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Abstract: The production of modern machines requires parts with much greater geometric accuracy
and surface geometry (SG) precision than several years ago. These requirements are met by so-called
hybrid technologies that must simultaneously be inexpensive to implement. The integration of
treatment procedures (usually in one operation) is geared towards achieving a synergistic effect.
Combining different treatments from various technologies produces synergy, i.e., benefits greater
than the optimization of each individual process done separately. This paper presents experimental
results and numerical experiment data on surface plastic deformation. The hybrid technology used
in the study was a combination of milling and finishing with plastic burnishing using a ceramic ball.
These processes were integrated on a multi-axis CNC machining center. The plastic deformations of
real surfaces were determined in simulations. The paper also discusses the structure of the model
and how to use it to conduct a finite element method (FEM) computer simulation. The aim of the
study was to determine how to use the potential developed model of hybrid treatment to predict the
surface performance expressed by the amplitude, volume, and functional parameters of the surface
geometry, with the EN-ISO 25178-2 profile.
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1. Introduction

The current machine part technology is becoming more integrated (one machine, a few tools,
short production time and cost reduction). Research papers and industrial practice focus on the
combination of machining types [1–9], including turning [10], milling [11–15], drilling, and threading,
using machining centers with forming processes like burnishing [1–18]. The main aim of the new
technology is to meet the smoothness and strength requirements of the surfaces of the part [1–21].
The optimization of the technological parameters of turning [10] or milling [5,6] makes it possible
to obtain a satisfactory surface geometry (with low roughness and a useful Abbott–Firestone curve).
Given the predefined accuracy, the efficiency and production economics are the main concerns for
the technologist. The practically unlimited freedom to control the tooth path trajectory on multi-axis
milling machines enables the technologist to use a range of smart tools to obtain the required properties
for useful surface shapes [2–6,18].

In addition to the stress responsible for the fatigue strength, the performance properties of
the surface [6] also include a new range of additional requirements defined by constructors and
R&D specialists. A more common new requirement is a given level of surface isotropy [7,8]. It is
beneficial to prepare a surface with an isotropic geometric structure when the operation conditions
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have not been completely defined. An isotropic surface results in the even wear of components
during their use. Given a low roughness for the surface geometry, an isotropic surface provides a
uniform and high surface reflectance in all the regions, which is particularly important in modern
industrial design [7,8,19]. The surface texture obtained with hybrid production techniques depends to
a large degree on kinematic–geometric conditions and the technological parameters defined by the
technologist. The surface of a ready product often bears traces of the treatment applied prior to surface
finishing [7,9–12]. Working through the remains of the last treatment poses a significant limitation to
synergy in hybrid technological processes [7].

In the production of expensive and complex tools, including molds, masters, and dies, there is no
room to search for the optimum treatment parameters that would produce the synergy effect. This
paper presents a way to develop a finite element method (FEM) model and research methodology for
the assessment of the height parameters of a surface geometry. The model data were validated with
experimental data. An analysis covered selected parameters of the surface geometry.

2. Experimental Research

Complex spatial surfaces are commonly machined with ball nose end mills and torus heads.
Milling cutters leave traces related to the feed rate, interval, and diameter of the cutting insert. The
roughness resulting from the feed per revolution is usually negligibly small. In such cases, the standard
procedure is to burnish perpendicular to the direction of the crossfeed cutting after milling [4,12–16].
The burnishing itself is accompanied by phenomena occurring in the contact zone of the burnishing
tool. The effect of burnishing to a large degree depends on the hardness of the material and roughness
resulting from the previous operations. The basic technological parameters of burnishing include
the burnishing force, feed, and number of burnishing tool passes. The surface condition is the least
affected by the burnishing velocity.

