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Abstract: Fatigue is a dominant failure mechanism of several engineering components. One technique
for increasing the fatigue life is by inducing surface residual stress to inhibit crack initiation. In this
review, a microstructural study under various bulk (such as severe plastic deformation) and surface
mechanical treatments is detailed. The effect of individual microstructural feature, residual stress, and
strain hardening on mechanical properties and fatigue crack mechanisms are discussed in detail with
a focus on nickel-based superalloys. Attention is given to the gradient microstructure and interface
boundary behavior for the mechanical performance. It is recommended that hybrid processes, such as
shot peening (SP) followed by deep cold rolling (DCR), could enhance fatigue life. The technical and
scientific understanding of microstructural features delineated here could be useful for developing
materials for fatigue performance.

Keywords: nickel-based superalloys; surface mechanical treatments; severe plastic deformation;
microstructure; fatigue performance

1. Introduction

The type of material and its physical, chemical, and mechanical properties determine the
performance of a component during its period of operation. Every product is made from one type of
material dictated by its performance properties. Examples of such materials include the following:
nickel-based alloys used for aerospace applications due to their excellent combination of fatigue, creep,
and corrosion/oxidation resistance [1]; biocompatible titanium alloys (Ti-6Al-4V), Co-Cr, and 316L
stainless steel alloys used for biomedical hard-tissue replacement applications [2]; steels used for
load-bearing structural applications due to their combination of strength, durability, and cost [3]; and
magnesium alloys used for automotive applications owing to their high specific strength [4]. However,
mechanical properties of engineering alloys may be dramatically compromised under severe operating
conditions such as cyclic loading, vibrations [1], corrosive environments, and elevated temperatures [5].
These conditions may lead to premature failure of the components during the service life. Thus,
there is a constant need to improve the fatigue performance of the materials as approximately 50% of
engineering components failure is due to fatigue, which is probabilistic in nature [6]. Fatigue life can
be divided into the number of cycles for crack initiation and its propagation, leading to the ultimate
failure of the component. As a rule of thumb, a hard mirror-like surface finish through polishing,
compressive surface residual stress, and elimination of stress concentration zones through design
modifications improve the fatigue life.
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A variety of surface mechanical treatments (SMTs) such as shot peening (SP) [7–11], laser shock
peening (LSP) [12–14], deep cold rolling (DCR) [15–19], and vibro peening (VP) [6,20] have been
developed to mitigate the fatigue failure on a range of critical mechanical components in various
industries [1]. The SP treatment is widely used in aerospace industry as it is generally believed that
the compressive residual stress (CRS) induced by shot peening may impede the crack initiation and
propagation at the subsurface region, hence contributing to the enhanced fatigue performance [21].
Laser shock peening achieves an appreciable CRS at a much deeper depth for certain fatigue critical
components. The DCR treatment is another alternative process that could achieve both CRS and deep
penetration depth [18]. The strengthening and deformation mechanisms in the nickel-based superalloy,
Udimet720Li, during deep cold rolling process were proposed in our previous study [22]. The existing
limitations of these processes, such as inaccessibility to treat complex geometries and rough surface
finish, always motivate industries to develop new processes. The VP process is a newly developed
process which produces a better surface finish and comparable CRS profile than that of shot peened
parts, as reported in our previous study [23]. However, knowledge is still limited to residual stress and
strain hardening, whereas, the microstructural changes under various surface mechanical treatments
and their influence on final fatigue performance are not fully understood.

Microstructural features play a vital role in the fatigue behavior of polycrystalline materials.
When tensile stress is present, surface/subsurface material imperfections could become stress
concentration points and lead to crack initiation. This can be impeded by the introduction of CRS and
strain hardening in the material after surface treatments (as shown in Figure 1). For the crack propagation,
microstructural features and materials properties could have significant effects. For instance, grain
boundaries impede the crack propagation by providing resistance to the crack tip, and provide strength
to the material by impeding the motion of dislocations from one grain to another as it behaves as the
pinning point. Therefore, a comprehensive understanding of fatigue damage due to microstructural
features interacting is required to develop an optimized surface/subsurface material treatment process.
This literature review focuses on the influence of residual stress and microstructural features on
fatigue crack initiation and propagation. A variety of surface mechanical treatments are compared
based on the process intensity, residual stress distribution, microstructure, mechanical property, and
fatigue performance.
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Figure 1. Schematic showing various microstructural features affecting fatigue mechanisms. 
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for controlling fatigue. These features include the effect of grain size (coarse/fine/ultrafine/nanograin), 
grain distribution (homogeneous/gradient), interface boundaries (high/low 
angle/coherent/incoherent/twins), dislocation density, slip planes, residual stress distribution, and 
strain hardening on fatigue life. In the last two sections, the microstructural features generated through 
various process routes such as severe plastic deformation, surface mechanical treatments, and their 
effect on fatigue is investigated. Ultimately, a matrix is prepared for understanding the contribution of 
an individual microstructural parameter on mechanical properties and the fatigue performance. The 
main objective of this review is to provide a direction to optimize the fatigue performance of nickel-
based superalloys through microstructural modifications for aero-engine components. 

2. Fatigue Mechanism 

Fatigue cracking is one of the critical failure mechanisms of structural components. Under cyclic 
loading conditions, a material often fails at a stress level below its nominal strength. The fatigue life 
of a component is presented as the number of loading cycles required to initiate a fatigue crack and 
to propagate the crack to a critical size. Therefore, fatigue failure occurs in two stages, crack initiation 
and crack propagation [24]. Fatigue cracks initiate from surface defects or regions of high-stress 
concentration, surface roughening generated due to vibrations or high repetitive stress amplitudes, 
and internal defects or material inhomogeneities. 

Fatigue is a stochastic process influenced by microstructure, surface topography, geometry, 
stress amplitude, frequency, and mean stress ratio, etc. Figure 2 shows the interaction of crack 
initiation and propagation with grain boundaries, dislocations, and other obstacles. These barriers, 
such as hard precipitates and grain boundaries, impede the propagation of a crack and improve the 

Figure 1. Schematic showing various microstructural features affecting fatigue mechanisms.

The first two sections cover the introduction and various aspects of fatigue failure, factors
responsible for the failure, crack initiation, and propagation mechanism in polycrystalline engineering
alloys. The second section provides a report on the fundamental microstructural features responsible for
controlling fatigue. These features include the effect of grain size (coarse/fine/ultrafine/nanograin), grain
distribution (homogeneous/gradient), interface boundaries (high/low angle/coherent/incoherent/twins),
dislocation density, slip planes, residual stress distribution, and strain hardening on fatigue life. In
the last two sections, the microstructural features generated through various process routes such as
severe plastic deformation, surface mechanical treatments, and their effect on fatigue is investigated.
Ultimately, a matrix is prepared for understanding the contribution of an individual microstructural
parameter on mechanical properties and the fatigue performance. The main objective of this review
is to provide a direction to optimize the fatigue performance of nickel-based superalloys through
microstructural modifications for aero-engine components.

2. Fatigue Mechanism

Fatigue cracking is one of the critical failure mechanisms of structural components. Under cyclic
loading conditions, a material often fails at a stress level below its nominal strength. The fatigue life of
a component is presented as the number of loading cycles required to initiate a fatigue crack and to
propagate the crack to a critical size. Therefore, fatigue failure occurs in two stages, crack initiation
and crack propagation [24]. Fatigue cracks initiate from surface defects or regions of high-stress
concentration, surface roughening generated due to vibrations or high repetitive stress amplitudes,
and internal defects or material inhomogeneities.

Fatigue is a stochastic process influenced by microstructure, surface topography, geometry, stress
amplitude, frequency, and mean stress ratio, etc. Figure 2 shows the interaction of crack initiation and
propagation with grain boundaries, dislocations, and other obstacles. These barriers, such as hard
precipitates and grain boundaries, impede the propagation of a crack and improve the fatigue life [25].
It is important to understand crack initiation and propagation behavior and their interaction with
microstructural features.
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microstructural features.

2.1. Crack Initiation Mechanism

Microstructural features, state of stress, materials properties, and surface topography are the
critical factors in the crack initiation stage. Microstructural features such as dislocations, interface
boundaries (i.e., grain boundaries, slip planes/bands, twin boundaries, and defects) are the primary
sites for crack initiation [26]. It is observed that after a significant number of loading cycles, dislocations
pile up creating persistent slip bands (PSB), which are the areas that rise above (extrusion) or fall
below (intrusion) the surface of the component due to the movement of material along slip planes [27].
This leaves tiny steps on the surface that serve as stress risers where fatigue cracks are initiated. This is
the first aspect of pure fatigue failure, and cracks approach in the region of the maximum dislocation
activity in the active slip planes/bands [26]. Crack initiation is more prevalent in coarse grains where
persistent slip bands (PSBs) are prone to generate. However, in small grains, the crack initiation is
difficult due to the increment in the stress intensity threshold for nucleation. Under cyclic loading,
dislocations pile up at the grain boundaries and induce stress concentration that initiates cracks to
minimize the internal energy state. It means grain boundaries are a source of crack nucleation.

