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Abstract: The nanoscale heat dissipation (Joule heating) and mass transport during electromigration
(EM) have attracted considerable attention in recent years. Here, the EM-driven movement of voids
in gold (Au) nanowires of different shapes (width range: 50–300 nm) was directly observed by
performing atomic force microscopy. Using the data, we determined the average mass transport
rate to be 105 to 106 atoms/s. We investigated the heat dissipation in L-shaped, straight-shaped,
and bowtie-shaped nanowires. The maximum Joule heating power of the straight-shaped nanowires
was three times that of the bowtie-shaped nanowires, indicating that EM in the latter can be triggered
by lower power. Based on the power dissipated by the nanowires, the local temperature during EM
was estimated. Both the local temperature and junction voltage of the bowtie-shaped nanowires
increased with the decrease in the Joule heating power and current, while the current density
remained in the order of 108 A/cm2. The straight-shaped nanowires exhibited the same tendency.
The local temperature at each feedback point could be simply estimated using the diffusive heat
transport relationship. These results suggest that the EM-driven mass transport can be controlled at
temperatures much lower than the melting point of Au.
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1. Introduction

The electromigration (EM) phenomenon is of high technological importance for the semiconductor
industry, as it is the main cause of failure in integrated circuits [1,2]. The dissipative heating at the
interconnect is considered the dominant driving force behind EM, with the cumulative momentum
transfer from conduction electrons to thermally activated ions in a conductor. These negative effects can
be, if properly tuned, used to our advantage to prepare nanogap electrodes made of metal nanowires for
fabricating quantum tunneling devices [3]. This opens the possibility for an alternative method based
on only the current passing through a metal nanowire without requiring conventional lithography
techniques. However, the EM-generated nanogap procedure with a simple voltage ramp often
results in poorly tuned tunnel resistance, which can ultimately destroy the nanowires [3]. To prevent
thermal runaway and enable temperature tuning in nanowires, feedback-controlled electromigration
(FCE) methods based on resistance/conductance monitoring have been developed [4–9]. Although
resistance/conductance measurements reflect the structural changes in the nanowires during EM [9],
they do not give enough insight into the mechanism of nanogap formation. A real-time imaging
of the morphological changes during EM is essential. In our previous studies, the mass transport
in electromigrated Au nanowires was investigated using an in situ atomic force microscopy (AFM)
technique in ambient air [10]. The established in situ AFM technique helped to better understand
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the relationship between the wire geometry, current density, and heat dissipation (Joule heating)
during FCE. To fabricate functional nanoscale devices such as single-electron transistors [11,12] and
single-molecule transistors [13], it is important to quantitatively study the mass transport and local
temperature in the nanowires, and better understand the void movements (moving atoms) during
EM. Here, we focus on the changes in the morphology of voids in Au nanowires induced by EM,
and the local temperature during FCE in Au nanowires observed by performing AFM topography
using the diffusive heat transport relationship. Moreover, the effect of the heat dissipation near the
nanoconstriction on the nanowire shape is investigated.

2. Experimental Method

Figure 1a shows the schematic of the experimental setup. The Au nanowires used in this study
were defined using electron-beam lithography, evaporation, and lift-off technique on Si/SiO2 substrates.
L-shaped, straight-shaped, and bowtie-shaped Au nanowires were fabricated as shown in Figure 1b.
The measurements reported in this study were performed in air at room temperature and ambient
atmospheric pressure. The morphological modification of the nanowires during FCE was quantitatively
evaluated using SPA400/SPI4000 (SII Nanotechnology, Inc., Tokyo, Japan). The AFM measurements
were carried out in the contact mode using commercially available silicon nitride cantilevers (Olympus
Co., Tokyo, Japan) with a spring constant of 0.02 N/m. The frequency of the scan comprising
256(x) × 128(y) data points was in the range of 5–10 Hz, and the images were obtained in approximately
15–30 s. Each nanowire was placed on a specially designed AFM holder, via which an electric current
could be applied through the sample during AFM observation. Here, we focus on the significant
structural changes in the nanowires during FCE at the cathode side, due to negligible Joule heating
and prominent EM. We captured real-time AFM images of the nanowires from 200 and 500 nm2

topographic scans in the vicinity of the cathode end. It is now generally accepted that the junction
resistance RJ is significantly lower than the lead resistance RL. In this case, RJ was approximately in
the range of 1–4 Ω, and the overall initial resistance R (=RJ + RL) of the samples was approximately in
the range of 33–69 Ω.
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Figure 1. (a) Schematic of the experimental setup for in situ atomic force microscopy (AFM) imaging; 
(b) AFM images of Au nanowires of different shapes. 