An experiment was planned in line with the literature guidelines [9–16] and based on our
own experience in conducting experimental research [5–8]. First, 100 × 100 × 20 mm samples
made of 42CrMo4 steel and thermally improved to 35 ± 2 HRC were milled using a WNT
R1000G.42.6.M16.IK torus (Ceratizit Group, Poland) with six inserts to a diameter of dp = 10 mm
(RD.X1003 MOT–WTN1205). The treatment was conducted on a DMG DMU 60MONOBLOCK
machining (Deckel Maho Pfronten GmbH, Pfronten, Germany) center, with a spindle angle of 15◦. The
milling speed was vc = 1000 mm/min, with a feed rate fz = 0.1 mm and a cross feed rate fwm = 0.5 mm.
An approximately 11 mm wide sample was left unburnished to measure the roughness obtained in the
forming milling (Figure 1a).Materials 2019, 10, x FOR PEER REVIEW  3 of 12 
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A randomly selected milled profile from an earlier generated point cloud for a real surface was 
used to analyze the SG changes following hybrid treatment in the FEM environment (Figure 2). 

Figure 1. (a) Surface obtained after milling; (b) Surface after milling and burnishing.

Measurements of the surface geometry (SG) were made using an AltiSurf A520 multisensor
(Altimet, Thonon Les Bains, Frence). It was fitted with a chromatic confocal CL1 sensor, with a range
of up to 130 µm and a resolution of 8 nm on the Z optical axis. Measurements were conducted on



Materials 2019, 12, 1179 3 of 12

2 × 2 mm areas. A scanning resolution of 2 µm along the X and Y axes was experimentally selected.
As a result, a cloud of 1 million points was obtained. The mapping of this point cloud was conducted
using an AltiMap PREMIUM 6.2 (Digitalsurf, Besancon, France), and then 3D SG parameters were
determined:

• for each of the measured areas, a threshold value of 0.01–99.9% was determined to delete unreliable
surface point data (deleted points were set up as unmeasured values);

• then, the surface was leveled (with mean area using the method of least squares);
• finally, selected stereometric roughness parameters were determined in compliance with

EN-ISO 25178.

Selected SG parameters after milling are listed in Table 1. The cloud of points for a real surface
prepared in this way was exported using the TXT file standard. A recorded image of the milled
surface was used for a numerical analysis conducted with the software used for modeling the plastic
deformation with the FEM.

Table 1. Selected 3D surface geometry (SG) parameters recorded in experiments.

SG Parameters in Compliance with EN-ISO 25178 After
Milling

After
BurnishingParameter

Name Parameter Description Context Unit

Sa Surface height arithmetic mean µm 1.89 1.70
Sz Maximum surface height µm 14.40 11.90
Sq Root mean squared surface height µm 2.33 1.94
Ssk Surface asymmetry 0.42 −0.46
Sku Surface kurtosis 2.67 1.96
Sp Surface peak maximum height µm 9.05 5.45
Sv Surface valley maximum height µm 5.38 6.49
Functional parameters (stratified surfaces)

Sk Core roughness depth Gaussian filter,
0.08 mm µm 1.03 0.15

Spk Reduced summit height Gaussian filter,
0.08 mm µm 0.53 0.13

Svk Reduced valley depth Gaussian filter,
0.08 mm µm 0.57 0.18

The experimental research on burnishing was conducted on a 3-axis MIKRON VCE 500 machining
center (Haas Automation INC, Oxnard, USA). A prototype hydrostatic tool with a bellows actuator
(West Pomeranian University of Technology Szczecin, Szczecin, Poland) (Patent PL 220528 B1 issued
on Nov. 30, 2015) with a ZrO2 ceramic tip with a diameter of db = 10 mm was used. The burnishing
speed vb was 8000 mm/min, and cross feed fwb was 0.12 mm. Burnishing was conducted with a force
Fb = 500 N. The surface after burnishing is shown in Figure 1b.

After burnishing, selected 3D SG parameters were again determined (Table 1).

3. Computer Model of Burnishing Process

A randomly selected milled profile from an earlier generated point cloud for a real surface was
used to analyze the SG changes following hybrid treatment in the FEM environment (Figure 2).
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Figure 2. Randomly selected profile used to model burnishing.