2.2. Crack Propagation Mechanism

The crack propagation mechanism is affected by microstructural features, precipitates, and
compressive residual stress. It also depends on the threshold intensity factor below which fatigue crack
propagation is not possible. Once the value of applied stress intensity is higher than the threshold,
crack propagation starts in the grains and it propagates until a microstructural hindrance like a grain
boundary, twin boundary, inclusions, or precipitates decelerates it. Therefore, grain refinement causes
strengthening of the material by the insertion of microstructural barriers. Surface mechanical treatments
contribute to the increase in some microstructural barriers per unit length due to the misorientation
of grains. The different orientation of grains and grain boundary provides an obstruction to the
propagation of the crack and simultaneously diffuses the crack [28]. Thus, these processes increase the
fatigue life of the material significantly by generating various microstructural features, i.e., interface
and dislocations.

In summary, the microstructural features such as grain size, interface boundaries, slip bands,
and dislocations govern the crack initiation and propagation mechanism. Thus, further experimental
investigation to improve the fundamental understanding of microstructure-damage mechanics is
strongly required.

3. Influencing Factors of Ni-Based Alloy Fatigue Behavior

This section of the review covers the features that drive the fatigue crack initiation and propagation
mechanism in the material.
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3.1. Grain Size and Distribution

The effect of grain size, i.e., coarse (grain size more than 20 µm), fine (1–20 µm), ultrafine (between
100–1000 nm), nanocrystalline grains (less than 100 nm) on material properties is summarized here.

3.1.1. Coarse, Fine, Ultrafine, and Nanocrystalline Grains

Grain size is one of the most important factors to influence mechanical property and performance.
The Hall–Petch relation predicts that as the grain size decreases the yield strength increases and it has
been experimentally found to be an effective model for materials with grain sizes ranging from 1 mm
to 1 micrometer [29]. For example, coarse grains (see stage I) exhibit low strength as the grain size
is relatively large as shown in Figure 3. However, the ductility and toughness of coarse grains are
relatively higher than fine grain structures. For fine and ultrafine grains (stage II and III), the decreasing
grain size increases the strength at different rates at the expense of ductility. The mechanism involved
in the rate decrement is still ambiguous. In stage IV for nanograins, it offers an ultra high-yield
strength, fracture strength, lower elongation, toughness, and excellent wear resistance. However, the
critical grain size and the depth of the nanocrystalline layer play a critical role in the enhancement
of these properties. In stage IV, below 10 nm (typical critical value) materials soften due to grain
boundary sliding [30] and follow the inverse Hall–Petch relationship which depicts that the saturation
of grain refinement takes place up to a certain point, and then, further grain coarsening and dislocation
annihilation mechanism takes place. This softening can be from various factors such as incomplete
densification and atomic sliding at the grain boundaries [31].
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The Hall–Petch relationship [32–35] is expressed as:

σ = σo +
k
√

d
(1)

where, σ is yield stress, σo is lattice friction stress required to move individual dislocation, k is the
stress intensity for plastic yielding across polycrystalline grain boundaries (constant), and d is the
average grain size. As per Hall–Petch, smaller grain size increases the strength through increased grain
boundary area for blocking the dislocations, and hence there has been great interest in developing
nanocrystalline materials [36]. Strengthening depends on the average grain size, grain size distribution,
and grain boundary structure [37]. Strengthening is due to dislocation pile-up at the grain boundary
that provides the resistance to deformation from structural refinement. In addition, it is also believed
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that the interactions of high- and low-range shear bands, which are developed by plastic deformation,
contribute to the generation of subgrains, local dynamic recovery, and the recrystallization process
that yields the grain refinement together with highly misoriented grains [38]. However, the grain
refinement usually leads to a reduction in the ductility of the material. In contrast, plastic deformation
by the dislocation glides can result in crystal rotation and a twist of grain boundaries (GBs) to improve
the ductility of the material. Nanocrystalline structures are also notable for their mechanically unstable
structure, since under high stress and deformation they undergo grain coarsening [39]. Maintaining
both strength as well as ductility is practically difficult, however, the authors suggest a few methods to
preserve the strength without the expense of ductility in the Section 3.1.2.

A material cannot develop high strength and ductility at the same time [40]. This is called the
“paradox of strength and ductility” [41,42]. This loss of ductility at very small grain size comes from
the low rate of strain hardening and strain sensitivity. During high strain, most of the dislocation
boundaries induced by deformation develop into high angle grain boundaries and their frequency
increases with the applied strain [43]. Thus, when the rate of strain hardening is high, dislocations
accumulate at the grains which result in a reasonable level of ductility [44]. The formation of the
ultrafine structure with non-equilibrium and high angle grain boundaries generates boundary sliding
which maintains ductility in materials. Ultrafine crystalline structures with equiaxed grains and high
angle grain boundaries impede the motion of dislocations, which enhances the strength of the material.
Concurrently, these may facilitate another deformation mechanism, such as grain boundary sliding,
and improve grain rotation which induces enhanced ductility [45].

It is accepted that the fatigue properties of materials are strongly dependent on their grain
size [46]. Gayda et al. [47] reported on microcrystalline metals, where the grain size is typically greater
than 1 µm, and found that an increase in grain size results in a reduction in the fatigue endurance
limit. On the other hand, a coarser grain structure can lead to an increased fatigue threshold stress
intensity factor, as well as a decrease in the rate of fatigue crack propagation. Conversely, grain size
was found to govern the rate of crack growth under mechanical fatigue, with all other structural
factors held constant. The microcrystalline Ni alloys measured a slower crack growth rate than that
of nanocrystalline or ultrafine structures, as shown in Figure 4. The relevance of this pattern to
microcrystalline, ultrafine-crystalline metals, and nanocrystalline metals is still unclear. Such lack of
understanding is primarily a consequence of the paucity of experimental data on the fatigue behavior
of metals with very fine grains.
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Gayda et al. [47] described the temperature/grain size dependence of the crack growth behavior.
At a lower temperature (T < 0.2 Tm), reduction in grain size/crystallite size and irregularity of grain
boundaries can improve the resistance towards short cracks propagation, but this resistance is lower
for long cracks propagation. However, at the middle-temperature range (T ∼ 0.4 Tm), smaller grain
size prompts intergranular fatigue fracture in the presence of high grain boundaries density due to the
reduction in ductility [49].

3.1.2. Gradient and Homogenous Structure

Gradient microstructures (GS) with a grain size gradient have been recently introduced to optimize
the mechanical properties of structural materials [50]. It is reported that multiscale grain-size structures
can be achieved by gradient plastic deformation processes such as surface impacting, grinding, and
rolling. Gradient microstructures could obtain the trade-off between strength and ductility; both are
mutually exclusive properties. It has been proven that gradient grain-size structures yield superior
properties to homogenous structures [51]. According to reported results, the superior property is the
significance of the optimum thickness of the GS layer (volume %), but it is still challenging to quantify
the optimum thickness of the GS layer [52]. The gradient nanostructure can be further classified into
the following four categories: (a) grain size gradient, (b) twin thickness gradient, (c) lamellar thickness
gradient, and (d) columnar size, as shown in Figure 5.
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Figure 5. Gradient nanostructures with (a) grain size gradient, (b) twin thickness gradient, (c) lamellar
thickness gradient, and (d) columnar size gradient (adapted with permission from [52]).

It should be noted that the concept of gradient nanostructure, here, is very different from the
strain gradient plasticity [52]. First, the range of the grain size gradient should be in the order of
approximately, or more than, hundred grains, which is far less than other reported results of strain
gradient plasticity mechanism [53]. Secondly, the applied strain throughout the depth is the same,
unlike the strain variance throughout the depth in its counterpart. Lastly, the grain size should vary
from the surface to the depth of the material (as shown in Figure 6), which results in varying yield
stress in the material, and the applied strain is the same throughout the depth.
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Figure 6. Representation of (a) ductility-strength synergy and (b) strain softening and hardening in
gradient nanograined structures (adapted with permission from [54]).

Lu [53] and Liu et al. [55] have employed a surface mechanical grinding treatment (SMGT) for
bulk copper and nickel to produce strong, as well as tough, microstructures [56]. In this method, the
surface of the material is under shear force, and the core of the material is not subjected to significant
loading. Hence, surface layers produce nanograins, twins/twin boundaries, and slip planes/bands in the
presence of shear force without altering the core microstructure. The topmost layers, which comprise
the nanograins, provide strengthening to the material due to dislocation slips and accumulation of the
coarse grains in the core, providing ductility or toughness. This means the overall material softening
and hardening is taking place simultaneously creating strong and tough material. Furthermore,
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the synergy achieved by the grain size gradient is due to the gradient yield stress and mechanical
incompatibility caused by a mismatch of the Poisson’s ratio in the outer plastic and inner elastic core.
For example, the nanograin structure throughout the material depth provides strengthening and the
coarse grain structure alone provides toughness and ductility, as shown in Figure 6. It is to be noted, as
shown in Figure 6, that a microstructure with coarse grain embedded in the nanosize grains due to the
homogeneous plastic deformation provides both low strength and ductility. The generation of bimodal
grain size is also reported to be a method for generating high strength and ductility at the same time [57].
The nanocrystalline structure provides the strength, and embedded large grains stabilize the tensile
deformation of the material [58]. It is to be noted that the gradient nanocrystalline structure (GNG)
improves the fatigue life, whereas, the surface layer enhances the fatigue crack initiation threshold and
coarse grains deflect the propagation paths of fatigue cracks by grain boundaries, thus, introducing
crack closure and decreasing the rate of crack growth [59].

