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Abstract: We investigate the effects of Line Edge Roughness (LER) of electrode lines on the uniformity
of Resistive Random Access Memory (ReRAM) device areas in cross-point architectures. To this
end, a modeling approach is implemented based on the generation of 2D cross-point patterns with
predefined and controlled LER and pattern parameters. The aim is to evaluate the significance of LER
in the variability of device areas and their performances and to pinpoint the most critical parameters
and conditions. It is found that conventional LER parameters may induce >10% area variability
depending on pattern dimensions and cross edge/line correlations. Increased edge correlations in
lines such as those that appeared in Double Patterning and Directed Self-assembly Lithography
techniques lead to reduced area variability. Finally, a theoretical formula is derived to explain the
numerical dependencies of the modeling method.

Keywords: Resistive Random Access Memory (ReRAM); Line Edge Roughness (LER); variability;
uniformity; modeling; lithography

1. Introduction

Resistive Random Access Memory (ReRAM) technologies are considered as one of the most
promising candidates for future nonvolatile memory (NVM) applications due to their high memory
capacity [1], their simple two terminal architecture, and their excellent scalability [2]. ReRAM cells
can be programmed faster than current NVMs and at lower voltages, overall leading to a significant
reduction in energy consumption per bit [3]. The cross-point metal-insulator-metal (MIM) cell simple
structure requires very low thermal budget and thus can be integrated easily in the current CMOS
Back End of Line (BEOL) processing steps [4]. Large memory blocks have been implemented and
demonstrated, following the cross-point architecture [5]. The cross-point area F × F, F is the lithography
node, can be as small as 2 nm × 2 nm [6] leading to a very small cell footprint (area/bit) 4F2. Conductive
AFM experiments have demonstrated that the ReRAM memory cell area can be as small as that of an
AFM tip [7]. In addition, the 3D stacking of different memory layers [8] reduces the cell’s footprint to
4F2/n, where n is the number of the stacked memory layers, and hence severely increases the density of
the ReRAM memory chips. Moreover, the ReRAM cell can be used to realize memristive devices to
implement new computing paradigms like neuromorphic [3,9], reconfigurable electronics [10], and
logic-in-memory [11].
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The uniformity of the cell SET and RESET voltages (VSET and VRESET, respectively) is a
key-challenge to large-scale manufacturing of ReRAM technology. Up to now, it has been mainly
related to the stochastic nature of conducting a filament creation process. Remedies that have been
proposed consider (a) engineering of electrode/oxide interface [12], (b) inserting seeds (nanoparticles)
in the oxide bulk [13], and (c) reduction of the size of cell area [14]. The latter is related to the
scaling trends of ReRAM devices and is a great advantage of this technology since scaling down the
dimensions of a ReRAM cell goes with the increase in performance uniformity due to the mitigation
of stochastic filament formation. Thus, scalability is generally considered an advantage of ReRAM
owing to the filamentary conduction and switching mechanisms. The effect of the reduction of the
cell size area to the various parameters of ReRAM operation is an active matter of debate. To that
end, in Reference [14] a simplified analytical model to describe the area and thickness scaling of
forming voltage is proposed. Binary-oxide ReRAM scalability performance has drawn the attention of
various groups. The general scaling trend of the high and low resistance states from various metal
oxide ReRAMs has been presented in Reference [15]. The dependence of the scaling area on various
ReRAM operation parameters (Resistance, SET/RESET current, SET/RESET voltage) has been studied
thoroughly for HfOx [16,17], TaOx [18], SiO2 [19], ZrO2 [20], and recently for Al2O3 [21] and for
TiO2 [22]. Similar scalability issues have been examined for perovskite material-based ReRAMs, such
as SrTiO3 [23], and metal nitrides, such as AlN [24] and NiN [25].

