decrease in NOx storage sites. The introduction of a protective layer of
MnOx between spinel/ceria and barium beneficially suppresses the formation of BaAl2O4 in favour of
BaMnO3. This perovskite phase accommodating manganese (IV) was proven to be very active for NOx

storage even at low NO2/NO ratios. This beneficial effect was not observed in former investigations
of Ba/Mn/alumina compositions prepared by a sequential impregnation of γ-Al2O3 with barium and
manganese salts followed by calcination at only 500 ◦C, not leading to the formation of BaMnO3 [49].
This illustrates that the temperature treatment along with the resulting phase composition has a
crucial impact on the resulting NOx storage properties. The NOx retention ability and the NOx release
mechanisms of the manganese modified material do not change if the sample is positioned downstream
of an external Pt-catalyst. This is of enormous relevance as state of the art barium-based LNT catalysts
require high levels of NO2 for effective NOx conversion [54]. The observation suggests that LNT
catalysts based on this formulation can tolerate a reduced noble metal (Pt/Pd) content without losing
performance. Furthermore, these materials offer the opportunity for the development of new deNOx

concepts, in which the LNT function is not mandatorily placed downstream of the DOC function or in
which the DOC requires a certain level of NOx retention ability itself.

A detailed understanding of the chemistry involved in the generation of the various ad-NOx

species presenting different thermostabilities could be gained by operando DRIFTS measurements
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in combination with Raman spectroscopy and other sophisticated techniques. These investigations
might provide a complementary overview on the diverse processes taking place on the surface of the
materials during NOx storage and release. The individual contributions of the different compounds
present in the compositions could be elucidated and rationalized this manner. These studies are in
progress and will be presented in following publications.
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