A feedback control scheme, which is reported elsewhere [4], was used to apply the electrical 
stresses to the nanowires. The current–voltage (I–V) characteristics of the nanowires were recorded 
using a computer-controlled source-measure unit (Keithley 2400, Solon, OH, USA). The voltage V 
applied to the nanowires was automatically increased in constant voltage steps VSTEP, and the 
conductance G was monitored. When the differential conductance ΔI/ΔV reaches the threshold 
differential conductance GTH, the program reduces the voltage by an amount equal to the feedback 
(FB) voltage VFB to avoid a catastrophic failure. These voltage reduction events are further referred to 
as FB points. Subsequently, the voltage ramp was reinitiated continuously. 

3. Results and Discussion 

Figure 1. (a) Schematic of the experimental setup for in situ atomic force microscopy (AFM) imaging;
(b) AFM images of Au nanowires of different shapes.

A feedback control scheme, which is reported elsewhere [4], was used to apply the electrical
stresses to the nanowires. The current–voltage (I–V) characteristics of the nanowires were recorded
using a computer-controlled source-measure unit (Keithley 2400, Solon, OH, USA). The voltage
V applied to the nanowires was automatically increased in constant voltage steps VSTEP, and the
conductance G was monitored. When the differential conductance ∆I/∆V reaches the threshold
differential conductance GTH, the program reduces the voltage by an amount equal to the feedback
(FB) voltage VFB to avoid a catastrophic failure. These voltage reduction events are further referred to
as FB points. Subsequently, the voltage ramp was reinitiated continuously.
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3. Results and Discussion

3.1. In Situ AFM Imaging of Au Nanowires during FCE

Figure 2(Aa–l) shows the AFM images of the L-shaped Au nanowires of length 1.5 µm, captured
during 92–488 s. The blue dashed lines in Figure 2(Ab–j) indicate the scan positions at each FB point,
and the time corresponding to each FB point is indicated in each of the images. The electron flow is from
down (cathode) to up (anode). The results show that the structural changes in the nanoconstriction
were gradual, and from the 1st to the 11th FB point.

Similar results were obtained for the straight-shaped and bowtie-shaped nanowires of length
300 nm, as shown in Figure 2(Ba–n) and Figure 2(Ca–l), respectively. In Figure 2B, the electrons
flow from upper left (cathode) to lower right (anode), whereas in Figure 2C, they move from lower
right (cathode) to upper left (anode). Despite different scan directions, in contrast to a direction of
electron flow, the EM-induced mass transport in Au nanowires of different shapes was observed
in the vicinity of the cathode end, indicating that void movements (moving atoms) during EM did
not suffer from the scan of the cantilever. Figure 3A shows the time evolutions of the junction
voltage VJ and the cross-sectional area A of the L-shaped nanowires during the FCE process for
VSTEP = 0.8 mV, VFB = 200 mV, and GTH = −50 mS. The starting points of the scans, shown in
Figure 2(Aa–l), are indicated using pink arrows, as shown in Figure 3A. To calculate A from the
AFM images of the nanowire, the SiO2 surface observed in the images was used. The cross sections
perpendicular to the direction of electron flow were taken near the nanoconstriction. Each open circle
represents the A value of the image including the automatic decrease in the voltage by VFB. There was
a decrease in A from 13,310 nm2 (1st FB point) to 5597 nm2 (11th FB point) during the voltage feedback
process, indicating that the FCE process thinned down the nanowire without any thermal runaway
or melting.