However, up to now no special attention has been paid on deviations frompattern’s uniformity
induced by the fabrication process and material properties. In CMOS technology, one of the most
important sources of such deviations from manufacturing uniformity is related to the Line Edge
Roughness (LER). LER is actually the sidewall roughness of pattern lines manufactured via standard
lithographic rules, as often observed via top-down SEM images. The effect of LER becomes more
evident as the size of devices is reduced, which is the reason for the recent upsurge of interest in
LER control in modern <20 nm semiconductor manufacturing [26]. Obviously, LER is responsible
for the area variability of devices in a crossbar (Xbar) array and, furthermore, the cell-to-cell and
wafer-to-wafer variability that appear in the operation parameters of ReRAM memory cells in Xbar
arrays. More specifically, as mentioned in [15], the resistance at HRS increases as the inverse of the area
cell A (i.e., RHRS~1/A) while the reset current increases as A decreases. Furthermore, the reduction of
the cell size A attributes to local heating causing faster switching times [17]. In addition, forming and
SET voltages also increase as the cell area A decreases [17]. These detrimental LER effects are expected
to become stronger increasing the size of the memory crossbar array: The larger the memory array the
stronger the effects are.

The importance of LER is justified by the evaluation of its effects on device performance. This can
be done through carefully designed experiments or modeling/simulation studies. Results from such
studies help defining the specifications for allowed LER in roadmaps and factory production lines.
Clearly, the level of acceptable LER is defined by the operating constraints of distinct applications
that employ nanoscale devices. Up to now, several modeling and experimental investigations have
been performed for conventional MOSFET [27–30] and FinFET [31,32] devices. On the contrary, very
few studies have been devoted to the LER effects on memory and especially ReRAM devices. In the
fabrication of ReRAM and especially in the cross-point configurations, the LER of metallic lines may
affect device performance through the induced variability to the cross-point cell areas and consequently
to the device resistance.

Furthermore, it was recently realized that LER characteristics are sensitive to the applied
lithographic technique [33]. The main point of differentiation comes from the degree of correlations
between the fabricated edges and lines. In EUV patterns, for example, the nearby lines and edges
are totally uncorrelated while in Multiple Pattern (MP) techniques correlations are induced mainly
between the edges of each line, whereas lines are still independent at least for Double Patterning (DP)
schemes. On the contrary, in Directed Self-Assembly (DSA) lithography even nearby lines exhibit
correlated fluctuations arising from the very self-assembly nature of the process and the sidewall



Materials 2019, 12, 3972 3 of 12

roughness of grapho-epitaxy grating used for the alignment of lines. Therefore, LER modeling should
always consider such aspects and adjust the modeled patterns according to the considered lithography.
Up to now, the modeling strategies for the generation of line edges similar to the fabricated ones are
based on inverse Fourier techniques, where no correlations are taken into account between edges or
lines [34,35].

In order to get a better picture of the LER impact on cell area uniformity, one can observe Figure 1a
where several ReRAM prototypes, of cross-point architecture, were fabricated by e-beam lithography
and are depicted in a top-down SEM image. Furthermore, on the same SEM image the detected edges
defining the borders of electrode lines are illustrated with black color. It can be clearly seen that the
roughness of the metal edges induces non-uniform cell areas (see Figure 1b). The distribution of the
cell areas is presented in Figure 1c where one can notice the wide distribution of cell area values. This
data supports our claim that LER needs to be considered carefully for achieving a uniform and reliable
ReRAM technology and deserves more investigation.
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Figure 1. (a) A top-down SEM image of a cross-point pattern with the detected edges of the vertical
and horizontal metal lines defining the crossing areas, (b) a colored illustration of the SEM image to
show the crossing areas more clearly in red color and the metal lines in green color, (c) the histogram of
the calculated cross-point area values in nm2. The Line Edge Roughness (LER) (average root mean
square (rms) value) of the vertical and horizontal lines was measured and found equal to 2.6 and 3.8 nm,
respectively. The width of the distribution of cross areas (standard deviation) is found to be almost
16% of the mean value. Therefore, the commonly used three times this value reaches almost 50% of
the mean value indicating the strong impact of LER of metal lines to the nonuniformity of Resistive
Random Access Memory (ReRAM) device areas.

