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Abstract: Antibiotic residues in aquaculture wastewater are considered as an emerging environmental
problem, as they are not efficiently removed in wastewater treatment plants. To address this issue,
we fabricated TiO2 nanotube arrays (TNAs), TiO2 nanowires on nanotube arrays (TNWs/TNAs),
Au nanoparticle (NP)-decorated-TNAs, and TNWs/TNAs, which were applied for assessing the
photocatalytic degradation of eight antibiotics, simultaneously. The TNAs and TNWs/TNAs were
synthesized by anodization using an aqueous NH4F/ethylene glycol solution. Au NPs were
synthesized by chemical reduction method, and used to decorate on TNAs and TNWs/TNAs.
All the TiO2 nanostructures exhibited anatase phase and well-defined morphology. The photocatalytic
performance of TNAs, TNWs/TNAs, Au-TNAs and Au-TNWs/TNAs was studied by monitoring
the degradation of amoxicillin, ampicillin, doxycycline, oxytetracycline, lincomycin, vancomycin,
sulfamethazine, and sulfamethoxazole under ultraviolet (UV)-visible (VIS), or VIS illumination by
LC-MS/MS method. All the four kinds of nanomaterials degraded the antibiotics effectively and rapidly,
in which most antibiotics were removed completely after 20 min treatment. The Au-TNWs/TNAs
exhibited the highest photocatalytic activity in degradation of the eight antibiotics. For example,
reaction rate constants of Au-TNWs/TNAs for degradation of lincomycin reached 0.26 min−1 and
0.096 min−1 under UV-VIS and VIS irradiation, respectively; and they were even higher for the other
antibiotics. The excellent photocatalytic activity of Au-TNWs/TNAs was attributed to the synergistic
effects of: (1) The larger surface area of TNWs/TNAs as compared to TNAs, and (2) surface plasmonic
effect in Au NPs to enhance the visible light harvesting.

Keywords: TiO2 nanomaterials; Au nanoparticles; anodization; photocatalytic degradation of
antibiotics; LC-MS/MS

1. Introduction

Titanium dioxide (TiO2) is one of the most widely studied materials for applications
in solar cells [1–3], pollutant degradation [4–6], photolysis of water [7], gas sensing [8],
and bio-applications [9,10], due to its excellent photocatalytic reactivity, high chemical stability,
non-toxicity, biocompatibility, and low cost [11–13]. However, the large band gap of TiO2 (3.2 eV)
limits it light absorption to only 5% of the solar spectrum [14–16]. Considerable effort has been
made to improve the light absorption of TiO2 by doping with non-metals (N, F, S) [17–19] or
chemical modification to narrow the band gap [20]. In addition, visible-light absorption can also be
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achieved by coupling TiO2 to small-band-gap quantum dots [21]. Recently, a new approach involving
metal nanostructures in enhancing the visible-light photoactivity of TiO2 via plasmonic effect has
received much attention [22–26]. Moreover, metal nanoparticles (NPs) have demonstrated good
photo-stability [14].

TiO2 nanomaterials are of great interest because of their large surface area and high light absorption
capability [27–31]. In this study, TiO2 nanotube arrays (TNAs) and TiO2 nanowires on nanotube
arrays (TNWs/TNAs) are of interest, because they can provide a large surface-to-volume ratio and
unidirectional electrical channel [32,33]. TNWs/TNAs presented a better photocatalytic degradation
of methylene blue than that of TNAs, which was attributed to the presence of partial coverage of
TNWs on the surface of TNAs for the enhanced surface area [6]. By using the anodic oxidation,
the nanostructures of TNAs and TNWs/TNAs can be fabricated on immobilized Titanium folds that
allows retrieval of the photocatalysts from the reaction solution after treatment, so they can be reused
for many times.