Thus, this synergy concept between two mutually exclusive properties, such as strength and
ductility, together with high fatigue life, can be achieved through a gradient microstructure and
a bimodal structure, which can be a potential application in aerospace and structural component
designs [51].

3.2. Interface Boundaries

Interface boundaries play a major role in altering the material properties and failure mechanics.
Factors that induce failure, such as crack nucleation and propagation, directly interact through the
boundaries between grains [60]. Therefore, the behavior of the boundary affects the resistance toward
its movement into another grain [52]. The geometry of the grain boundary could facilitate either slip
transfer (in low angle GBs or twin boundaries) or resist the slip movement.

3.2.1. Grain and Twin Boundaries

Twinning usually occurs as a coordinated movement of a large number of atoms together in a
crystal by shearing action. This narrow misoriented region is considered as twin and the boundary
that separates this region is termed the twin boundary. The major influencing factors for twinning
are the plastic deformation, stacking fault energy, and grain size [61]. The face centred cubic (FCC)
materials with low stacking fault energy deform by twins when subjected to plastic deformation.
Further twinning can be observed in the materials with high stacking fault energy when subjected
to a high strain rate [62]. Meanwhile, both high and low stacking fault energies are beneficial for the
grain refinement process, since high stacking fault energy materials have a faster recovery rate and
low stacking fault energy materials have twin formation [63]. Ultimately, stacking fault energy is the
deciding factor for the twin formation as it influences the probability of cross slip. Cross slip and
dislocation climb mechanisms are responsible for dynamic recovery [64,65]. Stacking fault energy can
be modified through alloying in FCC metals [66]. At a specific temperature, the chance of twin grain
formation increases if the stacking fault energy is low since dislocation annihilation is difficult [67].
For example, FCC metals with low stacking fault energies, such as Ag and Ni, usually deform by
twinning [62,68–71], whereas, coarse-grained FCC metals have high stacking fault energy, and thus
normally deform by dislocation slip.

Twinning is easier in the nanocrystalline materials as the grain size is in the 10 nm range, but it
becomes difficult as the grain size further decreases [72–74]. Deformation twinning can be observed in
the materials subjected to severe plastic deformation when the strain rate reaches a critical value [69].
Interestingly, in nanocrystalline material, thinner twins (<10 nm) play a major role in strengthening.
In the nanometre range, twinning shows a strong resistance to the slip/slip bands. The persistent slip
bands (PSB) twin boundary (TB) interaction (PSB–TB), can affect the fatigue response of the material.

Furthermore, nanoscale twin boundaries (CSL
∑

3) provide better resistance to the movement
of dislocations and slip planes due to a narrow region of atomic mismatch and by decreasing their
mean free path [71]. This atomic mismatch provides extra strengthening to the material as it induces
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dislocation pile-ups and hinders crack propagation, and thus exhibits high strength and thermal
stability at elevated temperatures. Extreme segregation of dislocations on the twin/grain boundary
induces stress concentration. To maintain the mechanical equilibrium, the position of this dislocation
nucleation shifts to other grains or it can initiate cracks at the grain boundary. However, the resistance
of dislocation movement through grain boundaries is low. Therefore, the dislocation pile-ups are rare
in grain boundaries, as shown in Figure 7a, and no significant strengthening is noted. Twin boundary
spacing, λ, is a critical feature that should be small for ultra-strong material properties, as shown in
Figure 7b. The twin boundary increases the work hardening rate by acting as an obstacle for gliding
dislocations [75]. Together, slip transfer at the boundary of nanoscale growth twins in FCC structures
also provides the strengthening mechanism and ductility enhancement [76]. It has been demonstrated
that the twinning mechanism can simultaneously maintain high strength and ductility of the material.
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For the fracture mechanism, the twin boundaries play a vital role in crack initiation and propagation.
Cracks usually initiate from the twin boundaries due to the concentration gradient generated by
dislocation pile-ups and the twin boundaries impart higher resistance to crack propagation in the
grains. The wide atomic mismatch between grains deflects the crack tip movement and makes its
propagation difficult. However, there is always conflict among researchers with respect to the exact
interaction mechanism of PSB-dislocation and twin boundaries.

3.2.2. High Angle and Low Angle Grain Boundaries

Interface boundaries are also categorized into high angle and low angle grain boundaries based on
their angle of misalignment from neighboring grains. If the atomic misorientation angle between two
grains is more than 15◦ (θ ≥ 15◦), it is considered to be a high angle grain boundary, otherwise it is low
angle grain boundary, as shown in Figure 8 [36]. High angle grain boundaries are generated through
large accumulated strains (>6–8) in the material and help to arrest the cracks because they retard slip
band formation and dislocation movement. Simultaneously, they induce more grain boundary sliding
which yields high grain rotation and misorientation which ultimately results in high ductility and
toughness of the material.
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The formation of ultrafine grains with high angle nonequilibrium grain boundaries is very prone
to sliding, which is not possible in low angle grain boundaries [57]. This results in a high ductility
with high strength, fatigue, and toughness. The concept behind this mechanism is that the ultrafine
grain possesses higher strength, and grain boundary sliding due to high angle nonequilibrium grain
boundaries contributes to the higher ductility of the material.

Low angle grain boundaries are usually induced during plastic deformation which leads to strain
hardening of the surface. They have poor grain boundary sliding, and thus result in high strain
hardening but low ductility and toughness. In contrast, a few low angle grain boundaries (i.e., low
angle twist or tilt grain boundaries with aligned or screw dislocations) do not effectively resist the
dislocation movement, hence, they display lower strengthening [78].

3.2.3. Coherent and Incoherent Grain Boundaries

Coherent grain boundaries with atom positions on either side that are in proper contact, as in
Figure 9, can be generated through physical and chemical processes such as electrodeposition, sputter
deposition, plastic deformation, recrystallization, and phase transformation. These boundaries play
a major role in the formation of a dense network of hard precipitates. For example, the precipitates
γ, γ’, and intermetallics in Ni alloys are intended for strengthening at elevated temperatures.
Several authors [70,79,80] have reported that nanoscale coherent boundaries are stable and generate
strengthening effects while maintaining the toughness and ductility.
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Furthermore, Seita et al. [81] conducted a study on the effect of hydrogen on fracture damage and
found that coherent twin boundaries play a dual role in strengthening. Firstly, hydrogen embrittlement
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weakens the grain boundary leading to intergranular fracture (IGF) in coherent twin boundaries (CTBs).
Crack initiation results from the localization of dislocations along persistent slip bands. However,
hydrogen is known to enhance dislocation density in the material as compared to another deformation
process. Researchers have reported that high dislocation density results in high strength and hardness,
therefore, high fatigue life is anticipated but results are contrasted. Secondly, the resistance to crack
propagation is governed by a completely distinct physical mechanism as the crack interacts with
dislocation; it does not provide the medium to proceed through the next grain, so crack arrest takes
place at the dislocation site [81].

Incoherent/semi-coherent grain boundaries do not create close crystallographic registry between
grains and atoms separated by interface boundaries, as shown in Figure 9. A high fraction of incoherent
grain boundaries obstructs the dislocation movement, thus, it significantly increases the strength and
hardness, but it decreases the ductility of the material. This makes the material difficult to deform
further as there is no scope for the accommodation of dislocations. In major structural applications,
internal coherent boundaries with low excess energies was introduced as the main strengthening
mechanism [70].

3.3. Dislocation Generation and Pile-Ups

The generation of dislocations and their movements significantly contribute to the strengthening
of a material. Dislocation movement is the first aspect of fatigue crack initiation. In addition, dislocation
pile-up at grain boundaries usually promotes large cracks to propagate further in the material. During
plastic deformation, the energy provided to the material is converted to heat that raises the temperature
of the material. A small fraction of this energy stored in the material itself causes lattice defects in
the material, i.e., mostly dislocations. Grain boundaries are considered as the dense arrangement
of tangled dislocations, which contribute to stored strain energy. Under external loads, dislocation
movement and its segregation results in gross plastic deformation. Rupture and reformation of the
interatomic bonds are the fundamental mechanisms for dislocation motion [82–87]. The nature of
dislocation movement depends on the dislocation type, i.e., edge/screw. Edge dislocation can be
moved by slip and climb, while screw dislocation can be moved by slip and cross slip. During the
plastic deformation, movement and interaction of existing dislocations take place, which are very
complex phenomena as the number of dislocations are moving on some of the slip planes in various
directions. The hindrance occurs during the movements due to vacancy, grain boundary, defects, and
surface irregularity. A higher critical resolved stress for dislocations is required to move further into
the grains. This additional stress which is needed for the movement provides the strengthening of
the material [88]. The hardness of the material is related to the dislocation density by the following
equation [89]:

H = H∗ + αGb
√
ρ (2)

where, H is microhardness, H∗, α, and G are the material constants, b is burger vector, and ρ is
dislocation density.