In this paper, we evaluate the effects of LER of metallic lines on the device area uniformity, which
is critical for the device performance. Three types of line patterns are considered corresponding to
EUV, Multiple Patterning (MP), and DSA patterns to compare these with respect to their vulnerability
to LER defect. In Section 2, the modeling methodology is presented and explained. The results of the
modeling approach to EUV, MP, and DSA-based patterns are shown and discussed in Section 3. In the
end of the same section, we also derive an analytical formula capturing the numerical modeling results
with quantitative success. The last section, Section 4, summarizes the findings of the paper and draws
the main conclusions.

2. Modeling Methodology

2.1. Background of Modeling: LER Characterization in Different Lithography Techniques

LER is usually defined as the deviation from smoothness (flatness) of the sidewalls of resist or
substrate lines. In top-down SEM images, this deviation is reflected through the roughness of the
edge defining the 2D borders of the line region. In the initial stages of LER studies, line edge points
were considered uncorrelated and the main emphasis was given on the measurement of their root
mean square (rms) value (standard deviation), quantifying the wideness of the edge point distribution.
However, quite early, the characterization scheme was enriched with more parameters and functions



Materials 2019, 12, 3972 4 of 12

aiming to capture and quantify the spatial/lateral or frequency aspects of LER preserving the dominant
significance of rms. To this end, a three-parameter model has been proposed [26] consisting of rms
value, correlation length ξ, and roughness exponent α (related to the fractal dimension d = 2−α) and
extensively used in different applications. The first parameter rms quantifies the vertical aspects of
LER and is calculated by the standard deviation of the edge points about their mean value. The other
two parameters (ξ and α) focus on the spatial aspects of LER. The correlation length ξ quantifies the
window inside which the edge points can be considered correlated, i.e., they have similar deviations
from the mean value, and delivers a statistical estimation of the mean width of edge fluctuations.
Large values of ξ mean slowly varying edges while small values characterize more jagged edges.
The correlation length is normally calculated through the autocorrelation function R(r) as the distance r
at which R(r) is lowering beneath 1/e, i.e., R(ξ) = 1/e [36]. The roughness exponent 0 < α < 1 quantifies
the contribution of various scales and frequencies to the whole LER. When α takes on low values, high
frequencies dominate, whereas whenit approaches 1, the edge becomes smoother at small scales and
the importance of high frequency fluctuations is being lessened.

When a more detailed function-like characterization of spatial and frequency LER aspects is
demanded, the Power Spectrum (PS) and the Height–Height Correlation Function (HHCF) can be
calculated and elaborated. The overall shape of these functions is linked to the three-parameter model,
when LER obeys a self-affine fractal symmetry [36]. The effects of LER on line width fluctuations
(usually called Line Width Roughness (LWR)) complete the overall picture of the conventional approach
to LER metrology. The relationship between LER and LWR metrics has been clarified and it can be
shown that the low frequency LWR could have a significant contribution to the total budget of local
Critical Dimension Uniformity (CDU). This effect has underlined the importance of estimating the
PS of LWR, which quantifies the contribution to LWR from different frequency areas. A detailed
presentation of the conventional LER and LWR metrology can be found in [26].

Nevertheless, during the recent years significant changes in lithographic landscape have been
evidenced. The conventional scaling down of feature dimensions, based on the optimization of
wavelength and Numerical Aperture (NA), has been replaced by a more etch-based and material-driven
resolution enhancement, which duplicates the density of patterns through successive deposition and
etching steps. The family of these MP techniques is currently used in high volume manufacturing in
semiconductor industries. Additionally, the concept of self-assembly of block copolymers has been
employed in lithography research in the last 10 years due to its ability to easily provide line/space
patterns with widths less than 20 nm. The DSA lithography has seen an upsurge and very important
advances have been performed in defect reduction and scaling improvement. However, what is
usually missing is the effect that these new lithographic approaches have on LER and its metrology
characterization. The key aspect of these effects is the lateral (across line direction) correlations they
introduce in line/space patterns. In the EUV lithography patterns, the LER of edges are uncorrelated
and no propagation of edge fluctuations is noticed between the edges of a line or the nearby lines of a
pattern. On the contrary, in MP lithography patterns, the edges of the same line fluctuate in a correlated
manner forming wiggling lines. A more dramatic change is observed in DSA patterns. Here, not only
the line edges but also the lines themselves present correlations in the way they fluctuate. To capture
these new aspects of LER, an extended framework for LER/LWR metrology has been proposed and
elaborated based on the c-factor parameter, function, and correlation length. A detailed presentation
and examples of application of these metrics can be found in [35].

