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Abstract: We report on the reproducible growth of two inch 3C-SiC crystals using the transfer of
chemical vapor deposition (CVD)-grown (100) oriented epitaxial layers. Additional experiments,
in which the diameter of the free-standing layers is increased, are presented, indicating the upscale
potential of this process. The nucleation and growth of cubic silicon carbide is supported by XRD
and Raman measurements. The rocking curve data yield a full-width-at-half-maximum (FWHM)
between 138 to 140 arc sec for such grown material. Analysis of the inbuilt stress of the bulk-like
material shows no indications of any residual stress.
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1. Introduction

Silicon carbide is gaining more interest by the day, which leads to a better understanding of
its growth when using physical vapor transport (PVT). Material grown with this technique reaches
diameters of 200 mm and dislocation densities as low as 2800 cm−1 [1–3]. The cubic polytype,
however, poses electrical advantages compared to the industrial available 4H- and 6H-SiC. With
the smaller bandgap, near-interface traps created at the interface of SiC and SiO2 are located in
the conduction band, increasing the charge mobility [4]. The method of consecutive growth and
enlargement used for hexagonal polytypes (4H- and 6H-SiC) cannot be employed for the cubic (3C-SiC)
one, as high supersaturation and temperature gradient are needed to stabilize this material. A method
providing such process parameters is the sublimation “sandwich” method (SE) already presented by
Tairov et al. [5] in 1976. Using such setup proved to be suitable to grow the 3C polytype [6,7]. A major
drawback using any bulk growth method is the lack of a sufficient, high-quality seed. Such material
can be obtained using the heteroepitaxial approach based on material growth on silicon substrates
by chemical vapor deposition (CVD) [8–10]. However, due to the misfit between 3C-SiC and silicon,
the wafers will feature a high stress levels leading to bended or even cracked material. Consequently,
thickness presents limitations. By transferring CVD-grown layers on a SiC carrier, a seeding stack
can be produced to achieve subsequent growth by SE [11]. Seeding material of high quality and a
thickness close to 1 mm would allow enhanced bulk growth using methods like modified PVT (M-PVT)
or continuous-feed PVT (CF-PVT), increasing the thickness even more [7,12,13].
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Industrial relevance is obtained by increasing the total area of the transferred seeding layer and
growing crystals on such large seeds. We present the reproducible growth of two inch material using
this technique. Furthermore, preliminary experiments in a 100 mm setup are presented.

2. Experimental Methods

The used setup as well as numerical simulation data can be found in [11,14]. The manufacturing
process, creating 3C-SiC-on-SiC seeding stacks, was done on four inch wafers featuring a thickness of
approximately 20 µm for the epitaxial layer, on 580 µm-thick, highly n-doped, on-axis (100) silicon
wafers. The sample size for two inch runs was reduced to 52 × 52 mm2 using a diode end-pumped
solid-state laser (Rofin Power Line E20 LP, ND:YdO4, λ = 1064 nm), taking advantage of the multi-pulse
ablation effect on 3C-SiC [15,16]. The resulting crack-free 3C-SiC-on-Si samples were removed from
the silicon substrate using wet chemical etching in an HNA solution (hydrogen fluoride, nitric acid,
and water (1:1:1.5)). As a result, free-standing epitaxial layers were then merged with a SiC carrier
using a carbon glue layer whose main component was 1-methoxy-2-propanol acetate (Figure 1a,b).
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Figure 1. (a) Photography of a 52 × 52 mm2 free-standing cubic silicon carbide (3C-SiC) epitaxial layer
after removing the silicon substrate. (b) Merged 3C-SiC-on-SiC seeding stack for a two inch process.

Additional experiments were performed increasing the sample sizes, starting with a diameter
of 95 mm or above by removing the overgrown edge areas of the wafers. On such seeding stack,
subsequent sublimation growth was performed using a vapor phase setup with a sublimation
“sandwich” cell. Three two inch and three four inch samples were manufactured with growth rates
between approximately 160 µm/h and 320 µm/h and thicknesses between approximately 450 µm and
900 µm. For the removal of the resulting material from the SiC carrier, oxidation of the carbon glue
layer at 800 ◦C and ultrasonic processing were performed. Characterization was conducted using
Raman spectroscopy (Horiba Jobin LabRam HR Evolution confocal microscope, λ = 405 nm), X-ray
diffraction (2θ-ω scans with analyzer), and optical microscopy.