The aquaculture production sector of the Mekong Delta (Vietnam) has reached an annual
production of 1.14 million tons in 2012 [34,35]. Antibiotics are commonly used in aquaculture for
the prevention and treatment of diseases. However, Vietnam has very little enforced regulation
pertaining to antibiotic usage in domestic aquaculture. Consequently, antibiotic residues in aquaculture
wastewater of the Mekong Delta region are considered as an emerging environmental problem,
due to their adverse effects on ecosystems, the aquaculture production and its economy [36,37],
and human health [38–42]. Indeed, antibiotic residues in the environment have been found at low
levels, usually in the ng·L−1–µg·L−1 range [38–40]. The antibiotic residues can result in bacterial
antibiotic resistance [41,42], which in turn can be a serious risk to humans and other animals [37].
To address this environmental issue, photocatalysis has received tremendous attention, owing to its
great potential in removing antibiotics from aqueous solutions via a green, economic, and effective
process [43,44]. Indeed, photocatalytic degradation of tetracycline using nanosized titanium dioxide in
an aqueous solution has been studied. Also, the degradation of paracetamol in aqueous solutions by
TiO2 photocatalysis in powder and immobilized forms have been studied [45]. Y. He et al. studied
the degradation of pharmaceuticals (i.e., Propranolol, Diclofenac, Carbamazepine, and Ibuprofen) in
wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation [46]. Therefore,
the hypothesis of this study is that the antibiotic residues in aquaculture wastewater can be degraded
effectively and rapidly by using nanostructured TiO2 and Au-TiO2 photocatalysts.

In this study, we fabricated TNAs, TNWs/TNAs, Au NP-decorated TNAs, and Au NP-
decorated TNWs/TNAs and utilized them to degrade antibiotic residues in aquaculture wastewater
of the Mekong Delta (Vietnam) via the photocatalysis process. Indeed, for the first time,
we successfully developed a sensitive, specified and repeatable analytic procedure to assess the
photocatalytic removal efficiency of important classes of antibiotics, including amoxicillin (AMOX),
ampicillin (AMPI), doxycycline (DXC), oxytetracycline (OTC), lincomycin (LCM), vancomycin (VCM),
sulfamethazine (SMT), and sulfamethoxazole (SMZ) simultaneously in aquaculture wastewater,
using liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis. LC-MS/MS is the
combination of liquid chromatography (LC) with mass spectrometry (MS). Structural-morphological,
and photocatalytic degradation kinetics of the eight antibiotics under UV and/or VIS irradiation are
discussed in detail.

2. Experimental Details

TNAs and TNWs/TNAs were grown on Titanium (Ti) foil substrates (99.9% purity, 1 cm ×
2.5 cm size, 0.4 mm thickness) by anodic oxidation. Prior to anodization, the substrate was first
ultrasonically cleaned using acetone, methanol, and deionized water, followed by drying in a N2 gas
flow. The anodization was performed using a two-electrode system with the Ti foil as an anode and a
stainless steel foil (SS304) as a cathode. The electrolyte contained 0.3 wt % NH4F (SHOWA, Tokyo,
Japan) in ethylene glycol (EG) solution with 2 vol % water. The Ti foil was anodized at 30 V for 1 h
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and 5 h to grow TNAs and TNWs/TNAs, respectively. The samples were then annealed at 400 ◦C for
1 h to induce sample crystallization. Au nanoparticles were prepared by chemical reduction method
in which water (100 mL) containing HAuCl4. 4H2O (0.2 mM) and citric acid (0.5 mM) was stirred
at 120 ◦C. The Au-TNAs and Au-TNWs/TNAs were prepared by immersing the samples in the Au
solution for 6 h at room temperature. The samples were then annealed at 400 ◦C for 1h to improve the
crystallinity and Au-TiO2 interfaces.