2.2. Implementation of Modeling

The key idea of our approach is to model LER effects in cross-point area statistics using the 2D
projections of the real 3D patterns, as they are shown in top-down SEM images similar to that in
Figure 1. The assumption behind this approach is that 3D morphological variations do not have
an important contribution to LER impact on device variability. This assumption is supported by
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recent observations according to which the sidewall roughness of lithographic lines does not change
significantly along z-direction since it exhibits a curtain-like morphology [37].

The modeling methodology is implemented in three steps. First, the structural parameters of
the cross-point pattern are defined including line width (Critical Dimension, CD) and pitch values.
The numbers of both vertical and horizontal lines are included in the modeling as well as. These
parameters can differ in vertical (y) and horizontal (x) line patterns, though throughout this study
we mainly consider the symmetrical case where CDX = CDY and pitchx = pitchy. Based on these
parameters, the ideal smooth pattern can be generated as shown in Figure 2a. In the second step,
the smooth edges are converted to rough edges characterized by the input predetermined roughness
parameters: rms, ξ, α. The generation of rough edges is made using the convolution method and
requires the use of a model function for the Power Spectrum or the Height–Height Correlation Function.
Here, we extensively use the following HHCF G(r) that is also used in self-affine rough processes [34,38]:

G2(r) = 2rms2(1− e(−
r
ξ )

2α
). (1)
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Figure 2. A schematic view of our modeling steps for LER effects on device uniformity. First, a
pattern is formed (a) with the given parameters (Critical Dimension (CD), pitch, number of lines), then
(b) roughness is imposed on the edges to get LER with predefined parameters, and then in (c) the
statistical analysis of cross areas Ai is performed to get the normalized standard deviation σ(A) versus
LER parameters.

The successive application of the convolution method with no further processing of edges produces
uncorrelated edges, which then can be positioned according to CD and pitch values to build the
whole cross-point pattern. The generated pattern can be used to model the 2D projection of line/space
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structures fabricated by mask-based lithographic rules (EUV or 193i). When MP or DSA patterns are
sought, we may add correlation either between the edges of the same line or to expand these between
nearby lines to get DSA-like patterns. Figure 2b shows examples of such patterns with controlled LER
parameters as well as cross-edge and cross-line correlations.

In the third step of our methodology, we measure the areas of cross-points Ai, I = 1, . . . , NxNy

where horizontal and vertical lines overlap in the considered rough pattern of NxxNy lines. Then we
calculate the normalized standard deviation σ(A) of the Ai values (=std(Ai)/< Ai >) and we plot it for
various dimensional and LER parameters and edge/line correlation levels (see Figure 2c).

3. Results and Discussion

The results of our modeling calculations are collectively illustrated in Figure 3, which displays six
contour plots. Each one of these plots depicts the dependence of σ(A) on the LER parameters rms and
ξ given that these parameters are considered to quantify LER according to the last editions of ITRS [39].
In all runs, the roughness exponent α is kept fixed to 0.5 in conformity with more experimental
measurements. We consider that both horizontal and vertical lines have similar LER parameters.
The left column of Figure 3a,c,e contains the contour plots with CD = 20 nm and pitch = 40 nm while
the right column shows the results when the pattern scales down at CD = 10 nm and pitch = 20 nm.
The different rows account for increased levels of horizontal (cross-line) correlations between edges and
lines. In the first row, both edges and lines are generated to be uncorrelated to capture the case of mask
lithography line structures (EUV and 193i). The second row contains the results for cross-point patterns
where the edges of each line are correlated, though the lines themselves fluctuate independently.
The latter pattern resembles the line/space structures acquired by Double Patterning Lithography
techniques. In the third row, the contour plots concern model patterns where the horizontal correlations
propagate across both edges and lines similarly to what is happening in DSAL.

