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Abstract: In this article, we present a method to position the tool in a micromachine system based on
a camera-LCD screen positioning system that also provides information about angular deviations
of the tool axis during its running. Both position and angular deviations are obtained by reducing
a matrix of LEDs in the image to a single rectangle in the conical perspective that is treated by a
photogrammetry method. This method computes the coordinates and orientation of the camera with
respect to the fixed screen coordinate system. The used image consists of 5 × 5 lit LEDs, which are
analyzed by the algorithm to determine a rectangle with known dimensions. The coordinates of the
vertices of the rectangle in space are obtained by an inverse perspective computation from the image.
The method presents a good approximation of the central point of the rectangle and provides the
inclination of the workpiece with respect to the LCD screen reference system of coordinates. A test
of the method is designed with the assistance of a Coordinate Measurement Machine (CMM) to
check the accuracy of the positioning method. The performed test delivers a good accuracy in the
position measurement of the designed method. A high dispersion in the angular deviation is detected,
although the orientation of the inclination is appropriate in almost every case. This is due to the small
values of the angles that makes the trigonometric function approximations very erratic. This method
is a good starting point for the compensation of angular deviation in vision based micromachine
tools, which is the principal source of errors in these operations and represents the main volume in
the cost of machine elements’ parts.

Keywords: image processing; position control; accuracy; micromachines; position compensation;
inverse conical perspective; micromanufacturing; manufacturing systems; mechatronics

1. Introduction

Positioning systems are increasingly present in all industrial processes. Furthermore, technology
requires progressively more precise systems capable of positioning rapidly and robustly. The cost of
those is one of the key factors to integrate high precision systems.

Thanks to the advances in screen and camera technology, positioning algorithms that analyze
a pattern shown in a photographic image have been developed [1,2]. More recently, camera-screen
positioning systems with dedicated artificial vision algorithms [3–5] have provided high precision at a
very interesting cost compared to other positioning technologies such as encoders or resolvers.
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Vision positioning systems are increasingly common in process automation [6–10], autonomous
driving [11–15], or augmented reality assistants [16–20]. Indeed, this is one of the most promising
elements in the Industry 4.0 revolution. However, the current positioning systems used in the machine
tool industry based on high precision encoders and sensors are limited by their cost. Therefore,
machine tools used for micro-manufacturing have very high prices and require large floor space. Due
to this, in micro-manufacturing, the methods that use vision can be competitive by including high
performance commercial elements and reducing space such as cameras and mobile phones’ LCD
screens. In addition, such devices are increasing in definition and resolution, providing vision with
much better accuracy.

The methodology used in this article to calculate the position and orientation of the camera
in relation to the screen is based on pose determination [21–24], which is used to estimate the
position and orientation of one calibrated camera. Several similar methods for calculating the
position and orientation of a camera in space using a single image have been described and
presented [22,25,26]. Nevertheless, pose estimation and marker detection are widely used tasks for
many other technological applications such as autonomous robots [27–29], unmanned vehicles [30–37],
and virtual assistants [38–41], among others.

Consequently, this article presents an enhanced method of recalculating the center of the image
used by the positioning algorithm in an LCD-camera system, similar to that developed by de
Francisco [4] and improved in subsequent studies [42], but being completely different from such
previous studies regarding the procedure to calculate the positioning of the part with respect to the
reference system of the screen. In previous works, the positioning was obtained through the global
center of gravity of the 25 selected LEDs in the image. In this work, the position of the piece is
calculated by previously determining an equivalent square obtained by means of regressions of the
different lines that form the grid of the 25 LEDs.

In addition, this manuscript also presents the calculation and correction of the orientation angle,
which, although very small, always influences the precision positioning due to the large distance
between the location of the cutter and the screen. The new method is based on the calculation of the
equivalent quadrangle that allows not only the positioning of the center of the image, but also the
inclination. The method uses the treatment of an image to obtain the pixel coordinates of a 5 × 5
dot matrix that serves to locate the focus and orientation of the camera, where the error is due to the
distance between the focus and the screen and can be assumed as sine error.