3. Results and Discussion

The main challenge for this seeding layer transfer and bulk growth method was to obtain a
crack-free epilayer large enough to fit in a two inch surface. The first attempts presented in [10] were
carried out using a diamond wire saw, introducing mechanical force into the already stressed material.
This method resulted in additional cracking along the (110) directions of the material. By utilizing the
laser ablation process, it was possible to locally process the material and adjust the total dimensions of
the used wafers. The resulting material was free of cracks, and therefore, an increased diameter for the
sublimation epitaxial growth was achievable. Figure 2 shows the acquired crystals after removing the
residual carrier and polishing (used grain sizes: 45–15 µm, 6–3 µm). The sample shown in (a) features
a thickness of approximately 0.87 mm and a complete two inch diameter. The black spots in the center
can be mainly assigned to protrusions increasing in size with increasing thickness. The black areas on
the outer edge were generated by carbon contaminations on the seeding surface. The origin of such
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dirt was allocated to the merging step of epitaxial layer and carrier, overlapping at the edge of the
seeds. The sample shown in (b) features less inhomogeneities at the edge but presents two bigger areas
featuring a burst of the seed. This effect was due to an enclosure of gases between the seed and the
carrier, leading to the local removal of the material in such areas during vapor growth. Increasing
the temperature would increase the pressure of the gas inclusions, inevitably bursting the epitaxial
surface which presented the weakest escape route. The sample shown in Figure 2c exhibits similar
burst effects in the top area and contaminations on the three edge areas. The main defect on all samples,
however, was caused by the protrusion generated in the carbonization step during the CVD growth of
the seeding layer.
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Figure 2. Through-Light optical scans of three free-standing 3C-SiC two inch wafers with an as-grown
thickness of (a) 0.87 mm, (b) 0.78 mm, and (c) 0.5 mm. All three crystals were polished on both sides.
Samples (b) and (c) feature burst areas.

Increasing the diameter of the epitaxial layer augmented the cracking probability during the
etching but not during the cutting. Figure 3a–c shows three free-standing 20 µm-thick epitaxial layers
with various cracks, appearing during the substrate removal step. The breakage visible in Figure 3a
started to propagate at the edge areas highlighted by red circles. The material in such region featured
inhomogeneities involving the CVD process, overgrowing the border of the silicon substrate. This
led to a predetermined breaking point. The sample shown in Figure 3b shows a layer without any
residuals of this border area. To maximize the area output, flats were included. The cracks appearing
in this experiment started from the flats. Therefore, an additional laser ablation run reduced the total
diameter to 95 mm, as shown in Figure 3c. Only one crack appeared in the middle of the sample,
caused by the uplift of the layer during etching. The chemical removal of the substrate initiated at the
edges, moving into the center. Because of gas bubbles adhering to the silicon, an uplift of the epitaxial
layer occurred, tilting it in the center. This tilt led to breakage by mechanical stress. Even though
the layers broke during substrate removal, a merging step with a SiC carrier was performed. The
resulting stacks were implemented into an adapted four inch growth cell, enabling the growth of larger
diameter material. The manufactured crystals can be seen in Figure 3d–f. The depicted samples varied
in thickness from 480 µm up to 520 µm, and their growth rates varied from 180 µm/h up to 320 µm/h.
Additional cracking of the material occurred mainly during the removal of the grown material from
the residual SiC carrier. For the growth of such diameters, a spacer with a 100 mm hole was used.
As the utilized seeding layers exhibited a smaller dimension of ca. 95 mm and, additionally, were
cracked during the prior seed preparation step, a seedless growth partially occurred on the carrier.
The material grown on such seedless regions nucleated spontaneously as polycrystalline material.
This unwanted growth clamped the material grown on the actual seeding layer. For the final removal
of the resulting crystal from the carrier, an additional mechanical force was thus needed. Therefore,
additional breakage at this point was inevitable. Apart from the cracks, all samples featured similar
defects which are also visible on the two inch material. All crystals grown by this method featured
the typical yellow appearance of cubic silicon carbide. Rocking curve measurements of the 002 reflex
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resulted in a full-width-at-half-maximum (FWHM) around 138 to 140 arc sec. These values are almost
comparable with those of high-quality material grown on hexagonal SiC substrates, which can be
lower than 120 arc sec [6].
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Figure 3. Free-standing epitaxial layers cut out of a four inch wafer increasing the diameter of the
grown samples. (a) Features of some edge areas of the wafer at the corners circled in red. Cracks started
to propagate from such edge areas. (b) The epitaxial layer was removed from the edge areas, and cracks
propagated on the flat areas. (c) Reduction to a 95 mm diameter without edge or flat areas resulted in a
single crack generated by uplifting during etching. The corresponding crystals grown on the shown
free-standing epitaxial layers are depicted in (d–f). All samples feature additional cracks introduced by
the post-process removal from the carrier due to polycrystalline growth at the borders. The thicknesses
of the samples varied between 480 µm to 520 µm, with growth rates between 180 µm/h and 320 µm/h.