The crystal structures of the nanomaterials were characterized by X-ray diffraction (XRD, Bruker D2,
Bruker, Billerica, MA, USA) using Cu Kα radiation (λ = 1.5406 Å). Morphologies of the samples
were characterized by scanning electron microscopy (SEM, JEOL JSM-6500, Pleasanton, CA, USA).
An antibiotic solution was designed and prepared to reflect the practical aquaculture wastewater
samples, collected at Dam Doi district of Ca Mau province, which is one of the large aquaculture areas
of Mekong Delta, Vietnam. The aquaculture wastewater had a biochemical oxygen demand (BOD) of
10.7 mg/L, chemical oxygen demand (COD) of 19.6 mg/L, and low concentration of organic matter.
The spiked mixture solution of standard eight antibiotics with an initial concentration of 500 ng/mL
was dissolved in blank wastewater samples containing 0.1% (v/v) formic acid. Photocatalytic reactions
were carried out by immersing a sample into a 30 ml antibiotic solution under UV-VIS at approximately
120 mW·cm−2 or VIS illumination at approximately 95mW·cm−2 using a 100 W Xenon lamp. Prior to
illumination, the catalyst was immersed into the solution and magnetic stirring followed for 20 min
in the dark, to ensure absorption-desorption equilibrium between the photocatalyst (sample) and
antibiotic solution. A band-pass filter for λ ≥ 400 nm was used to select the VIS spectrum region from
the Xenon lamp. The reaction temperature was kept at 32–33 ◦C for all photocatalytic reactions. After a
certain photocatalytic reaction time, qualitative and quantitative analysis of antibiotics was determined
by LC-MS/MS technique. We used ultra performance liquid chromatography (Acquity H-Class, Waters,
Milford, MA, USA) coupled with a triple quadrupole mass detector (Xevo-TQD, Waters, Milford, MA,
USA), and equipped with an electrospray ionization (ESI) interface. Mass analysis was in positive and
multiple-reaction monitoring (MRM) and daughter ion mode. The Agilent Poroshell 120 Phenyl-hexyl
(4.6× 150 mm; 2.7 µm) column was used, and the mobile phase included acetonitrile-methanol-aqueous
formic acid 0.1% in gradient program [47]. The results were evaluated using the degradation percentage
of each antibiotic at various reaction times, starting at 0 and followed by 2, 5, 9, 14, and 20 min, as
the ratio between the initial peak area of antibiotic solution (without photocatalytic treatment) and
peak area of treated antibiotic solution. It was possible to follow the degradation progress of every
antibiotic by calculating these areas with Masslynx Software 4.1.

3. Results and Discussion

Figure 1 shows the XRD patterns of TNAs, TNWs/TNAs, Au-TNAs, and Au-TNWs/TNAs. All the
samples exhibited the anatase phase of TiO2 with preferred orientations of (004), (101) and (105) lattice
planes at 37.8◦, 25.1◦, and 53.8◦, respectively (JCPDS No. 21–1272). Also, there were no rutile peaks,
indicating that the TiO2 nanomaterials in this study possessed a pure anatase phase. This result agreed
with those reported in [4,5,13,19,48,49]. A closer inspection of the (004) peaks revealed that Au (111)
component was found in the (004) peaks of Au-TNAs and Au-TNWs/TNAs, as demonstrated in
Figure 1c, confirming the presence of crystalline Au NPs in these samples.

The grain sizes (D) of the samples were estimated by using the Scherrer equation: D = 0.9λ/βcosθ,
where λ, β, and θ are the X-ray wavelength, full width at half maximum of the anatase phase TiO2

(004)-oriented peak, and Bragg diffraction angle, respectively [50]. Clearly, the estimated grain size
varied in a narrow range between 21.3 nm and 24.7 nm, and the full width at half maximum (FWHM)
of the (004) peak remained almost constant (Figure 1b). Those results confirmed that the grain size and
the crystallinity of four nanomaterials were almost the same.
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components of TiO2 (004) and Au (111). 
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diameter of 75 nm and thickness of 5.4 μm (Figure 2a inset). In Figure 2b, TNWs/TNAs exhibited a 
TNWs (length of 6 μm) covering on the TNAs. The thickness of TNWs/TNAs film was 8.6 μm, as 
shown in the inset of Figure 2b. The inset in Figure 2c shows the morphology of as-synthesized Au 
nanoparticles with size of 20 ± 10 nm. For Au-TNAs samples, Au nanoparticles distributed relatively 
uniformly on the surface of TNAs (Figure 2c). In addition, a typical energy-dispersive X-ray 
spectroscopy (EDS) spectrum of Au-decorated TiO2 samples in this study is shown in the inset of 
Figure 2c. Obviously, Ti, O, Au peaks were observed, confirming the successful fabrications for Au-
TNAs and Au-TNWs/TNAs samples. Finally, the morphology of Au-TNWs/TNAs can be observed 
in Figure 2d.  

During the anodization process, TNA growth is driven by the anodic-oxidation reaction (to form 
TiO2 from Ti) and the chemical dissolution of the TiO2 layer under the presence of electric field [19,51–
53]. The reactions are given below:  
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Cathodic reaction: 4H+ + 4e → 2H2 

Chemical etching (dissolution) reaction: TiO2 + 6F− + 4H4⁺ → TiF62− + 2H2O 

Figure 1. (a) The XRD patterns of TiO2 nanotube arrays (TNAs), TiO2 nanowires on nanotube arrays
(TNWs/TNAs), Au-TNAs, and Au-TNWs/TNAs. (b) Grain size and the full width at half maximum
(FWHM) of (004) peaks of the four nanomaterials. (c) The (004) peak of Au-TNAs shows two components
of TiO2 (004) and Au (111).