Similarly, Figure 3B,C shows the time evolutions of VJ and A of the straight-shaped and
bowtie-shaped nanowires, respectively, during the FCE process for VSTEP = 0.5 mV, VFB = 200 mV,
and GTH = −50 mS. The pink arrows, indicated in Figure 3B,C, correspond to the starting points
of the scans shown in Figure 2(Ba–n) and Figure 2(Ca–l), respectively. As shown in Figure 3B, A
of the straight-shaped nanowires reduced from 5437 nm2 (1st FB point) to 2996 nm2 (4th FB point)
and gradually decreased to 2766 nm2 (11th FB point). Figure 3C shows the gradual decrease in A
of the bowtie-shaped nanowires, from 1781 to 1271 nm2. The VJ–A characteristics confirm that the
rapid EM of the Au atoms was suppressed under the feedback algorithm. Figure 4a–c shows the
current density j of the L-shaped, straight-shaped, and bowtie-shaped nanowires as a function of the
FCE process time. Notably, despite the different shapes of the nanowires, the value j (obtained by
dividing I by A) remains constant, in the order of 108 A/cm2 during the FCE process. The roughly
estimated j value is reasonably consistent with previous reports on the failure of the current density of
Au nanowires [6,7,14,15].
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Figure 2. (A) Atomic force microscopy (AFM) images of the L-shaped nanowires captured with
a scanning window of 500 × 500 nm2. The images were captured during the following time
intervals: (a) t = 92–122 s, (b) t = 122–153 s, (c) t = 153–183 s, (d) t = 183–213 s, (e) t = 213–244 s,
(f) t = 244–274 s, (g) t = 274–305 s, (h) t = 305–335 s, (i) t = 335–366 s, (j) t = 366–396 s, (k) t = 396–427 s,
and (l) t = 457–488 s. The light-blue dashed lines in (b–j) indicate each scan line from the 1st to the
11th corresponding feedback (FB) point. The time indicated at the top of each image is the time
corresponding to each FB point. (B) AFM images of the straight-shaped nanowires captured with a
scanning window of 300 × 300 nm2. The images were captured during the following time intervals:
(a) t = 0–15 s, (b) t = 168–184 s, (c) t = 184–199 s, (d) t = 214–230 s, (e) t = 245–260 s, (f) t = 291–306 s,
(g) t = 322–337 s, (h) t = 368–383 s, (i) t = 414–429 s, (j) t = 460–475 s, (k) t = 521–536 s, (l) t = 567–582 s,
(m) t = 628–644 s, and (n) t = 705–720 s. The light-blue dashed lines in (c–m) indicate each scan line
from the 1st to the 11th corresponding FB point. The time indicated at the top of each image is the time
corresponding to each FB point. (C) AFM images of the bowtie-shaped nanowires captured with the
scanning window of 200 × 200 nm2. The images were captured during the following time intervals:
(a) t = 0–15 s, (b) t = 122–138 s, (c) t = 138–153 s, (d) t = 153–168 s, (e) t = 184–199 s, (f) t = 214–230 s,
(g) t = 261–276 s, (h) t = 307–322 s, (i) t = 353–368 s, (j) t = 399–414 s, (k) t = 460–475 s, (l) t = 521–537 s.
The light-blue dashed lines in (d–k) indicate each scan line from the 1st to the 8th corresponding FB
point. The time indicated at the top of each image corresponds to the time of each FB point.
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Figure 3. Time evolution of the VJ–A characteristics of the (A) L-shaped, (B) straight-shaped, and (C)
bowtie-shaped nanowires during feedback-controlled electromigration (FCE).
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Figure 4. Current densities of the (a) L-shaped, (b) straight-shaped, and (c) bowtie-shaped nanowires
as a function of the FCE process time.

3.2. Mass Transport in Electromigrated Au Nanowires

The quantitative mass transport used to characterize the EM process in the nanowires can be
obtained from the measured nanowire topographies. We defined the SiO2 surface observed in the
images as the reference plane. The Au mass transport was calculated by summing the differential
volumes in the vicinity of the cathode side, before and after the FB point during the FCE process,
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and then multiplying the result with the Au density [10]. The change in the volume between the
images can be expressed as follows:

∆Uab

(
nm3

)
= ∑

x,y

(
faxy∆Sa − fbxy∆Sb

)
(1)

where a and b are the image indices, x and y are the positions in the image, ∆Sa (=∆Sb) (nm2) is the
total area of the image (nm2)/(256 × 128 data points), and f axy and f bxy (nm) are the heights of the
points with respect to the reference plane. The Au mass ∆Mab transported from the cathode can be
expressed as follows.

∆Mab(atoms) = ∆Uab(nm 3)× d (atoms/nm 3
)

(2)

where d is the atom density (=58.9 atoms/nm3) [16], assuming that the Au nanowire has an FCC
structure. We determined the rate of mass transport ∆Rab in time intervals of 30 s between two AFM
images. Finally, the average values ∆MAVE and ∆RAVE of ∆Mab and ∆Rab were obtained, as listed in
Table 1. The average values (∆RAVE) of the mass transport rate were in reasonable agreement with the
values reported for real-time TEM imaging of EM-induced nanogap formation, that is, 106 atoms/s
(=105 atoms/50 ms) [17]. The straight-shaped and bowtie-shaped nanowires had relatively lower
∆RAVE values than the L-shaped nanowire. The relatively low ∆RAVE could be a result of the smaller
cross-sectional area A and lower constant voltage step VSTEP. To investigate the influence of the
temperature (due to the Joule heating) required to control the lower mass transport, we first used the
constant power model for the three nanowires.