Raman analysis of 3C-SiC-on-Si, as-grown 3C-SiC-on-SiC, and post-processed SE-grown material
was performed. Figure 4a shows a resembling spectrum of a defect-free surface area on SE-grown
material. The transversal optical (TO) mode is forbidden for defect-free (100) on-axis material. However,
the stress in the material can be determined from the peak position [17]. The plot in Figure 4b shows
the wavenumber of the TO mode for typically stressed CVD-grown material on on-axis and 4◦ off-axis
silicon substrates. From this data, a tensile stress was visible in both materials. In comparison, as-grown
material grown by SE featured similar values as CVD-grown material on on-axis substrates. However,
after the oxidation and removal of the crystal from the carrier, the material tended to reduce the stress
in the direction of 797 cm−1.

Additional XRD 2θ-ω scans were performed on various samples after the removal from the
carrier grown by SE. From these data, the actual lattice parameters of the material were calculated.
Table 1 shows the resulting values. The ε value describes the distortion by subtracting both values and
dividing by the in-plane value. A distortion below 10−5 corresponds to the experimental error of the
used setup and supports the assumption of stress-free material.
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Figure 4. (a) Typical Raman spectrum of SE-grown material in a protrusion- and defect-free surface
area. (b) Comparison of the x-value for the transversal optical (TO) mode of 3C-SiC epitaxial layers
grown by chemical vapor deposition (CVD) (on and 4◦ off-axis), homoepitaxial as-grown material
using the SE setup, and after oxidation and removal from the carrier. The obtained values feature a
trend of stress reduction for the final material.

Table 1. Lattice parameters calculated from XRD 2θ-ω scans on SE-grown material and
3C-SiC-on-Si material.

Sample Orientation a ‖ (Å) a ⊥ (Å) ε

SE123 On-axis 4.3599 4.3602 −7.9 × 10−5

SE126 On-axis 4.3617 4.3608 2.1 × 10−4

3C-SiC-on-Si On-axis 4.3628 4.3582 1.1 × 10−3

SE136 4◦ off 4.3602 4.3602 −3.7 × 10−6

SE137 4◦ off 4.3605 4.3602 7.1 × 10−5

3C-SiC-on-Si 4◦ off 4.3633 4.3582 1.2 × 10−3

4. Conclusions

We presented a method to reproducibly manufacture free-standing epitaxial layers up to
52 × 52 mm2 using a laser ablation process. For increased dimensions, cracking occurred during
wet-chemical etching. The resulting epitaxial layers were repeatedly merged with SiC carriers. The
resulting seeding stacks were then applied for the growth of two and four inch material using a
high-temperature vapor growth setup. All samples grown by this method exhibited a thickness between
320 µm and 520 µm and grew at rates between 190 µm/h and 320 µm/h. The optical appearance of
all crystals featured a bright yellow color, typical for cubic silicon carbide. XRD analysis and Raman
spectroscopy confirmed 3C-SiC growth. The typical defects of (100) 3C-SiC, such as Stacking faults,
Anti-Phase-Boundaries, and protrusions were present. Mainly, surface contaminations on the seed
altered the material quality, indicating the need of a cleaning process prior to the growth. XRD and
Raman analysis of the bulk material grown with this method proved the growth of stress-free material.
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