Figure 2 shows the morphology of TNAs, TNWs/TNAs, Au-TNAs, and Au-TNWs/TNAs. Clearly,
the TNAs exhibited a highly ordered, uniformed, and clean surface. The TNAs had tube diameter
of 75 nm and thickness of 5.4 µm (Figure 2a inset). In Figure 2b, TNWs/TNAs exhibited a TNWs
(length of 6 µm) covering on the TNAs. The thickness of TNWs/TNAs film was 8.6 µm, as shown in the
inset of Figure 2b. The inset in Figure 2c shows the morphology of as-synthesized Au nanoparticles
with size of 20 ± 10 nm. For Au-TNAs samples, Au nanoparticles distributed relatively uniformly on
the surface of TNAs (Figure 2c). In addition, a typical energy-dispersive X-ray spectroscopy (EDS)
spectrum of Au-decorated TiO2 samples in this study is shown in the inset of Figure 2c. Obviously, Ti,
O, Au peaks were observed, confirming the successful fabrications for Au-TNAs and Au-TNWs/TNAs
samples. Finally, the morphology of Au-TNWs/TNAs can be observed in Figure 2d.

During the anodization process, TNA growth is driven by the anodic-oxidation reaction (to form
TiO2 from Ti) and the chemical dissolution of the TiO2 layer under the presence of electric field [19,51–53].
The reactions are given below:

Anodic reaction: Ti + 2H2O − 4e→ TiO2 + 4H+

Cathodic reaction: 4H+ + 4e→ 2H2

Chemical etching (dissolution) reaction: TiO2 + 6F− + 4H4
+
→ TiF6

2− + 2H2O
The current density (j) changes with anodizing time (t) in an anodic oxidation process [53,54].

Initially, the j rapidly decreases, then slightly increases, and finally remains a constant [54]. According
to the j–t characteristics, the TNAs growth process can be divided into three stages. In the early stage,
the formation of a non-conductive thin oxide layer, associated with the decrease of j (Figure 3a). Next,
there is the local growth of pits as evidenced by the slight increase of j (Figure 3b). Finally, the nanotube
arrays are grown from the initial pits when j remains a constant (Figure 3c). When the dissolution
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rate of the wall of the nanopores is slower than that of the growth rate of nanopores, the diameter and
length of the nanotubes will gradually increase. And, these sizes will remain unchanged when the
growth rate is equal to the dissolution rate [53,55].Materials 2019, 12, x FOR PEER REVIEW 5 of 12 
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Figure 3. The growth process of TiO2 nanotube arrays (TNAs): (a) non-conductive thin oxide layer
forming, (b) local growth of the pits, (c) growth of the semicircle pores and developed nanotube
arrays, (d) The shape and wall thickness profile of TNAs prior to the emergence of nanowires (TNWs),
(e) Schematic of the TNWs/TNAs structure.
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In the EG/H2O solution containing NH4F electrolyte, the migration of F− toward the electric field
at the bottom electrode is inhibited by the highly viscous solution. Thus, the F− concentration at the
tube mouth is much higher than it is at the tube bottom [6], while the chemical dissolution reaction is
enhanced under the presence of H+ ions from water. Consequently, the tube wall thickness near the
tube mouth was thinner than the lower sections, as shown in Figure 3d. By increasing anodizing time,
strings of through holes are formed on the tube wall and they would initiate and propagate downward
from the top to the bottom of TNAs (or along the F− migration direction). Meanwhile, the holes near
the top expand and connect to each other, and finally split into nanowires (Figure 3e) [6].