Table 1. FB parameters, average mass transport values, and average rates of mass transport for each
Au nanowire.

Nanowire VSTEP (mV) VFB (mV) GTH (mS) ∆MAVE (atoms) ∆RAVE (atoms/s)

L-Shaped 0.8 200 −50 2.3 × 107 7.6 × 105

Straight-Shaped 0.5 200 −50 2.3 × 106 7.7 × 104

Bowtie-Shaped 0.5 200 −50 2.0 × 106 6.6 × 104

3.3. Nanoscale Heat Dissipation in Electromigrated Au Nanowires

The overall curve with some FB points can be modeled using the following equation [4,6]:

V = VJ+VL =
PJ

I
+RL I (3)

where V is the total voltage applied to the device, VJ and VL [V] are the voltages across the constriction
and leads, respectively, PJ (µW) is the power dissipated at the nanoconstriction, and I (mA) is the
current. The curves shown in Figure 5a–c represent the fit of Equation (3) to the G–V characteristics
of the nanowires during the FCE process. PJ at each FB point was defined as the critical power PC.
PC was fitted to the model and was found to decrease from 1650 µW (at the first and second FB points)
to 430 µW (at the 11th FB point) for the straight-shaped nanowires, shown in Figure 5b, and from
580 µW (at the first and second FB points) to 300 µW (at the 8th FB point) for the bowtie-shaped
nanowires, shown in Figure 5c. For the L-shaped nanowires shown in Figure 5a PC ranged from
3100 µW (at the first FB point) to 430 µW (at the 11th FB point). Figure 6a–c shows the PC and I values
as a function of the FCE process time. The red lines in Figure 6a–c indicate the fitting result of PC.
PC reduced with the decrease in I, which is consistent with previous reports [9,18]. The smaller the
nanoconstriction, the lower the critical power consumed during the FCE process. The tapered region in
the bowtie-shaped nanowires may allow easy flow of Joule heating generated in the nanoconstriction.
Thinner and narrower wires—particularly ones made of Au—are known to generate lower heat when
the electron–phonon scattering length is on the order of 170 nm [15]. Thus, the mass transport can be



Materials 2019, 12, 310 7 of 10

precisely tuned using a lower Joule heating power. For metallic constrictions in the diffusive regime,
the scale of the voltage due to the constriction resistance is associated with the temperature scale [6,19].

T2 = T0
2 +

VJ
2

4L
(4)

where L (V2/K2) (=(π2/3)(k/e)2) is the Lorenz number, and T and T0 (K) are the temperatures of
the constriction and its environment, respectively. This relationship can be theoretically deduced,
assuming that the electrical conductivity is related to the thermal conductivity (Wiedemann–Franz
law) [6,19]. In this study, at the onset of EM, the local temperature T at the constriction was defined as
the critical local temperature TC, and VJ was defined as the critical junction voltage VC. Thus, at each
FB point, VC could be calculated with respect to the time evolution by dividing PC by I. When T at
the constriction is equal to TC, TC at each FB point can be simply estimated using the diffusive heat
transport relationship as follows [6,19]:

TC =

√
T02 +

VC
2

4L
=

√
T02 +

PC
2

4I2L
(5)

According to Equation (5), TC depends on VC. Figure 7a–c shows the time evolutions of TC

and VC under the feedback algorithm. Table 2 presents the relationship between TC, VC, PC, and I,
demonstrating the range of electrical and thermal properties at the FB points of the three nanowires.
The TC value of the bowtie-shaped nanowires increased from 379 to 612 K at T0 = 300 K with the
increase in VC from 0.073 to 0.17 V. Both TC and VC linearly varied with the decrease in PC and I.
This tendency was quite similar to that exhibited by the straight-shaped nanowires. The estimated
values were in reasonable agreement with previous reports (325–660 K) [7–9,14,20,21]. In the case of
the L-shaped nanowires, although TC decreased from 697 K (at the 1st FB point) to 611 K (at the 7th FB
point), TC increased from 607 K (at the 8th FB point) to 935 K (at the 11th FB point) in the same manner
as that observed for the straight-shaped and bowtie-shaped nanowires. This implies that the longer
and wider L-shaped nanowires consumed more power to approximately the 7th FB point, whereas the
behavior of the narrower L-shaped nanowires was similar to the behavior of the straight-shaped and
bowtie-shaped nanowires after approximately the 7th FB point. The higher value of TC at the 11th FB
point could have been due to the accumulation of Joule heating for a long time between the 10th and
11th FB points. As shown in Figure 2(Al), at the end of the FCE process, there was no abrupt failure
of the nanoconstriction due to melting, because the local temperature was significantly lower than
the melting point of gold (~1337 K) [22]. The TC values at each FB point could be roughly interpreted
using the diffusive heat transport relationship, and the value of TC at the 1st FB point was related to
the wire size. These results confirm the EM-induced mass transport phenomenon in Au nanowires
from room temperature to temperatures significantly lower than the melting point of Au, with TC