A randomly selected milled profile was set as a benchmark for the FEM environment results
(Figure 3). After burnishing, the profile was obtained in the same way as the profile of the milled
surface. Selected 2D SG parameters (Table 2) were determined in compliance with the EN-ISO 4287
standard for both profiles (Figures 2 and 3).
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Figure 3. Randomly selected benchmark profile obtained in burnishing experimental research.

Table 2. Selected 2D SG parameters recorded in experiments.

SG Parameters in Compliance with EN-ISO 4287 After
Milling

After
BurnishingParameter

Name Parameter Description Context Unit

Amplitude parameters—fundamental profile

Pa Arithmetic mean deviation of
primary profile µm 1.56 0.527

Pt Total height of primary profile µm 5.72 3.28

Pz Maximum height of primary
profile µm 5.72 3.28

Pq Root mean squared deviation of
primary profile µm 1.75 0.65

Pp Maximum peak height of primary
profile µm 2.61 1.06

Pv Maximum valley depth of
primary profile µm 3.10 2.22

Psk Primary profile asymmetry −0.29 −1.27

Pku Primary profile kurtosis 1.72 3.59
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Table 2. Cont.

SG Parameters in Compliance with EN-ISO 4287 After
Milling

After
BurnishingParameter

Name Parameter Description Context Unit

Amplitude parameters—roughness profile

Ra Arithmetic mean deviation of
roughness profile

Gaussian filter,
0.8 mm µm 1.07 0.30

Rt Total height of roughness profile Gaussian filter,
0.8 mm µm 3.29 1.92

Rz Maximum height of roughness
profile

Gaussian filter,
0.8 mm µm 3.29 1.92

Rq Root mean square deviation of
roughness profile

Gaussian filter,
0.8 mm µm 1.15 0.38

Rp Maximum peak height of
roughness profile

Gaussian filter,
0.8 mm µm 1.78 0.58

Rv Maximum valley depth of
roughness profile

Gaussian filter,
0.8 mm µm 1.50 1.35

Rsk Roughness profile asymmetry Gaussian filter,
0.8 mm 0.24 −1.02

Rku Roughness profile kurtosis Gaussian filter,
0.8 mm 1.38 3.42

Material balance parameters—roughness profile

Rmr Relative material balance of
roughness profile

c = 1 µm under
the highest
peak, Gaussian
filter, 0.8 mm

% 35.90 81.50

Rdc Height difference of roughness
profile parts

p = 20%,
q = 80%,
Gaussian filter,
0.8 mm

µm 2.36 0.66

Milling with ball nose cutters leaves marks, with the feed per revolution and ball nose cutter
diameter as the dominant factors in the roughness. Burnishing smooths the marks.

An earlier numerical simulation [6] demonstrated in a sensitivity analysis that a mesh gap size
below 50 µm did not significantly affect the plastic deformation and residual stress of milled and
burnished surfaces. Therefore, bearing in mind the hardware limitations of the physical model
developed with Nastran FX, a mesh gap size of 20 µm was used for an individual finite element.
Roughness shape changes were observed in a selected milled surface profile in the physical model.
The changes visible in Figure 4 are a result of changing the measurement mesh (2 × 2 µm) into a
(20 × 20 µm) FEM mesh.

The samples used in the experiments were 0.4 mm wide and 2 mm long. The modeled physical
object was similar to a pyramid with the top cut off. It was 10 mm in height, with a base that was
10 mm wide and 25 mm long (Figure 5).

The material properties of the thermally improved milled sample were taken into consideration.
Nonlinearity was attributed to the sample material to account for the residual stress resulting from
prior milling. The characteristics of the material used in the physical model were determined in tensile
testing (Table 3) [6].
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Figure 5. Sample prepared for Nastran FX simulations.