2. Materials and Methods

2.1. Experimental Setup and Measurements

The experimental study was applied to a two-dimensional control system (X and Y). Figure 1
shows the model of the Micromachine Tool (MMT) demonstrator developed for this research.
Two stepper motors (ST28, 12, 280 mA) controlled and moved two precision guides (IKO BSR2080
50 mm stroke), which were connected to a M3 ball screw/nut. The LCD screen used provided a
1136 × 640 pixel resolution, 326 ppi, and 0.078 mm dot pitch. The screen size was 88.5 × 49.9 mm.
Both stepper motors were controlled by the digital output signals provided by an NI 6001-USB data
acquisition card connected to the USB port of a laptop computer. The output signal of the acquisition
card was treated by a pre-amplification power station composed of two L293 H-bridges. The control
was programmed in LabVIEW. It received the image captured by the camera and processed it according
to an image enhancing process. It consisted of an image mask application with color plane extraction,
fuzzy pixel removal, small object removal, and particle analysis of the mass center of each evaluated
pixel. Once it was processed using the developed artificial vision algorithm, it provided the positioning
feedback signals needed to move the X and Y axes.
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Figure 1. Model of the micromachine tool demonstrator used during the experimental test.

The images were taken by the camera included in the MMT, a Model MITSAI 1.3M digital camera
with a resolution of 1280 × 1024 pixels (1.3 MPixels). To analyze the position, a Coordinate Measuring
Machine (CMM) Pioneer DEA 03.10.06 with measuring strokes 600 × 1000 × 600 mm was used
(Figure 2). The maximum permissible error of the DEA in the measurements was 2.8 + 4.0 L/1000 µm.
The software used for the measurements was PC-DMIS.

Figure 2. Setup used during the experimental test for the measurement with the Micromachine Tool
(MMT) and the Coordinate Measuring Machine (CMM).

Several tests were performed over a 2 × 2 gap pattern using the camera-LCD algorithm.
The simulation consisted of testing a 5 mm X axis movement using 10 steps of 0.5 mm. Each travel
was repeated 3 times in both the forward and backward direction, according to the the VDI/DGQ 3441
standard: Statistical Testing of the Operational and Positional Accuracy of Machine Tools - Basis.

2.2. Image Acquisition

Image acquisition was done using a procedure developed by the authors in VBA similar to that
performed by software such as ImageJ c© in its tool “Analyze Particles ...”.

The image may not be focused, although many webcams have autofocus mechanisms that make
the focal length variable. In our case, it was unimportant because what matters was the bulk and its
center of gravity. It should also be noted that if the extraction was from the complete image, the image
usually contained the spherical errors of the lenses that focused the image onto the sensor.
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In our case, to speed up the process and calculations, only the central area from the BMP image
file that included all 25 LEDs was extracted. Only the red layer was analyzed because it was proven to
be the most efficient and the only one used to generate the image. Given the size of the LEDs, an image
size of 600 × 600 was sufficient to ensure the presence of at least 25 LEDs in the image.

3. Obtaining the Equivalent Quadrilateral

Once the 25 coordinates of the centers of the LEDs were obtained, as seen in Figure 3, these data
had to be statistically treated to obtain four vertices of a quadrilateral that collected information
about the coordinates of the 25 points. With this quadrilateral and knowing the real side dimensions
given by the size of the pixels, the position and orientation of the camera with respect to this square
were obtained.

x

y
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 3. The 5 × 5 mesh captured by the camera with numbered elements.

3.1. Regression of Lines

From the analysis of the 5 × 5 grid, different horizontal lines could be segregated, rearranging
the table of coordinates by values in y, obtaining 5 groups of 5 values corresponding to the horizontal
lines. Reordering by the values in x, the vertical lines were obtained in the same way. The 5 horizontal
lines must be translated into 2 lines, the same with the vertical lines, so that the intersection of the four
lines gave rise to the 4 vertices of the quadrilateral that represented a square in conical perspective.
The two vanishing points were obtained by the intersection of opposite sides.