The photocatalytic degradation kinetic of LCM is used to evaluate the photocatalytic performance
of the four nanomaterials. The pseudo-first-order rate constants were determined by fitting the data with
the Langmuir–Hinshelwood kinetics rate model [56,57]. Figure 4a,b shows photocatalytic degradation
of LCM using five reaction conditions, namely photolysis (UV-VIS or VIS), and photocatalysis
with TNAs, TNWs/TNAs, Au-TNAs, and Au-TNWs/TNAs nanomaterials. Both photolysis and
photocatalysis reactions generally follow the exponential decay, Ct = C0 × e−kt, where Ct is the
concentration of antibiotic at time t (ng/mL), C0 is the initial concentration (ng/mL), and k is the reaction
rate constant (min−1). By performing the linear fitting on the plot of –ln(Ct/C0) versus reaction time
t, the k is yielded, and the fittings are shown in Figure 4c,d. Specifically, the k values of LCM were
4.8 × 10−2 min−1 and 0.93 × 10−2 min−1 under UV-VIS and VIS irradiation, respectively. This indicates
that UV irradiation degrades the antibiotics better than VIS, due to the higher photon energy via
the photolysis effect [46,58,59]. As shown in Figure 4a,b, the photocatalysis shows significantly
better performance in eliminating LCM than photolysis. The k values for LCM were in ranges of
14.8 × 10−2–26 × 10−2 min−1 under UV-VIS illumination and 7.2 × 10−2–9.5 × 10−2 min−1 under VIS
illumination (Figure 5a). That means that the reaction rates of photocatalysis were 3.1–5.5 times and
7.6–10.3 times higher than those of UV-VIS photolysis and VIS photolysis, respectively.
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Figure 4. (a) Photocatalytic degradation of lincomycin (LCM, 500 ng/mL) using five reaction conditions
of photolysis (UV-VIS), and photocatalysis (with TNAs, TNWs/TNAs, Au-TNAs, and Au-TNWs/TNAs).
(b) Photocatalytic degradation of LCM under photolysis of the visible light (λ ≥ 400 nm of Xenon lamp)
and the photocatalysis conditions. (c,d) LCM degradation kinetic curves of the five reaction conditions
under UV-VIS illumination (c) and VIS illumination (d).

Figure 5a shows the k values of the four kinds of nanomaterials under UV-VIS and VIS irradiation.
Generally, the k of TNWs/TNAs is higher than that of TNAs, which is primarily attributed to the
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presence of partial coverage of TNWs on the surface of TNAs for the enhanced surface area [6,53].
There was a significant enhancement in the k values by decorating TNAs and TNWs/TNAs with Au
NPs, because of the enhancement of the visible-light photoactivity of TiO2 via the localized surface
plasmon resonance (LSPR) effect [14,22,60] (Figure 5a). The LSPR of spherical Au NPs (20 ± 10 nm
diameter) in this study was suggested by the absorption peak at 529 nm (Figure 5b), which was well
consistent with the LSPR-peaks of Au nanoparticles in [61,62]. In addition, the absorption enhancement
in VIS region for Au-TiO2 was confirmed by the UV-VIS absorption spectra in [61,63]. LSPR can be
described as the local electromagnetic fields near the surface of Au NPs being strongly enhanced
when the electromagnetic field of the incident light becomes associated with the oscillations of the
conduction electrons of Au NPs. Indeed, optical simulations clearly presented LSPR-enhanced electric
fields at the interface of Au-TiO2, owing to photo-excited Au nanoparticles [64]. Herein, a proposed
mechanism for enhanced photocatalytic activity of Au-TiO2 is that the LSPR-absorption of Au NPs
generate photoexcited electrons and holes under VIS irradiation, and then the energetic electrons can
inject into the conduction band of TiO2 and trigger photocatalytic reactions (Figure 5c) [61,62,65,66].
Therefore, Au-TNWs/TNAs possessed the highest photocatalytic performance amongst the four kinds
of nanomaterials, due to the synergistic effects of large surface area and the LSPR effect.
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Figure 5. (a) Reaction rate constant (k) of various nanomaterials in photocatalytic degradation of
Lincomycin (500 ng/mL) under UV-VIS and VIS irradiation. (b) Absorption spectrum of the solution
of Au nanoparticles, showing the LSPR peak at 529 nm; and the inset image is a photograph of the
Au nanoparticle solution. (c) A proposed mechanism for the photocatalytic activity of Au-TiO2 upon
the excitation of the Au surface plasmon band. (d) Reaction rate constant of various antibiotics under
photocatalysis using Au-TNWs/TNAs under UV-VIS irradiation. The antibiotic abbreviations: SMT,
sulfamethazine; VCM, vancomycin; OTC, oxytetracycline; SMZ, sulfamethoxazole; DXC, doxycycline;
LCM, lincomycin.