Alternatively, single weak grains are primary sites which activate the dislocation source and grain
boundaries for dislocation pile-ups under stress, that induce stress concentration. However, piled up
dislocations (only a few hundred) are not sufficient to form macroscopically observable extrusions
and intrusions. The stress concentration in weak grains relaxes when the dislocation source moves to
the adjacent grains and dislocation slips continuously form the nucleus of a fatigue crack of sufficient
dimension. The mechanism for the formation of a fatigue crack source and the yield process are very
similar to each other.

According to the Hall–Petch relationship, the yield strength is dependent on grain size of the
dislocation pile-up mechanism. Yielding is first initiated from a single grain once a dislocation
source becomes active and emits a dislocation loop. This dislocation loop then moves to the grain
boundary, which resists further movement and results in a pile-up of dislocations. If the number
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of dislocations piled up at GBs is larger than geometrically required, then slip in grain 2 occurs
immediately. The number of geometrically necessary dislocations before yielding is expressed as:

n =
απτsd
4 Gb

(3)

where, α is a constant near unity, τs is the average resolved shear stress in the slip plane, G is the shear
modulus, d is the grain diameter, and b is the burger vector length. This accumulation of dislocations at
the grain boundary results in stress concentration and if this stress concentration is effective, a source in
neighboring grains will be activated to emit a dislocation loop (Figure 10). This stress concentration in
other grains starts plastic deformation and this phenomenon extends further to the whole material [90].
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According to the dislocation theory [91–93], as the particle size decreases the value of the critical
shear stress for dislocation nucleation increases suddenly. The critical shear stress required for
dislocation nucleation with the approximation that source size is equal to particle size is as follows:

τ f =
2aGb f

D
(4)

and that required to nucleate the partial dislocation is:

τ f =
2aGb f

D
+
γ

bp
(5)

where, bf and bp are the burgers vectors of the full and partial dislocations, respectively, G is the shear
modulus, and γ is the stacking fault energy. The factor a is taken as 0.5 for edge dislocation and 1.5 for
screw dislocations.

Conversely, this dislocation pile-up theory is valid for pure metals, therefore, there is an alternate
theory of grain boundary source for understanding the mechanism. According to the model of the
grain boundary source, a grain boundary acts as the source of dislocation and the capacity to emit the
dislocation depends on the character of the grain boundary. This theory is still under investigation and
further study is required for the enhanced understanding of the mechanism.

3.4. Slip Band and Slip Planes

The slip in crystal planes is the prominent mechanism of plastic deformation, which involves
atomic sliding on different planes called slip planes, as shown in Figure 11. Slip occurs when the applied
shear stress value exceeds the critical limit for the atomic movement [94]. Coherent slip band formation
takes place at grain boundaries because of a pile-up of dislocations at the site [36]. These obstacles
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generate microstress concentration or discontinuity on the surface, encouraging nucleation of fatigue
cracks at the stress raised site. Furthermore, cyclic loading that causes dislocations to move back and
forth results in weakening of slip bands. This repetitive process weakens the point where it is fractured,
i.e., shear decohesion which yields crack initiation [95]. Thus, slip plane characteristics, pile-ups, leads
to the slip band crack initiation and propagation.

Materials 2019, 12, x FOR PEER REVIEW 14 of 41 

 

is fractured, i.e., shear decohesion which yields crack initiation [95]. Thus, slip plane characteristics, 
pile-ups, leads to the slip band crack initiation and propagation. 

 

Figure 11. Differentiation between slip and twin interface (adapted from DoITPoMS/University of 
Cambridge). Available on: https://www.doitpoms.ac.uk/ldplib/shape_memory/background.php, 
accessed date (06 August 2019) [96]. 

3.5. Strain Hardening Effects 

Strain hardening is the strengthening of the material because of dislocation generation, 
multiplication, and their movement due to plastic deformation. After strain hardening, the saturation 
of plastic deformation takes place, as it cannot accommodate further dislocation generation, and 
provides resistance to the deformation. This resistance to deformation comes from the obstacle 
structure in the material, which controls the movement of the mobile dislocations. Thus, it increases 
the yield strength  (𝜏 ,  hardness, and tensile strength of the material. However, dislocation 
annihilation and residual stress relaxation takes place due to atomic vibrations at the higher internal 
energy generated due to a high temperature condition [97–101]. Hence, the magnitude and rate of 
stress relaxation depends on the degree of strain hardening developed in the material [102]. 

Strain hardening is also responsible for enhanced resistance to crack initiation due to 
surface/subsurface strengthening. On the other hand, it causes lower crack growth resistance due to 
material embrittlement [103], i.e., lower ductility in aluminum. Strain hardening or work 
strengthening is the significance of dislocation arrest by grain boundary or any other obstacle. As 
reported by Guechichi et al. [104], the effect of strain hardening on the fatigue life improvement of 
the material is more crucial than compressive residual stress. Almost half of the residual stress is 
relaxed during the first few fatigue cycles in torsion, rotatory bending, and the tension-compression 
test. However, strain hardening does not change appreciably and is relatively more stable even at 
elevated temperatures. Overall, there is ambiguity over the dominance of compressive residual 
stresses, strain hardening or plastic deformation on the fatigue performance. It is believed that the 
improvement is attributed to complex interactions of all factors such as material properties, 
microstructure, and topography [105]. 

3.6. Compressive Residual Stress Distribution 

Figure 11. Differentiation between slip (a) and twin (b) interface (adapted from DoITPoMS/University
of Cambridge). Available on: https://www.doitpoms.ac.uk/ldplib/shape_memory/background.php,
accessed date (6 August 2019) [96].

3.5. Strain Hardening Effects

Strain hardening is the strengthening of the material because of dislocation generation,
multiplication, and their movement due to plastic deformation. After strain hardening, the saturation of
plastic deformation takes place, as it cannot accommodate further dislocation generation, and provides
resistance to the deformation. This resistance to deformation comes from the obstacle structure in the
material, which controls the movement of the mobile dislocations. Thus, it increases the yield strength
(τ), hardness, and tensile strength of the material. However, dislocation annihilation and residual
stress relaxation takes place due to atomic vibrations at the higher internal energy generated due to a
high temperature condition [97–101]. Hence, the magnitude and rate of stress relaxation depends on
the degree of strain hardening developed in the material [102].

Strain hardening is also responsible for enhanced resistance to crack initiation due to
surface/subsurface strengthening. On the other hand, it causes lower crack growth resistance due to
material embrittlement [103], i.e., lower ductility in aluminum. Strain hardening or work strengthening
is the significance of dislocation arrest by grain boundary or any other obstacle. As reported by
Guechichi et al. [104], the effect of strain hardening on the fatigue life improvement of the material is
more crucial than compressive residual stress. Almost half of the residual stress is relaxed during the
first few fatigue cycles in torsion, rotatory bending, and the tension-compression test. However, strain
hardening does not change appreciably and is relatively more stable even at elevated temperatures.
Overall, there is ambiguity over the dominance of compressive residual stresses, strain hardening or
plastic deformation on the fatigue performance. It is believed that the improvement is attributed to
complex interactions of all factors such as material properties, microstructure, and topography [105].

https://www.doitpoms.ac.uk/ldplib/shape_memory/background.php
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3.6. Compressive Residual Stress Distribution

The generation of the compressive residual stress (CRS) fields in the surface or subsurface
layers of the material are well known for fatigue life improvement. Strain hardening, CRS, surface
finish, and phase composition are the influencing factors for the fatigue failure mechanism [106].
The crack initiation could be due to tensile stress present on the surface or subsurface, and therefore
the introduction of CRS can compensate for these adverse effects as both are opposite in nature. CRS
resists the surface crack initiation and could even force subsurface initiation, i.e., the tensile region in
the subsurface [107]. It has been reported that shallow residual stress field is enough to impede the
crack initiation from the surface and higher fatigue endurance can be achieved if the crack source is
under the strain hardening zone [103]. CRS also plays an important role in impeding the crack growth,
as the compressive stress field closes the crack tip to propagate further [108]. However, the individual
dominance of magnitude and depth of CRS on fatigue crack initiation and propagation is not yet fully
understood and needs further investigation.

At elevated temperatures (T > 0.4 Tm), the stress relaxation is a major concern that eliminates
the beneficial effect of compressive stress induced in the material due to material annealing. Overall,
the beneficial effect on fatigue life is pronounced due to the complex interactions of strain hardening,
hardness, compressive residual stress, and dense dislocation structure [109].

4. Severe Plastic Deformation Techniques for Bulk

Microstructural tailoring during bulk material fabrication can provide superior properties [110]
as these are nanostructural features such as nanograins, nanotwins, and nanoclusters [111]. In this
section, different methods for generating tailored microstructures are discussed.