Figure 4 shows the regression lines, vertical and horizontal, that represented the different groups
of points. The slope and interception terms of the lines followed a tendency that could be anyway also
found as shown in Figure 5. These tendencies allowed the calculation of the different slopes in the
extreme lines of the rectangle that represented adequately the 25 points, as the border of a chessboard
included the dimension and position of the interior squares. The correlated lines and the rectangle
used to determine the position and inclination of the axis of the camera are represented in Figure 6.

Since the angles of the slopes had very small variation, the line equations had the form
y = mix + ni. The intersection of a horizontal line with another vertical line is given by Equation (1):

x =
nj + mjni

1 − mimj
(1)

where subindex i corresponds to horizontal lines, while subindex j corresponds to vertical lines.
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Figure 4. Regression lines in the 5 × 5 elements used in the image analysis.
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Figure 5. Regression lines (compensation) to optimize the position of the lines.

x

y

(0,0)

line 1c

line 5c

(x0,y0)
x

line 6c line 10c

A B

C D

Figure 6. Final distribution of the rectangle used for the position and angle correction.
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The steps to obtain the two horizontal lines were the following:

1. Sort by coordinate the data of the grid table obtained.
2. Separate this into groups of 5 points as they belong to the same line by similarity in coordinate y.
3. Perform regression of the five groups obtaining the equations of the five lines y = mix + ni,

i = 1 . . . 5.
4. In a similar way, the data were sorted by x coordinates, then separated into 5 groups of 5 points,

and the regression was performed obtaining the equations y = mjx + nj, j = 6 . . . 10.
5. Obtain intersection points (xi, yi) from the central vertical line y = m8y + n8 with each of the

horizontal lines.
6. Accomplish the regression of the slopes of the horizontal lines mi based on the vertical intersection

coordinates yi; thereby, the slope was obtained based on the vertical intersection.
7. In such a manner, we proceeded to select the slopes and the points through which the two

horizontal lines indicated would be selected. The points of the extreme horizontal lines 1 and
5 were chosen. The two slopes of these two lines were calculated by means of the regression of
the 5 slopes. The line was forced to pass through the intersection points of these extreme points,
with the following remaining equations of the lines (Equations (2) and (3)):

y = m(y1)x + (y1 − m(y1)x1) (2)

y = m(y5)x + (y5 − m(y1)x5) (3)

A similar method was used for the calculation of the two vertical lines.
The intersection of the two almost parallel lines provided the 4 extreme vertices A, B, C, and D

(Figure 6) that were introduced to the program of the inverse conical perspective to obtain the position
and orientation of the camera in relation to the fixed coordinates located and oriented with the square
that represented the grid of departure. The position and orientation of the contact point with respect to
the screen reference system were obtained using an improvement of the method developed by Haralik
for the rectangle reconstruction [22].

3.2. Example of the Calculation of Vertices

To obtain the straight lines, the slopes of the linear regression lines through the data point in the
x and y arrays were calculated. In addition, the point at which a line intersected the y axis by using
existing x and y values was also calculated for each vertex. The interception point was based on a best
fit regression line drawn through the known x and y values, using an internal algorithm for the least
squares regression procedure.

The starting point was the table of the centers of each of the zones sorted by the number of pixels
comprising the area called mass (Table 1) as the number of pixels that included each zone.

Next, they were sorted by the y coordinates and were classified into groups that corresponded to
the horizontal coordinates (Table 2).

As a result, the 5 horizontal lines were obtained y = mix + ni, j = 1 . . . 5 (Table 3).
In the same way, we proceeded to obtain the vertical lines y = mj + nj, j = 6 . . . 10 (Table 4).
It is noted in Tables 3 and 4 that all coefficients m and n had a tendency that could be also the

object of a regression. This indicated that the lines were parallel as they had a vanishing point, and the
plane that contained all the lines was not perpendicular to the focal line of the camera.