From the contour plots of Figure 3, we are able to extract conclusions and discuss the following
issues: (a) the dependence of σ(A) on LER parameters rms and ξ which seems to exhibit a similar
pattern in all cases, (b) the effects of scaling down the pattern dimensions, and (c) the effects of
cross-edge and line correlations.

3.1. The Impact of LER Parameters Rms, ξ

The overall shape of all contour plots in Figure 3 is characterized by the dominance of vertical
contour lines, which reveal the stronger dependence of area uniformity on rms with respect to that of
the correlation length. In order to focus on the dependencies themselves, we take a horizontal and
vertical cross-section of the contour diagrams and the outcome plots are shown in Figure 4 for all
considered cases. One can easily notice the linear increase of σ(A) with rms value in all cases, while
the effects of ξ are sublinear justifying the dominant role of rms in the effects of LER on cross area
uniformity. In other words, both rms and ξ in LER degrade device area variability with rms exhibiting
the primary effect.
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3.2. The Impact of Scaling Device Size

The comparison of the contour plots of the left and right columns reveals that the scaling down of
pattern dimensions by a factor 2 (quadrupling of device density) is associated with an almost doubling
of normalized area variability σ(A). This observation holds at all rows, i.e., it is independent of the
level of edge/line correlations.

3.3. The Impact of Edge and Line Correlations

When MP or DSA lithographic techniques are used for ReRAM pattern fabrication, edges and
lines exhibit cross-correlations, i.e., they fluctuate in a correlated manner. The second and third rows
of Figure 3 show the contour plots for σ(A) when the pattern exhibits only edge and both edge and
line correlations, respectively. Although the pattern of contour lines remain almost unaltered, the σ(A)
values demonstrate a clear reduction with respect to the values of first rows approximately by a factor
3. The amount of reduction is similar at the contour plots of the second and third rows, which indicates
that the critical correlations for variability drop are those between edges. The cross-line correlations do
not seem to play any role in LER-induced degradation effects on area uniformity.

3.4. Analytical Formula for LER Effects on Area Variability

The dependencies of σ(A) on LER parameters found by modeling and shown in Figure 3 can be
captured in an analytical formula which can be derived as follows: For patterns with smooth edges
(no LER) the cross-point areas are fixed in all devices and equal to Ai = CDXCDY with no variability
at all. When we consider rough edges, LER induces local variability in line widths, which is usually
called Line Width Roughness (LWR). Therefore, each crossing area can be roughly characterized by Ai

= CDixCDiy, where CDix and CDiy are the average line widths across x- and y-directions enclosed in
the i-th crossing area. Due to LER and LWR, CDix and CDiy change randomly from area to area. If
we assume that on average this variability is similar to both vertical and horizontal lines, we get for
the σ(A):

σ(A) =
std(Ai)

〈Ai〉
≈

√2std(CDi)

〈CDi〉
. (2)

The relationship of CD variance (std2(CDi)) with local and total variances of LWR values has been
studied extensively in LER literature and the following formula can be proven [20]:

std2(CDi)+ < rms2
LWR(CDi) >= rms2

LWR(total), (3)

where rmsLWR(total) is the rms value of LWR for the total lines included in model patterns, which
assume to get sufficiently large lengths so that the rmsLWR value stabilizes at a fixed value, and
< rms2

LWR(CDi) > is the mean variance of LWR calculated inside the segments of length CDi and
averaged over all considered segments.