increasing in a controlled manner independent of the nanowire shape.
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Figure 5. G as a function of the total voltage V for the (a) L-shaped, (b) straight-shaped, and (c)
bowtie-shaped nanowires during FCE. The dashed lines indicate the fitting results of the Joule
heating model.
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Figure 6. Time evolution of the PC–I characteristics of the (a) L-shaped, (b) straight-shaped, and (c)
bowtie-shaped nanowires as a function of the FCE process time. The red lines indicate the fitting result
of PC (µW): (a) −4.8 × 10−5·t3 + 7.7 × 10−2·t2 − 39·t + 6850 (R = 0.999), (b) 2.1 × 10−3·t2 − 4.6·t + 2510
(R = 0.997), and (c) −8.7 × 10−4·t2 − 1.6·t + 830 (R = 0.991).
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4. Conclusions 

We studied the mass transport and local Joule heating in Au nanowires during EM in real-time 
by performing AFM in air at room temperature and ambient atmospheric pressure. The applied 
voltage and current measurements and cross-sectional area of the nanoconstriction obtained during 
FCE indicated that the EM-induced mass transport proceeded in the order of 108 A/cm2 in a gradual 
manner under the application of a voltage feedback algorithm. The estimated average mass transport 
was in the order of 105 to 106 atoms/s; the straight-shaped and bowtie-shaped nanowires gave lower 
values. Furthermore, based on the power dissipated by the nanowires, we found that the local 
temperature in the nanoconstriction during FCE ranged from room temperature to temperatures 
lower than the melting point of Au. The results suggest that the accumulation and movement of the 
voids were induced by EM without any melting of the large parts of the nanowires due to Joule 
heating. Moreover, the control of the mass transport during EM hardly depended on the shape of the 
nanowires. The results of this study are expected to provide more insight into the matter of fluxes 
during EM. The technological implications of this work are that if bowtie-shaped nanowires are used 
to prepare nanogap electrodes, then in order to control and observe lower mass transport, they must 
be as narrow as possible, while remaining as short as possible. 
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Figure 7. Time evolution of the TC–VC characteristics of the (a) L-shaped, (b) straight-shaped, and (c)
bowtie-shaped nanowires as a function of the FCE process time.

Table 2. Critical parameter ranges for the L-shaped, straight-shaped, and bowtie-shaped nanowires.

Nanowire I (mA) PC (µW) VC (V) TC (K)

L-Shaped 1.84–15.9 430–3100 0.17–0.28 607–935
Straight-Shaped 3.08–18.2 430–1650 0.093–0.15 420–557
Bowtie-Shaped 1.63–8.16 300–580 0.073–0.17 379–612

4. Conclusions

We studied the mass transport and local Joule heating in Au nanowires during EM in real-time
by performing AFM in air at room temperature and ambient atmospheric pressure. The applied
voltage and current measurements and cross-sectional area of the nanoconstriction obtained during
FCE indicated that the EM-induced mass transport proceeded in the order of 108 A/cm2 in a gradual
manner under the application of a voltage feedback algorithm. The estimated average mass transport
was in the order of 105 to 106 atoms/s; the straight-shaped and bowtie-shaped nanowires gave lower
values. Furthermore, based on the power dissipated by the nanowires, we found that the local
temperature in the nanoconstriction during FCE ranged from room temperature to temperatures lower
than the melting point of Au. The results suggest that the accumulation and movement of the voids
were induced by EM without any melting of the large parts of the nanowires due to Joule heating.
Moreover, the control of the mass transport during EM hardly depended on the shape of the nanowires.
The results of this study are expected to provide more insight into the matter of fluxes during EM.
The technological implications of this work are that if bowtie-shaped nanowires are used to prepare
nanogap electrodes, then in order to control and observe lower mass transport, they must be as narrow
as possible, while remaining as short as possible.
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