To find the two horizontal lines that represented the 5 lines, we proceeded to find the intersection
points of the vertical center line with the 5 horizontal lines, obtaining the intersection points
(xi, yi). The slope mi was correlated with the vertical coordinates yi, obtaining the two slopes of
the representative lines as lines that had a slope m(y1) and m(y5) and passing them through Points 1
and 5, respectively (Table 5).
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Table 1. Table of the center of gravity example for Image 1.

Element # x y Mass

1 112.591 195.242 1024
2 113.366 82.265 1015
3 226.495 196.041 990
4 112.105 309.020 982
5 227.189 83.003 968
6 226.096 309.625 961
7 340.272 197.033 947
8 340.892 83.472 943
9 112.080 423.237 938
10 567.863 198.706 925
11 453.996 197.528 917
12 454.825 84.746 897
13 339.734 310.306 890
14 568.349 86.025 873
15 225.773 423.599 872
16 453.313 311.012 857
17 567.139 311.749 854
18 111.869 536.665 833
19 339.310 423.985 813
20 566.355 425.027 786
21 225.561 537.419 776
22 452.760 424.705 757
23 339.075 537.371 717
24 452.296 537.806 682
25 565.838 538.361 673

Table 2. Groups of points corresponding to horizontal lines.

x y

565.838 538.361
452.296 537.806
225.561 537.419
339.075 537.371
111.869 536.665

566.355 425.027
452.760 424.705
339.310 423.985
225.773 423.599
112.080 423.237

567.139 311.749
453.313 311.012
339.734 310.306
226.096 309.625
112.105 309.020

567.863 198.706
453.996 197.528
340.272 197.033
226.495 196.041
112.591 195.242

568.349 86.025
454.825 84.746
340.892 83.472
227.189 83.003
113.366 82.265

Once having performed the regression of m with respect to yi, a function of the slope that varied
regularly across the different heights (m = −1.136 × 10−3

i + 9.331 × 10−3) was obtained. As a result,
the equations of the horizontal lines that passed through Points 1 and 5 could be calculated.

y = −6108 × 10−3x + 540.807 (4)
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y = −9533 × 10−4x + 83.981 (5)

Table 3. Coefficients of horizontal lines.

m n

3.331 × 10−3 536.395
4.127 × 10−3 422.710
6.018 × 10−3 308.298
7.393 × 10−3 194.394
8.142 × 10−3 81.126

Table 4. Coefficients vertical lines.

m n

−5.774 × 10−3 568.910
−5.553 × 10−3 455.166
−4.050 × 10−3 341.114
−3.500 × 10−3 227.307
−3.080 × 10−3 113.355

Table 5. Intersection points of the central vertical line with horizontal lines.

Point xi yi

1 338.937 537.525
2 339.396 424.111
3 339.857 310.344
4 340.316 196.911
5 340.774 83.901

In the same way, we proceeded to obtain the 2 representative vertical lines:

x = −6444 × 10−3y + 570.765 (6)

x = −1277 × 10−3y + 112.547 (7)

The intersection of the opposite lines of this square provided the coordinates of the four vertices
that represented the 25 LEDs (Table 6).

Table 6. Quadrilateral points to deal with the reverse perspective program.

Point x y

1 111.857 540.124
2 567.302 537.343
3 570.227 83.437
4 112.439 83.874

The vertices represented in Table 6 were treated using the photogrammetry method of the
reconstruction of a rectangle described in Estrems [24], and the coordinates of the camera with
respected to the square coordinate system were obtained, as well as the cosine direction of the focal
line in this system.

a =

√
d2

f −
(

d f · cosb
)2

= d f

√
1 − cos2b (8)

a2 − a1 = d f

(√
1 − cos2b2 −

√
1 − cos2b1

)
(9)

In Figure 7, the Abbe error a is represented and calculated by the focal distance d f and the cosine
in the z direction cos b. The Abbe error is calculated in Equation (8), and the step error due to the
variation of angle b during the movement is compensated at each point according to Equation (9).
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Figure 7. Position error in the vision system due to camera inclination for axis direction movement.