Table 3. Properties of the steel X42CrMo4, used in experiments (35 HRC) [6].

Parameter Symbol Unit Catalogue Data
for 20–24 HRC

Average Value in Tensile
Tests 35 ± 1 HRC

Longitudinal modulus of elasticity EX GPa 210 210.2
Poisson’s ratio NUXY - 0.28 0.28
Longitudinal modulus of elasticity GXY N/m2 7.9 × 1010 -
Tensile strength SIGXT GPa 1.000 1.046
Yield strength SIGYLD MPa 750 840
Coefficient of thermal expansion ALPX /K 1.1 × 10−5 -
Elongation A % 14.7 10.86

Young’s modulus of X42CrMo4 was determined experimentally; it was E = 210 GPa. Poisson’s
number for the model was ν = 0.28 [6]. In the burnishing model, a ball was pressed into the sample
surface with a force of 500 N. The ball was then rolled back perpendicularly to marks left by the milling
cutter over 1.5 mm (Figure 6).
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Figure 6. Sample model at contact point when ball is rolled back on real surface.

The model of a sample shaped like a pyramid with a cut off top consisted of 470,400 elements
connected by 247,222 nodes. The base of the sample was fixed so that displacement was possible only
in the model’s plane of symmetry. A total of 2100 rigid shell elements connected by 2227 nodes were
used to model the ceramic tip of the burnishing tool. The mechanical properties of ZrO2 were taken
from research conducted previously: Young’s modulus E = 220 GPa and Poisson’s number ν = 0.3.

The modeling of the burnishing process (Figure 6) comprised the following steps:

• modeling of how the ball is pressed into the sample surface with a burnishing force of 500 N;
• then, the burnishing ball is rolled back over the surface over a 1.5 mm section;
• the burnishing force acting on the ball is reduced.

When the ball is rolled back, it rotates by approximately 18◦. It took 48 h for Nastran FX to
calculate the data for one numerical experiment. The results included the plastic deformation of the
total model and coexisting residual stress.

4. Experimental Research Results

Because of hardware limitations and the high requirements for computing power in numerical
research, the selected segment of a real milled surface was only 1.5 mm long. Therefore, only unfiltered
profile P-parameters were calculated in compliance with EN-ISO 4287 (over one measured section)
out of the vertical displacement data recorded in the direction of the burnishing ball rolling back
(Figure 7). The value of the Pa-parameter can be easily interpreted by analogy with the Ra-parameter
(the arithmetic mean deviation of the unfiltered profile points away from the midline).
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experiment 
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[%] 
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Pq µm 1.75 0.65 0.65 0.8 

Figure 7. Plastic deformation of sample after one pass of the burnishing tool with a force of 500 N.

To determine the selected 2D SG parameters (Table 4) after the burnishing simulation, the set of
points was exported again (Figure 8), and the SG parameters were calculated using AltiMapa 6.2.

The value of Pa = 0.55 was obtained in the burnishing simulation for a selected milled profile
from the initial roughness of Pa = 1.56. The differences in parameter Pa were convergent to the average
parameter values obtained in experimental research (Tables 2 and 4). The experimental and simulated
Pa-parameters differed by less than 5% of their values (Table 4).

Table 4. Selected roughness parameters recorded in the study.

EN-ISO 4287
Amplitude Parameters—Primary Profile

Unit Milled
Surface

Empirical
Experiment

Numerical
Experiment Difference [%]

Pa µm 1.56 0.52 0.55 4.4
Pt µm 5.72 3.28 2.77 18.4
Pz µm 5.72 3.28 2.77 18.4
Pq µm 1.75 0.65 0.65 0.8
Pp µm 2.61 1.06 1.41 33.0
Pv µm 3.10 2.22 1.36 63.2
Amplitude parameters—roughness profile
Ra µm 1.07 0.303 0.33 8.3
Rt µm 3.29 1.92 1.38 39.1
Rz µm 3.29 1.92 1.38 39.1
Rq µm 1.15 0.39 0.39 0.3
Rp µm 1.78 0.58 0.70 21.1
Rv µm 1.50 1.35 0.68 97.9
Material balance parameters—roughness profile
Rmr % 35.90 81.5 72.50 12.4
Rdc µm 2.36 0.66 0.82 25.1



Materials 2019, 12, 1179 9 of 12

Materials 2019, 10, x FOR PEER REVIEW  8 of 12 

 

 

Figure 7. Plastic deformation of sample after one pass of the burnishing tool with a force of 500 N. 