In order to get the relationship of σ(A) with the input LER parameters, we need to pass from LWR
to LER parameters. This can be achieved through the following formula connecting LWR and LER
assuming similarity between left and right LER:

rms2
LWR = 2(1− c) rms2

LER. (4)

Here, c is the c-factor quantifying the cross-correlations between the left and right edges of lines.
For totally uncorrelated edges, c = 0, whereas for fully correlated (anti-correlated), c = 1 (−1) [26,33].
By combining (2), (3), and (4) we read:

σ(A) =
2
〈CDi〉

√
(1− c)(rms2

LER(total)− < rms2
LER(CDi) >). (5)
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The Formula (5) can be further processed in the case of edges with exponential autocorrelation
functions (roughness exponent α = 0.5) since for such edges it holds that

rms2
LER (CD) = rms2

LER(total)[1−
2ξ
CD

(1 +
ξ

CD
e−

CD
ξ − 1)]. (6)

Inserting (6) into (5) we get the final formula for the dependence of σ(A) on LER parameters:

σ(A) = 2
√

2(1− c)
rmsLER

CD
ξ

CD

√
CD
ξ

+ e−CD/ξ − 1. (7)

Equation (7) incorporates all the dependencies of normalized area variability on the dimensional
parameters (CD), the principal LER parameters (rmsLER, ξ) and the level of edge correlations (c-factor).
As expected from the numerical results, pitch and line correlations are not included since they have no
impact. One can easily notice that the analytical Formula (7) predicts (a) the linear proportionality of
σ(A) to rmsLER, (b) the sublinear increase of σ(A) with ξ, (c) the almost linear inverse proportionality
impact of CD, and (d) the reduced effects of increased edge correlations on σ(A) quantified by c through
the factor (1-c).

In order to get a more quantified and complete comparison of the analytical prediction with
the numerical results, we show in Figure 5a a contour plot with the dependencies of σ(A) on LER
parameters (rms, ξ) as derived by the analytical Formula (7). We have chosen c = 0 (no edge correlations)
and CD = 20 nm, which are the parameters of the numerical contour plot of Figure 3a. One can clearly
indicate the striking qualitative and quantitative similarity of two contour plots, which is more
directly and quantitatively illustrated in Figure 5b where the difference of the numerical and analytical
normalized variability σ(A) is shown versus rms and ξ parameters. The difference is always very
close to zero and justifies the predictive power of the analytical formula. The sole exception is for
the small rms values lower than 0.5 nm where the analytical formula seems to underestimate the
numerical results. However, the observed discrepancy is due to issues with the numerical results. More
specifically, in order to simulate the real procedure where the LER effects are evaluated through the
analysis of SEM images (see Figure 1), in the numerical modeling we pixelize the edge data by rounding
the generated edge points from the generator algorithms. We have shown that this discretization
(pixelization) process induces a noise impact on LER and causes an increase of the measured rms value
as explained in [40]. Therefore, in these regimes with extremely small rms values, one should trust the
predictions of the analytical Formula (7) more than the numerical results of the 2D modeling.
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Figure 5. (a) Contour plot of the normalized variability σ(A) cross-point areas versus the LER parameters
rms and ξ for CD = 20 nm and c = 0 (no edge correlations) and (b) the difference of numerical and
analytical predictions for σ(A) for the standard parameters CD = 20 nm and c = 0. One can notice the
striking similarity of numerical and analytical results with the slight exception of very small rms values
where numerical results are biased due to pixelization of edge data.
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The similarity between numerical results and analytical predictions was confirmed independently
of CD and edge correlations. This means that the Formula (7) comprises a strong analytical tool to
get control and deeper understanding of the LER effects on ReRAM area variability and performance
degradation since it captures successfully the impact of LER main parameters (rms, ξ) as well as of
the line width (CD) and edge correlations which may come from different lithography steps used in
pattern formation.

4. Conclusions

In this work, we model the effect of lithographic performance parameters on the operation of
ReRAM devices, assuming the main three lithographic techniques: EUV, MP and DSA. According to
our numerical model, it is found that both rms and ξ in LER degrade device area variability with rms
exhibiting the primary effect. Additionally, it is found that edge correlations favor area uniformity while
the normalized area variability is doubled when the size becomes half of the initial. For comparison, an
analytical model was developed also to simulate the impact of lithography performance parameters.
The comparison between the 2D numerical and the analytical one reveals that both provide the same
results independently of CD and edge correlations. Nevertheless, the analytical model is more accurate
at extremely small rms values. In this context, the developed numerical and analytical models are
highly valuable predictive tools for the integration of ReRAM devices at very small technology nodes.
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