4.1. Equal Channel Angular (ECA)

Equal channel angular (ECA) pressing is an effective method (Figure 12a) for producing
nanostructured material with a combination of excellent materials and structural properties [112]. A few
researchers have reported on the following varieties of interface boundary: (1) low/high angle GBs,
(2) special and random GBs, and (3) equilibrium/nonequilibrium GBs. Because nanograined materials
are highly controlled by interface structure, therefore, they display different material properties
under various interfaces. Nanograins and nanotwins (Figure 12b) that are generated by a severe
plastic deformation process improve the strength and ductility simultaneously [36]. The favorable
conditions for generation of nanotwins are the following: (1) relatively low stacking fault energy,
(2) low deformation temperature, and (3) high strain rate [73].
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Ueno et al. [113] reported significant improvement in tensile strength (Figure 13a), high cycle
fatigue (HCF) (Figure 13b), and fatigue endurance limit in nanostructured 316L stainless steel without
compromising ductility. This improvement was attributed to the high fraction of nanotwins and high
stability of twin boundaries. Furthermore, Vinogadrov et al. [114] investigated the effect of strain path
during the ECA process on grain refinement and structural features for Cu-Cr alloys. The grain shape
and texture effect on ductility and strain localization was observed, hence, it could influence the cyclic
loading behavior.
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However, there are certain limitations of this process as it can be applied to only small/thin discs.
The components with relatively large and complex geometries are still challenging to process using
this method.

4.2. High-Pressure Torsion (HPT)

High-pressure torsion (HPT) (shown in Figure 14a) can generate an ultra-fine crystallites
(UFC)/nanocrystalline structure with excellent mechanical properties through combined compressive
force and torsional straining [115]. This is attributed to a large fraction of high angle grain boundaries
with high internal stress in Ti-6Al-4V [116]. Zhilyaev et al. [117] reported the high fraction of high
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angle grain boundaries (HAGBs) (~68.1%) as compared with ECP (~60%) for nickel alloy with an
average grain size of ~0.27 µm.

However, Zhilyaev et al. [118] reported significant grain refinement and hardness increment
in pure nickel. A homogeneous microstructure with a large fraction of low angle grain boundaries
(LAGBs), twins, special boundaries, and a small fraction of HAGBs was observed. Interestingly, grain
size, interface boundaries, and material properties varied from the edge (Figure 14c) to the center of
the circular disc (Figure 14b). The average grain size at the center was ~0.8µm and ~1.2µm at the edge
as reported by Xu et al. [119] for aluminum (Al). High dislocations can be observed through the TEM
micrographs (Figure 14b,c) which are not widely separated due to high stacking fault energy and there
is easily cross slip.
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Figure 14. (a) Schematic diagram of the high-pressure torsion (HPT) process, and TEM micrograph
of aluminum (Al) disc at 1.25 GPa, (b) at the center, and (c) at the edge (adapted with permission
from [57,117]).

Valiev et al. [57] used HPT to process pure Al (99.9%) disc of 10–20 mm diameter and 0.2–0.5 mm
thickness under 6 GPa pressure. This produced a nanocrystalline structure with deformation twins,
nonequilibrium grain boundaries, dislocations, and solute segregation. Vickers hardness and tensile
strength of the material significantly increased.

Commercially pure copper processed by HPT showed considerable improvement in fatigue
performance of the material as compared to the ECA process. The nanograins, nanotwins, and
dislocation density have more fraction of the components generated by HPT (Figure 15a) as compared
to the ECA process (Figure 15b). However, the microstructure varied across the diameter of the disk
processed by HPT. The uniaxial tensile stress-strain variations for the samples between these two
processes show that HPT showed a remarkable improvement in strength (Figure 16a) and fatigue life
(Figure 16b).
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with permission from [120]).

In conclusion, the microstructural architecture, such as bimodal grain structure/UFC structure
with high angle and nonequilibrium grain boundaries, can provide improved material properties
such as strength, hardness, ductility, fatigue, and wear resistance [121–123]. The slip band formation,
substructure, and deformation phenomenon are also observed in copper during the ultrasonic vibration
energy and the thermosonic energy bonding process which are being used in electronic applications.
The wire bonding strength has been discussed based on the deformation mechanisms [124,125].
These could be a topic of great interest to several researchers and industries for developing
next-generation components.

5. Surface Modification Techniques

The surface interacts with the surrounding environment and loads. Hence, it is more likely to
deteriorate over time, for example, fretting, fatigue, corrosion, wear, and creep [126]. The surface
characteristics of engineering materials have a significant effect on the serviceability and component life.
Thus, it cannot be neglected in design. Surface modifications involve protective coating, cladding, heat
treatment (e.g., nitriding and carburizing), and surface mechanical treatments. Surface coating [127,128]
and deposition methods are not effective for altering the microstructure driven fatigue failure and are
not discussed here (readers can refer elsewhere [129–139] for these processes). Surface mechanical
treatments are the focus of this discourse.

Surface mechanical treatment is a method used to alter the surface or subsurface characteristics such
as morphology, microstructure, and materials properties through plastic deformation. Modern turbine
blades of jet engines are subjected to these surface treatments for improved fatigue performance [140].
The responsible mechanisms for plastic deformation are the slipping, twinning, and dislocation
generation, which were described in the previous section.

Surface modifications usually generate the high-density nanocrystalline structure at the surface
that attributes to the strengthening. This strengthening is the sum of contributions from dislocation
strengthening and boundary strengthening, apart from frictional stress, as given by [32].

σ = σo + σρ + σb (6)

where, σo is the friction stress, σρ is the forest hardening, and σb is the grain boundary hardening.
The dislocation in the low angle boundaries and the volume between the boundaries causes forest

hardening. Grain boundary hardening is caused by the high angle boundaries, which is taken to be
inversely proportional to the square root of boundary spacing [141].

Microstructural evolution can be understood by the mathematical expression which depicts the
blend effect of strain rate and deformation temperature during plastic deformation which is expressed
as the Zener–Hollomon parameter (Z) [67]. It does signify that the low deformation temperature
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and high strain rate can impede the dislocation annihilation mechanism, which will result in grain
refinement by the formation of new grain boundaries generated through dislocations.

Z =
.
ε × eQ/RT (7)

where, Q is the activation energy mechanism controlling the rate of deformation, T is the absolute
temperature, and R is the universal gas constant.

It is understood that strain rate, deformation temperature, plastic deformation, and strain gradient
are the key factors for the surface modifications. Structural refinement and reduction of grain boundary
spacing govern the dislocation multiplication which provides excellent strength and mechanical
properties, although further grain refinement can lead to grain coarsening and dislocation annihilation
due to grain boundary migration. Therefore, the high strain rate shear deformation can lead to
higher dislocation multiplication with lower angle grain boundaries and lower grain size. This shear
deformation also generates a strain gradient which is important for the creation of geometrically
necessary dislocations [142,143].

Surface mechanical treatment (SMT) processes include shot peening, deep cold rolling, water jet
cavitation peening, laser peening, and vibro peening, as shown in Figure 17, and are discussed below.
Several results are reported in the nascent microstructural condition of the sample, but in the post surface
treatment, microstructural evolution evidence is still limited. This means microstructural evolution after
surface treatment and governing mechanism of fatigue crack damage requires further investigation.
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Figure 17. Surface mechanical treatments: (a) shot peening (SP), (b) deep cold rolling (DCR),
(c) ultrasonic shot peening (USSP), (d) laser shock peening (LSP), (e) water jet cavitation peening
(WJCP), and (f) vibro peening (VP) (a–e) adapted with permission from [144,145]).

5.1. Shot Peening (SP)

Shot peening (SP) is a surface mechanical treatment method in which bombarding of high-velocity
shot media generates plastic deformation and induces compressive residual stress and strain hardening
in the material. It could improve the fatigue life significantly by impeding the crack formation and
propagation in the surface/subsurface [144]. However, several microstructural features also contribute
to the fatigue life improvement.

Several researchers [10,107,146–152] are working on its effect on material properties, residual
stress, strain hardening effect, dislocation density, slip planes, and grain boundary behavior. There are
few results reported for the quantification of strain hardening effect, grain size distribution, and
interface boundaries. Song et al. [153] reported the fraction of interface boundaries and its correlation
with shot peening intensity for titanium alloys (TC21). In this work, the EBSD technique was used
to quantify the fraction of low angle (θ < 15◦) and high angle grain boundaries (θ ≥ 15◦) based on
the misorientation angle. The fraction of low angle grain boundaries was 0.59 and the fraction of
high angle grain boundary was 0.38 from a 100 µm depth from the surface. Deep in the material
(100–360 µm), the fraction of low angle grain boundary was 0.262, and the high angle grain boundary
fraction was 0.72. The dislocation networks were composed of dislocation bands and slip bands in
α phase of the material. There were no twins and stacking faults observed in the surface layer [153].
Shekhar et al. [154] studied the behavior of strain rate on the interface boundaries and refinement
and quantified the volume fraction of low angle and high angle grain boundaries. The advanced
characterization, such as EBSD/TEM characterization, can distinguish the fraction of twin boundaries
and atomic misorientation or kernel average misorientation [155].
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Lainé et al. [156] studied the behavior of dislocation structure, deformation twinning, and
crystallographic effects on metallic shot peened Ti-6Al-4V, as shown in Figure 18, and reported that
MSP generates long wavy tangled dislocation structures and shear bands in the material due to a
high-accumulated strain and strain rate (104 s−1). The tangled dislocation structure was due to the
localized work hardening from multiple subsequent shot impacts. The plastic deformation was in
the form of deformation twins (Figure 18a,b) because it was very sensitive to grain size, which was
higher for large grain size. Furthermore, the depth of strain hardening was quantified through the
grain orientation spread (GOS) plot in EBSD, as shown in Figure 18c, which was 70 µm from the
top surface. A correlation was also reported between residual stress depth generated through the
GOS and hole drilling method. Altenberger et al. [157] also investigated the effect of near-surface
microstructure generated by shot peening on the performance of stainless steel (AISI 304). A complex
subsurface microstructure, consisting of nanocrystalline layers, deformation bands, and strain induced
martensitic twin lamellae with high dislocation densities in the austenitic matrix was observed
(Figure 19). Nanocrystalline surface layers provided stability against cyclic loading, even at high-stress
amplitudes, and impeded dislocation movement and slip band formation. Interestingly, the depth
rather than the intensity of stain hardening was found beneficial for fatigue life improvement. Later,
Zhan et al. [158] investigated the effect of gradient microstructure generated by shot peening of steel
(S30432). The microstrain, microhardness, and domain size varied along the depth and was observed
through X-ray diffraction method.
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It is understood that induction of compressive residual stress, strain hardening, dislocation
generation, and grain refinement are beneficial after shot peening. Unfortunately, the benefits of shot
peening may be reduced or even completely eliminated at a high operating temperature (T > 0.4 Tm).
Kim et al. [159] reported stress relaxation at an elevated temperature and isothermal fatigue reduced
up to 50% at 650 ◦C to 725 ◦C for Udimat 720 Ni-based alloy. This relaxation occurs due to dislocation
and diffusive movement of atoms that reduce the underlying misfit. At a short timescale at 350◦, the
mechanism of stress relaxation was due to the accelerated kinetics at the high stored energy level.
At longer times, this mechanism was due to creep-related phenomena as it significantly reduces the
work hardened zone. Interestingly, the effect of thermal exposure was very strong on the residual stress
rather than depth of cold work in the measured temperature range. On the surface, the percentage
cold work decreased instantly as the temperature increased beyond 650 ◦C [160], which shows the
temperature dependence of mechanical properties [161].