4. Experimental Results and Discussion

The data obtained in the experimental test are described in Tables 7–12, where CMM is the
distance measure by the Coordinate Measuring Machine in the movements done by the MMT in
every step during the test; Image is the distance moved in every step analyzed by the vision system;
Error Image is the error provided by the vision system in every step after a comparison with the
distance moved provided by the CMM; Compensation is the distance compensated due to angle
error calculated in every step; Image compensated is the distance measured by the CMM after the
application of the compensation calculated; Error compensation is the error after the compensation is
applied; and Coincidence provides information about the coincidence in the orientation calculated
for the angle compensation (YES means orientation coincidence, and NO means the angle orientation
calculated is opposite the compensation required to minimize the error).

Table 7. Data for Run #1 forward with a mesh of 5 × 5 LEDs (values in µm).

CMM Image Error Image Compensation Image Compensated Error Compensation Coincidence

501 −501.897 −0.897 0.603 −501.294 −0.294 YES
1000 −995.031 4969 −4.432 −999.463 0.537 YES
1487 −1483.389 3611 −0.714 −1484.102 2.898 YES
1998 −1984.546 13.454 −2.164 −1986.710 11.290 YES
2489 −2489.081 −0.081 0.471 −2488.610 0.390 YES
2988 −2986.138 1.862 1.062 −2985.076 2.924 NO
3490 −3487.323 2.677 0.802 −3486.521 3.479 NO

Table 8. Data for Run #1 backward with a mesh of 5 × 5 LEDs (values in µm).

CMM Image Error Image Compensation Image Compensated Error Compensation Coincidence

496 −496.099 −0.099 2.394 −493.705 2.295 YES
992 −992.400 −0.400 −1.744 −994.144 −2.144 NO

1482 −1493.937 −11.937 0.505 −1493.432 −11.432 YES
1991 −1993.130 −2.130 0.632 −1992.498 −1.498 YES
2494 −2495.707 −1.707 0.912 −2494.795 −0.795 YES
2993 −2994.327 −1.327 2.214 −2992.113 0.887 YES
3494 −3493.969 0.031 −1.950 −3495.918 −1.918 YES
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Table 9. Data for Run #2 forward with a mesh of 5 × 5 LEDs (values in µm).

CMM Image Error Image Compensation Image Compensated Error Compensation Coincidence

490 −498.217 −8.217 1.671 −496.545 −6.545 YES
985 −989.868 −4.868 2.260 −987.608 −2.608 YES

1481 −1489.347 −8.347 −0.803 −1490.150 −9.150 NO
1976 −1993.442 −17.442 1.153 −1992.290 −16.290 YES
2493 −2499.212 −6.212 0.604 −2498.608 −5.608 YES
2991 −2996.982 −5.982 2.728 −2994.254 −3.254 YES
3485 −3494.890 −9.890 1.978 −3492.912 −7.912 YES

Table 10. Data for Run #2 backward with a mesh of 5 × 5 LEDs (values in µm).

CMM Image Error Image Compensation Image Compensated Error Compensation Coincidence

495 −498.695 −3.695 1.631 −497.065 −2.065 YES
991 −993.169 −2.169 2.490 −990.679 0.321 YES

1486 −1497.023 −11.023 4.948 −1492.075 −6.075 YES
2003 −1994.767 8.233 −0.105 −1994.872 8.128 YES
2501 −2493.756 7.244 −0.142 −2493.898 7.102 YES
2995 −2995.898 −0.898 1.446 −2994.452 0.548 YES
3494 −3494.915 −0.915 2.048 −3492.867 1.133 YES

Table 11. Data for Run #3 forward with a mesh of 5 × 5 LEDs (values in µm).