Figure 5d summarizes the k values of various antibiotics treated using photocatalytic reaction
of the Au-TNWs/TNAs (the best nanomaterial in this study) under UV-VIS irradiation. Here, the k
is determined by the intrinsic photocatalytic property of the nanomaterial and the photolysis of
antibiotics. AMOX and AMPI with β lactam ring structures decomposed rapidly by photolysis reaction
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with UV-VIS illumination [67]. In addition, the reaction rate of SMT and SMZ reached high values of
1.41 min−1 and 1.05 min−1, respectively; meanwhile, it was only 0.26 min−1 for LCM. That is because
the former has amine bond structure [68], while LCM has amide bond structure [68]. Similarly, all the
molecule structures with amide bonds of VCM, DXC, and OTC are more resistant to photolysis.
Consequently, VCM, DXC, and OTC exhibited lower k values (1.05, 0.46, and 0.54 min−1) and needed a
reaction time above 20 min to completely degrade. For comparison, the photocatalytic degradation
rate of OTC using the Au-TNWs/TNAs (i.e., 0.54 min−1) was far higher the k of 0.032 min−1 using TiO2

nanobelts loading Au NPs [63].
For the typical LC-MS/MS analysis in more detail, Figure 6a illustrated photocatalytic kinetic

analysis of OTC at various reaction times of 0, 2, 5, 9, 14, and 20 min using Au-TNWs/TNAs and
UV-VIS irradiation. As a result, removal percentage of OTC increased dramatically as a function of
reaction time, and obtained 100% at 20 min. This indicates that antibiotics can completely degrade
using the photocatalytic reaction with TiO2-based nanomaterials. Additionally, the UV-VIS photolysis
or photocatalysis of antibiotics can produce potentially harmful substances [47,68]. Figure 6b shows the
mass spectra of intermediates of OTC after 9 and 14 min of photocatalytic reaction. It is observed that
intermediates separate at retention times of 4.58, 5.65, 10.97 min, respectively. At first, the OTC derived
molecule 460.01 m/z is observed with a precursor ion [M-H]+ 461.01 in positive mode for the pristine
blank sample. In monitoring reaction mode, there are only three product ions with the transition of m/z
461→ 426, 443 and 201 m/z. Meanwhile, after exposure to UV-VIS and Au-TNWs/TNAs, new product
impurity ions with 126, 114, 126 m/z appeared at retention times of 4.58 min; ions 230, 106, 92 m/z at a
retention time of 5.65 min, and 123.98, 92 m/z at 10.07 min also appeared. These results suggested the
presence of decomposed products of the investigated antibiotics.
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4. Conclusions

In this study, TiO2-based nanomaterials (i.e., TNAs, TNWs/TNAs, Au-TNAs, and Au-TNWs/TNAs)
were developed toward the end of enhanced photocatalytic degradation of popular antibiotics. All the
four kinds of nanomaterials exhibited the anatase phase with (004) and (101)-preferred orientation,
grain size of 21.3–24.7 nm, and a similar crystallinity. The morphology of the samples was highly uniform
and well-defined, which is promising for enhanced photocatalytic activity. In addition, we proposed
and shed light on the formation mechanisms of TNAs and TNWs/TNAs. The nanomaterials were
utilized for evaluating the photocatalytic degradation of antibiotics in model aquaculture wastewater
by an LC-MS/MS method. The photocatalytic activity of TNWs/TNAs was higher than that of TNAs,
primarily owing to the larger surface area of the former than the latter. By decorating Au NPs onto
TNAs or TNWs/TNAs, the photocatalytic activity of Au-TNAs and Au-TNWs/TNAs was enhanced
significantly compared to that of TNAs and TNWs/TNAs, because of the local surface plasmon
resonance effect. Consequently, the Au-TNWs/TNAs achieved the highest activity for decomposition of
antibiotics under UV-VIS or VIS irradiation. Based on the photocatalysis’s kinetic results, the photolysis
of the eight antibiotics is of great concern. It was found that the photolysis of antibiotics depends on
the stability of their structures. Indeed, the beta-lactam group (AMOX, AMPI) is more sensitive to
photolysis than the sulfonamides group (SMT, SMZ) under UV-VIS irradiation. The photo-degradation
pattern of more stable antibiotics (i.e., LCM, DXC, OTC, and VCM) followed pseudo-first order
kinetics well, and their reaction rate constants were 0.26, 0.46, 0.54, and 0.51 min−1, respectively.
Furthermore, the appearance of transformation products of the investigated antibiotics was evident
after the chromatographic analyses, whose identification is of interest for future studies.
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