Shot peening has been demonstrated as a fatigue life improvement process as reported by several
researchers for steel [8,162–166], aluminum [9,11,14,167–171], magnesium [7,172], nickel [97,147,173–175],
and titanium alloys [176–188] and as summarized or quantified in Table 1.

Table 1. Comparison of fatigue life enhancement by various microstructural features.

Material SP Parameters Microstructural Features Fatigue Life

AISI 9310 Steel [189] Intensity: 0.18–0.23 mm A, coverage:
200%, media: cast steel 070

40% increment in CRS for SP gear at
depth of maximum shear stress

10 percent surface pitting
fatigue life increased by
1.6 times than standard
gear (unpeened)

Bearing steel
(JIS-SUJ2) [190]

Media: 0.3 mm diameter,
coverage:300% coverage

3.75 times higher RS (−1530 MPa) up
to 90 µm, 1.18 times higher Vickers
hardness (1019 HV)

6–7 times increment after
treatment in bending
fatigue, 0.3% in ultimate
tensile strength

51CrV4 high-grade
spring steel alloy [56]

Media: 0.8–0.9 mm diameter shots,
0.3% intensity, 100% coverage

The maximum measured stress of
1100 MPa arises at a distance of
210 mm measured from the
specimen’s middle point

The decrease in 30%
sustainable stress
amplitude due to high
surface roughness

Low alloy steel [191]

Intensity: 15 A (CSP),100%,0.42 mm
diameter
7 C (SSP), 1500% coverage, 0.58 mm
diameter, (60–61 HRC)
10 N (RSSP),100%, 0.10 mm
diameter

0.3–0.35 mm thick strain hardening
depth, 0.65 (CSP), 1.38 mm (SSP),
−580 MPa in both, observed NC
nanocrystalline layer using TEM

4% increment after SSP
and 10% after repeening
SSP on fatigue strength

Nickel-based superalloy
RR1000 [97]

Intensity:6–8 A, media: 110 H,
coverage: 200%

CRS: (1100 S, 1400 M) MPa, up to
200 µm depth
Stress relaxation: (400 S, 900 M) MPa,
up to 200 µm depth, peak shifted from
50 to 75 µm
SH: strain hardening depth
(100–125 µm), 21% relaxation in
percentage hardening

Dwell fatigue relax the
compressive residual
stress and strain
hardening in the material
in the first few cycles

Nickel-based superalloy
Udimet 720Li [23]

Intensity: 4–5 A, media: 110H,
coverage: 125%

CRS: (826 S, 1094 M) MPa up to depth
of 140 µm, 30% increment in Vickers
microhardness

-

AISI 4340 steel [162]

Intensity: range [0.0027 A (8 psi),
0.0063 A (13 psi), 0.0083 A (18 psi),
0.0141 A (45 psi)], coverage: 200%,
media: S 230 (0.7 mm diameter)

CRS:1200 MPa up to 0.175 mm depth 9–12% increment in
fatigue life

In conclusion, there is still limited knowledge with respect to the correlation of fatigue performance
and microstructural features which require further investigation to engineer the material with optimum
microstructural features. This work could extend to explore other surface enhancement techniques for
optimum microstructural features development.
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5.2. Vibro Peening (VP)

Vibro peening (VP) [6] is a hybrid technique of shot peening and vibro polishing, which generates
a peened and polished surface as compared to other available techniques such as shot peening or
laser peening. The use of an unbalanced motor vibrates media bowl, allowing it to flow against the
surface. The kinetic energy generated during the vibration of media deforms the surface through shear
and compression. The major fraction of the kinetic energy of media transferred perpendicular to the
surface (compression) induce the plastic deformation and the other fraction as shear action induce
burnishing [6]. This process induces compressive residual stress deep into the material and maintains
roughness on the surface. This advanced technology is cost effective and reduces overall process time
because it combines both mechanical treatment and polishing.

Feldmann et al. [6] reported that the low surface roughness value (Ra ≤ 0.25 µm) can be achieved
by vibro peening, cold rolling, and vibro finishing, but shot peening generates the high roughness
value (Ra ≈ 0.65 µm) which is beyond the acceptable range of aerospace components. However, the
compressive residual stress is lower in magnitude and shallower in depth in vibro peening (maximum
800 MPa at 50 µm) as compared with shot peening (maximum 1050 MPa at 100µm), deep cold rolling
(maximum 780 MPa at 150 µm), and the combination of shot peening followed by vibro finishing
(maximum 1050 MPa at 45 µm). Corresponding to these values, the HCF life of components has
been increased by 32% in deep cold rolling, 35% in vibro peening, 61% in shot peening, and 66% in a
combination of shot peening and vibro finishing in the IN718 HPC blisk aerofoils [5]. Ardi et al. [20]
investigated the effect on residual stress, cold work, and surface integrity on RR1000 and found that
a desirable compressive stress with low cold work could be generated for optimizing the fatigue
performance of the components. The quantification of the depth of strain hardening was done by grain
orientation spread (GOS) using an electron backscattered diffraction (EBSD) technique. Kumar et al. [23]
reported on a comparative microstructural and mechanical property study between shot peening and
vibro peening of nickel-based superalloys when subjected to the same peening intensity and observed
that vibro peening generates deeper compressive residual stress as compared to shot peening at the
same peening intensity (4–5 A) with good thermal stability at an elevated temperature. The CRS,
microhardness, full-width half maxima (FWHM), plastic strain, and GOS profiles are compared in
shot peening and vibro peening, as shown in Figure 20. The elevated temperature fatigue, corrosion
fatigue, and sulphidation experiments have not been explored. Therefore, further investigation on the
microstructure of surface and high-temperature fatigue is required for a comprehensive understanding
of the process.
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5.3. Deep Cold Rolling (DCR)

In deep cold rolling (DCR), a hydrostatically controlled ball is pressed and rolled against the
surface in order to induce severe plastic deformation in the subsurface region [192]. The magnitude
of surface compressive residual stress is relatively low but deeper into the subsurface as compared
to the SP process. This process is currently limited to treat mostly flat surfaces and is difficult to
implement on intricate geometries [17]. The combinations of high percentage cold work, higher depth
of compressive residual stress, and lower roughness can yield a material with excellent fatigue life
which is approximately five times that of conventional treatment methods [193]. Deep cold rolling is
highly beneficial if an elevated thermal and mechanical overload is not present. The high cold work
generated by the deep cold rolling process can relax the compressive stress rapidly.

Wong et al. [17] conducted DCR experiments on Ti-6Al-4V with three different designs of tools to
show the feasibility of peened complex features. The maximum compressive residual stress reported
was 1275 MPa magnitude within 1 mm. The process parameters, such as feed rate and overlapping,
played a very insignificant role on the residual stress in the material as well the residual stress was
higher consistently in the lateral direction.

Wagner et al. [194] studied the effect of DCR on the behavior of fatigue crack initiation
and propagation of the aluminum, titanium, and magnesium alloys and illustrated that the cold
work contributed to the retardation of crack nucleation but accelerated the propagation. However,
compressive residual stress had little effect on the initiation but impeded the propagation of the cracks,
whereas, surface roughness accelerated the crack initiation due to stress concentration. Nikitin et al. [195]
studied the subsurface microstructure and cyclic deformation behavior of shot peened and deep rolled
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austenitic stainless steel AISI 304 under varying pressure and intensity. The complex microstructural
features included deformation bands, nanocrystalline layer, and strain induced twins after both surface
treatments. Thus, these features are highly responsible for the cyclic creep deformation behavior.