CMM Image Error Image Compensation Image Compensated Error Compensation Coincidence

496 −500.617 −4.617 1.720 −498.897 −2.897 YES
994 −998.341 −4.341 1.814 −996.527 −2.527 YES

1497 −1496.865 0.135 −0.990 −1497.855 −0.855 YES
1997 −1997.961 −0.961 −0.007 −1997.968 −0.968 NO
2500 −2502.260 −2.260 0.168 −2502.092 −2.092 YES
2996 −3007.135 −11.135 2.567 −3004.567 −8.567 YES
3498 −3503.156 −5.156 0.660 −3502.496 −4.496 YES

Table 12. Data for Run #3 backward with a mesh of 5 × 5 LEDs (values in µm).

CMM Image Error Image Compensation Image Compensated Error Compensation Coincidence

498 −497.074 0.926 −0.532 −497.606 0.394 YES
999 −991.402 7.598 −4.628 −996.030 2.970 YES

1492 −1493.747 −1.747 2.333 −1491.414 0.586 YES
1992 −1992.997 −0.997 1.684 −1991.313 0.687 YES
2487 −2491.310 −4.310 1.007 −2490.303 −3.303 YES
2985 −2993.930 −8.930 0.791 −2993.139 −8.139 YES
3486 −3493.567 −7.567 −3.367 −3496.934 −10.934 NO

Table 13 summarizes the mean errors (ē) and the standard deviation errors (σ) calculated in each
run of the experimental tests. The global mean (4.786 µm) and standard deviation (5.698 µm) were
also calculated.

Table 13. Summary of the errors, in absolute value, provided by the proposed vision positioning
algorithm.

#1 Forward #1 Backward #2 Forward #2 Backward #3 Forward #3 Backward Global

Mean (µm) 3.936 2.519 8.708 4.883 4.086 4.582 4.786
Mean (%) 0.79 0.50 1.74 0.98 0.8 0.92 0.96
σ (µm) 4.771 4.238 4.212 6.586 3.699 5.567 5.698
σ (%) 0.95 0.85 0.84 1.32 0.74 1.11 1.19

As is seen in the graphs of Figure 8, the precision of positioning depended strongly on the initial
error function, so the variation of the error was less than ±2µm, except several discrete points that
were measured in a transition between columns of LEDs that were not so homogeneous in the LCD.
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One remarkable result was that the orientation of the compensation error coincided with the sign
of the error checked at almost all points. This indicated that there was variation of the orientation of
the focal line with respect to the screen coordinate system, although this was not applied efficiently
to improve the precision of measurement. This was probably due to the problems evaluating the
trigonometric functions in angles with values less than 10−3 radians.

Therefore, due to the distance from the vanishing points of the lines, the estimation of the
angular error did not turn out to be very precise in its quantification, although it provided qualitative
descriptors on the direction and magnitude of the variation in the inclination of the camera.
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Figure 8. Error due to the vision system before and after angle compensation was applied.

5. Conclusions

A new method was developed to position the tool in a micromachine system based on a
camera-LCD screen positioning system that also provided information on the angular deviations
of the tool axis during operation.

The method gave a good approximation of the center point of the rectangle with a mean error of
0.96%, considering not only the vision algorithm, but also the mechanical test device, and provided
the inclination of the workpiece with respect to the LCD-screen reference coordinate system.

The equivalent square was calculated as regression of the lines that could be drawn through
the centers of gravity of each of the LEDs. The lack of parallelism between the sides of the square
indicated an inclination of the camera axis relative to perpendicular to the screen. The variation of this
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inclination introduced errors in the displacements that were added to the simple displacement of the
center of gravity and whose compensation was also calculated in this article.

A test of the method was designed with the assistance of a Coordinate Measurement Machine
(CMM) to verify the accuracy of the positioning method. The test performed provided good accuracy
in measuring the position of the designed method, but a high dispersion in the angular deviation
was detected, although the orientation of the inclination was appropriate in almost all cases (85.7%).
This was due to the small value of the angles that made the approximations of the trigonometric
functions very erratic. With accurate formulas to approximate trigonometric functions for small angles,
the method could help in obtaining more accurate measurements.
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