Nalla et al. [16] investigated the effect of DCR and laser peening on the fatigue of the Ti-6Al-4V at
a temperature range of ambient to 450 ◦C. The residual stress completely relaxed at 450 ◦C thermal
exposure, but the benefit of the surface treatment was due to the generation of work hardening layer
and nanocrystalline layer formation on the subsurface that impeded the driving force for fatigue failure.
Recently, Kumar et al. [22] and Nagarajan et al. [196,197] presented the residual stress distribution,
microstructural evolution, and proposed deformation and strengthening mechanisms induced during
deep cold rolling of nickel-based superalloy Udimet 720Li under different hydrostatic pressure levels
(10–50 MPa). Deformation induced defects, such as dislocation cells, shear bands, and their interactions,
were observed during the DCR process, as presented in Figure 21. The plastic deformation during
DCR was predominantly driven through the slip and dislocation multiplication mechanism.
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5.4. Laser Shock Peening (LSP)

Laser shock peening (Figure 22) induces a high magnitude residual stress deep in the material
by maintaining the low surface roughness [198] which is beneficial for surface-related failure such
as fretting wear, fatigue, and stress corrosion cracking. High energy pulsed laser shock waves have
been used for the generation of compressive residual stress. Nanosecond pulsed laser strikes on
a transparent overlay (water, oil) confine the pulse energy on the metal surface and generate the
high-pressure plasma. This plasma utilizes the mechanical effect of shock waves rather than thermal
effects to deform the target elastically and plastically. Additionally, an absorbent coating with low
impedance on the surface can further boost the intensity of shock waves by absorbing the pulse energy
and provides interaction with material surface directly after expanding. Elastic deformation, which is
under the Hugoniot elastic limit of deformation, regains its position and the rest plastic deformation
causes the compressive residual stress and cold work in the material [199].
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The LSP process parameters can be optimized to generate a higher volume of compressive stress
with constraints on the depth of their influence and on the magnitude of tensile stress [200,201]. As the
shock wave propagates through the material, its magnitude decreases according to the attenuation
rate, which yields more compressive stress at the surface and a relatively decreased value towards the
depth. The effects of laser peening parameters, i.e., fluence, coverage, repetition rate, etc. were studied
by several researchers [21,202–205]. Smith et al. [206] studied the effect of power density and repetition
rate on Ti-6Al-4V. The main conclusion was that power density has no effect on the residual stress and
cold work on the given conditions, but the number of pulses per spot has an effect on both residual
stress and cold work. The residual stress magnitude is high enough (−650 MPa) at the surface and the
subsurface. The surface stresses (most likely the result of machining stresses) decayed to a minimum
value (0 to −250 MPa) at the nominal mid-thickness of the section (i.e., ∼0.40 mm). Compressive
residual stresses (CRS) and percentage cold work are both analogs to each other.

LSP is widely used for fatigue life improvement by inducing residual stress deep into the
material and optimum microstructural features as reported by several researchers [21,89,207,208].
Prevey et al. [209] revealed the effect of the percentage cold work on the stress relaxation behavior of
the IN718 material. The main conclusion was that laser peening and ball burnishing offer minimal
percentage cold work, thus providing better resistance to thermal relaxation at elevated temperatures.
Nikitin et al. [195] reported that the cycle, stress amplitude and temperature-dependent relaxation of
compressive residual stress is more pronounced than the decrease of near-surface work hardening
after thermal exposure in austenitic stainless steel AISI 304. However, gradual stress relaxation was
observed for steels above 450 ◦C [210].
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Peyre et al. [211] studied the high cycle fatigue performance of laser peened aluminum alloys.
The major effect observed from other technology was that the depth of penetration of residual stress is
approximately 1 mm, by far above any other process. The shortcoming of the LSP process, on other
hand, was the hardening region that was 10% increment from the unpeened material and almost half
of the conventionally peened material. Yang et al. [212] illustrated the effect of laser peening on the
aluminum alloys fatigue performance with a fastener hole, multiple crack stop holes, and single-edge
notch. The process was performed in a confined ablation mode using a Neodymium (Nd):glass laser
at 5 GW cm−2 power density. The compressive residual stress generated due to shock waves was
385 MPa magnitude in the subsurface leading to good fatigue life with improved surface roughness.
Tenaglia et al. [213] claimed that the LSP produced a number of beneficial effects for Ti-6Al-4V such as
high fatigue life, and higher resistance towards fretting wear and stress corrosion cracking than the
shot peening process due to the relatively high magnitude of compressive residual stress generated
in LSP.

Lainé et al. [156] investigated the microstructural features of laser peened Ti-6Al-4V material and
found complex microstructures such as numerous shears bands, low angle subgrain boundaries, and a
few nanotwins (Figure 23). The directional arrays of planar dislocations with cellular structure and
small subgrains with low angle grain boundaries were noticed. Several other researchers have also
reported the same microstructural features after laser peening on different materials [207,214–216].
Dislocation density was increased significantly in laser peened aluminum alloys such as welded
5086-H32, 6061-T6 [217], 2024-T62 [218], and low carbon steel [219], but no quantitative analysis was
conducted. Strain hardening in the material was comparatively less and caused low-stress relaxation
at an elevated temperature. Lack of fundamental understanding of the laser peening literature has
been noted for the interaction of the atomic or molecular structure with laser-induced shock waves
and the resulting changes in the microstructure.
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5.5. Water Jet Cavitation Peening (WJCP)

Water jet cavitation peening (WJCP) uses a high-velocity water jet to impact the surface of a
material for multiple processes such as surface cleaning, paint removal, and cutting [220–222]. Water jet
cavitation peening (WJCP) or water peening (WP) is similar to SP except that it uses high-pressure
droplets that disintegrate in the water jet flow field instead of solid shots. There are other similar
concepts of peening like water droplet peening, water jet cavitation peening in water or air, and oil jet
peening [223]. The water peening (WP) process is a physically complex technique.

A comparative study of shot peening and cavitation shot peening (CSP) on carburized steel was
done by Odhiambo et al. [224]. Surprisingly, the residual stress was 1189 MPa in SP with a 7% increase
in fatigue life from pristine sample, whereas, CSP produced only 560 MPa compressive residual stress
(CRS), but with an improved fatigue life of 11%. Furthermore, Taguchi optimization of the process
identified the influencing factors responsible for higher fatigue life. It was observed that cavitation
number played a significant role in residual stress and surface roughness while nozzle size had a larger
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impact on surface roughness. A higher cavitation number yielded better results for improving the
fatigue strength of chrome-molybdenum steel.

Grinspan et al. [223] peened AISI 1040 medium carbon steel with oil jet, which led to 390 MPa
compressive residual stress and 332 MPa distribution up to 50 µm with 20% improvement in fatigue life.
The effects of peening by various oils on a range of engineering alloys was carried out by Pai et al. [225].
It was observed that vegetable oil exhibits the best medium for erosion resistance for all metals
due to its high viscosity index and materials with high hardness had less cavitation damage for all
lubricants [225]. Soyama et al. [226] reported a 50% improvement in fatigue life for aluminum alloys
when subjected to cavitation shotless peening using a 30 MPa plunger pump. The pits resulting from
cavitation shotless peening were of various sizes from 20 µm to 100 µm, giving a compressive residual
stress of 200 MPa with a surface roughness of 0.22 µm. Han et al. [227] conducted water cavitation
with aeration on SAE 1050 steel, and measured 215 MPa residual stress which gradually reduced to
zero at a depth of 110 µm. The samples were quenched leading to an increase in residual stress up
to 535 MPa to a depth of 140 µm. Hence, post processing of WJCP samples further improved the
fatigue life. Several other researchers [152,228–231] reported a fatigue life improvement of 40–60%
with variations of process parameters and medium due to compressive residual stress.

In another study, Ju et al. [145] investigated the microstructural features after WJCP treatment
of pure titanium and reported that the twinning generated by the treatment played a vital role in
plastic deformation and residual stress of hexagonal structure. The deformation twinning, twinning
interaction, and high dislocation density in the strain hardening region were observed which could be
responsible for the stability of residual stress [232].

5.6. Ultrasonic Shot Peening (USSP)

The principle of ultrasonic shot peening (USSP) is based on the vibration of spherical shots using
a high-power ultrasound at high frequency. The vibrations shot peen the surface by repeated impacts
over a short period. The main parameters of the USSP process are the vibration frequency of the
chamber driven by an ultrasonic generator, shot diameter, and processing time [232].

Liu et al. [232] used USSP to treat 316L stainless steel and studied the effect of processing duration
30 s to 810 s on the microstructure. In all cases, a grain refinement in the surface layer and nanocrystalline
layer of 30 µm thickness was observed. Similarly, the same deformation behavior and thickness were
obtained in various types of steels [233] and aluminum alloys [234]. Villegas et al. [235] and [236], with
WC/Co balls of 7.9 mm diameter for USSP, reported that nanocrystalline layers obtained on Ni-base
C-2000 alloy increased with the processing time. The grain refinement occured due to deformation twin
and was complemented by the dislocation activity, which justified the generation of nanocrystalline.
The grain refinement induced, and the work-hardening associated with the USSP process itself led to a
surface hardening. The hardness increment occurred in 16MnCr5 steel when displacement amplitude
increased and the distance between nozzle and sample decreased [237]. Hou et al. [238] also reported
high surface hardness when the grain size was very small (approximately 20 nm) on a magnesium
alloy surface and 200 nm in bulk material, due to the generation of the nanocrystalline layer.

Xing et al. [239] investigated the effect of the USSP process on the fatigue life of steel. A compressive
residual stress (309 MPa) to a depth of 300 µm was developed in the subsurface and improved the total
strength, stiffness, and fatigue life of the material. The equiaxed nanocrystals with a grain size of a few
nanometers (i.e., 10 nm) were observed in the subsurface layers. The grain refinement mechanism
could be related to the activity of the high density of dislocations and the formation of small shear
bands. A similar trend of results has been published by several other researchers on iron [240,241] and
stainless steel [232,242].

However, as Dai et al. [243] reported, the surface roughness generated by the indentation process
of the bombarding balls may induce stress concentration at specific sites, which may result in crack
initiation and fatigue failure. To avoid these cracks, protective coating must be applied during the
peening process. These coatings can also absorb the energy and induce a greater concentration of
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energy on the surface or they can also impede the impact effect on the surface. Various coatings provide
a different role in surface topography and properties.

Overall, a comparative study was conducted for residual stress and fatigue performance based on
the experimental data published for various materials and processing parameters. For example, deep
cold rolling (DCR) or deep rolling (DR) generated a relatively high magnitude of residual stress deeper
in the subsurface than LSP and, hence, showed a higher cycle to failure (as shown in Figure 24) at
various temperatures for given input parameters [16]. In LSP, the power density used was 7 GWcm−2

with 200% coverage and for DCR, 500 N hydrostatic force with 1000% coverage.
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Figure 24. Enhancement in fatigue lifetimes following deep rolling and laser shock peening for test
temperatures of 25, 250, and 450 ◦C and stress amplitudes of 670, 550, and 460 MPa, respectively, for
Ti-6Al-4V (adapted with permission from [16]).

Residual stress depth of influence is higher in LSP followed by DCR, USSP, SP, in both the
axial and the tangential direction (as shown in Figure 25a,b) at the given input process conditions.
However, the residual stress magnitude is higher in DCR followed by LSP, SP, and USSP axial direction.
In the tangential direction, SP residual stress magnitude is higher followed by LSP, USSP, and DCR.
Furthermore, full-width half maxima (FWHM) is higher in SP followed by LSP, USSP, DCR, as shown
in Figure 25c. SP at Almen intensity 0.012” A with 200% coverage was used for generating the
deformation, and 30 MPa hydrostatic pressure with 530 rpm and 0.1 mm/rev was used for the DCR
process. In USSP, a peening intensity of F20.12 A with 80 µm amplitude was applied for 120 s to
maintain more than 125% coverage. In LSP, a high energy laser with power density 10 GWcm−2 and
8 ns pulse length with 100% coverage was applied.
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A comparison study of different surface treatments revealed that LSP generates a relatively
higher fatigue life (HCF) followed by DCR, SP, and USSP for Ti-6Al-4V for given input parameters, as
shown in Figure 25d. The values are presented based on the experimental evidence. The fatigue life
increment was calculated based on the life extension after surface treatment with reference to respective
untreated condition. In another study by Maawad [244], it was reported that HCF performance of
Ti-2.5Cu was superior after ball burnishing as compared to laser peening without coating or the shot
peening process. Therefore, a comprehensive study on different materials with a variety of surface
treatments and different processing parameters is required to confirm the effectiveness of each surface
treatment process.

6. Major Conclusions and Scope for Future Research Work

From the above discourse, the effects of microstructure on the mechanical properties of engineering
alloys are listed in Table 2. The following broad conclusions can be made from this literature review:

1. To achieve a good combination of strength and ductility simultaneously, gradient microstructure,
i.e., nanocrystalline on the surface and coarse in core can be produced in the material using
surface mechanical treatments.

2. Residual compressive stress and strain hardening are beneficial for improving fatigue crack
resistance. However, strain hardening is adversely affected at elevated temperatures due to
dominance of creep.

3. For elevated temperature applications, stress relaxation behavior is a recurrent phenomenon
because of the dislocation annihilation mechanism, but it can be controlled by resisting the atomic
motions on slip planes by introducing twin grain boundaries.

4. Surface mechanical treatments with varying strain rates could generate grain size, residual stress,
strain hardening, and other defects with varying distribution throughout the material depth.
Additionally, optimization is essential for developing material with excellent performance.

5. For surface treatments, LSP shows relatively high fatigue performance and deeper residual stress
as compared with SP, USSP, WJCP, and DCR for the studied process parameters. However, the
same input energy, coverage, and material is required for a better comparison of the processes
and performance. Hybrid processes like shot peening followed by deep cold rolling could be
beneficial for the fatigue life, as a high magnitude of compressive residual stress deeper in the
material can be achieved.
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Table 2. Effect of microstructural features on properties and fatigue crack mechanism.

Features Specifications Properties Crack
Initiation

Crack
Propagation Material Specifications

Grain size
Ultrafine or
nanocrystalline
(↑)

Strength (↑)
Hardness (↑ )
Ductility (↓)

Retards
Retards, or
Accelerate both
reported

Brass [245], Ti [246],
stainless steel [247]
Electrodeposited
nanocrystalline pure Ni
and a cryomilled
ultrafine-crystalline
Al–Mg alloy, Ni films [248]

Grain
distribution

Gradient
nanostructure
or gradient
nanotwined
structure (↑)

Strength (↑)
Ductility (↑) Retards Retards

Cu [50,53], steel [249]
(torsion to cylindrical
twinning-induced
plasticity steel to generate
gradient nanotwinned
structure)

Twin GBs

Nanotwinned
or coherent
nanotwin
boundaries (↑)

Strength (↑)
Ductility (↑)
Toughness (↑) [250]

- Retards Cu [250] (CLSP)

Low angle GBs Misorientation
angle < 15◦ (↑)

Ductility (↓ )
Hardness (↑) - - All polycrystalline metals

High angle
GBs

Misorientation
angle ≥ 15◦ (↑)

Ductility (↑)
Hardness (↓ ) - - HAGB with UFC and

nonequilibrium GBs [57]

Dislocations Generation and
pile-ups ()

Strength (↑)
Hardening (↑)
Ductility (↓ )

- - Nanocrystalline/ultrafine
structure [57]

Strain
hardening

Magnitude and
distribution
depth (↑)

Hardness (↑)
Ductility (↓ ) Retards

Retards and
accelerate
(both reported)

Polycrystalline materials

Compressive
residual
stresses

Compressive
stresses or
distribution
depth (↑)

Hardness (↑) (little
influence) Retards Retards

(little effect) Polycrystalline materials

The role of individual factors is explained here:

1. Grain Size: Decreasing grain size increases strain hardening as per the Hall–Petch relationship,
thus, resistance to crack initiation increases. Additionally, decreasing grain size increases the
frequency of crack encounters boundaries, which provides more resistance to the crack growth.

2. Grain Distribution: Surface nanograin structure strengthens the material while interior coarse
grains maintains the ductility of the material. The hard-and-deformed nanograined surface
structure suppresses the crack initiation while the soft coarse-grain interior structure is effective
in arresting the cracks [53]. Strain delocalization in gradient nanostructure is responsible for
enhancing fatigue resistance in cyclic loading/unloading.

3. Twin GBs: Twin boundaries toughen the material by the dislocation-twin interaction that provides
a dislocation nucleation site. When dislocations strike with twin boundaries, stress concentration
occurs at GBs. To eliminate stress localization, dislocation nucleation takes place on another side
of the grain boundary. This dislocation nucleation and pile-ups make twin boundary a source of
dislocation generation, thus, improving the toughness of the material.

4. High Angle GBs: High angle GBs with ultrafine grain and nonequilibrium structure encourage
grain boundary sliding, and thus, improve the ductility of the material. Simultaneously, ultrafine
grain strengthens the material. Thus, a combination of high strength and ductility can be achieved
through gradient microstructure.

5. Low Angle GBs: Low angle GBs are generally poor in grain boundary sliding which leads to
lower ductility and improves the hardness of the material significantly.
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6. Dislocations: Resistance to dislocation movement provides the strengthening of the material.
However, dislocation pile-ups at the grain boundaries or precipitates generate the stress
concentration, and therefore dislocation either moves to another grain to reduce the stress
intensity or initiates the cracks at the grain boundaries.

7. Strain Hardening: Strain hardening effect, generated due to dislocation nucleation and pile-up,
increases the hardness but reduces the ductility of the material. The influence of strain hardening
is still ambiguous as both beneficial and adverse effects on fatigue life have been reported by
several researchers. The higher effective depth of the strain-hardened region rather than its high
magnitude is anticipated for higher mechanical performance.

8. Compressive residual stress: Compressive residual stress compensates the tensile stress
generated due to applied load that reduces the chances of crack initiation on the surface.
Compressive residual stress and stress gradient throughout the depth are beneficial for fatigue
life as they can provide high resistance towards both crack initiation and propagation mechanism.
There are still arguments whether the high depth of influence or high magnitude of compressive
residual stress is beneficial for high fatigue performance.
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