To determine the selected 2D SG parameters (Table 4) after the burnishing simulation, the set of 
points was exported again (Figure 8), and the SG parameters were calculated using AltiMapa 6.2. 

The value of Pa = 0.55 was obtained in the burnishing simulation for a selected milled profile 
from the initial roughness of Pa = 1.56. The differences in parameter Pa were convergent to the 
average parameter values obtained in experimental research (Tables 2 and 4). The experimental and 
simulated Pa-parameters differed by less than 5% of their values (Table 4). 

 
Figure 8. Milled surface profile after the simulation of a burnishing process with Nastran FX. 

Table 4. Selected roughness parameters recorded in the study. 

EN-ISO 
4287 

Amplitude parameters—primary profile 

Unit Milled 
surface 

Empirical 
experiment 

Numerical 
experiment 

Difference 
[%] 

Pa µm 1.56 0.52 0.55 4.4 
Pt µm 5.72 3.28 2.77 18.4 
Pz µm 5.72 3.28 2.77 18.4 
Pq µm 1.75 0.65 0.65 0.8 

Figure 8. Milled surface profile after the simulation of a burnishing process with Nastran FX.

The profile changes in the workpiece surface during the numerical research are shown in Figure 9.
The biggest deformations were observed close to “sharp” summits. Summit deformations caused by
the force exerted by the tool in the normal and tangential directions to the surface resulted in valleys
being evenly filled in the whole area. In this particular burnishing case, lowering the surface peaks
rather than elevating the valleys resulted in the plastic “filling” of the profile. As can be seen, there
was a larger difference in the values of the Pp-parameters obtained after burnishing compared to the
lowering of the Pv value of the burnished surface in relation to the original value obtained after milling.
The trend observed in the numerical research was also confirmed in the experiment.
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Figure 9. Graphs show surface profile after milling, solid deformation in investigated profile and final
profile after burnishing with a force of 500 N.

Small differences (of less than 10%) between the experimental and numerical results were observed
only for the parameters most commonly used in engineering: Pa and Pq (Figure 10). Similarly, a small
difference was observed in the filtered profile for roughness parameter Ra (Figure 11). The values of the
2D SG parameters depended on all the points in a set generated by a profile whose changeability was
constant (for Pa) or the root mean square (for Pq) relative to a determined value of the arithmetic mean.

The goodness of fit between the experimental model and experimental results for unfiltered
profile amplitude parameters Pt and Pz was worse. In this case, the coordinates of individual points
were crucial in terms of their values. The extreme displacement of individual points on a surface
decreased when the FEM mesh gap size increased (resolution of the FEM model decreased). Similarly,
great differences were observed for the 2D SG parameters that defined the profile ordinate distribution,
including the Psk skewness and Pku kurtosis. The observed asymmetry of the unfiltered profile point
distribution and concentration of points around the average were greater in the experimental research.
This was due to the very high resolution of the profilometer used in the study. The observed direction
of changes in the surface character following the use of the hybrid technology was consistent. Some
similarity can also be seen in the description of the surface changes expressed with the roughness
amplitude parameters (Figure 11).
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Figure 10. Changes in 2D SG parameters in the unfiltered profile.
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Figure 11. Changes in 2D SG parameters in roughness profile (profile filtered in compliance with
EN-ISO 4287).

As before, an excellent goodness of fit was obtained for the Ra and Rq-parameters (differences
smaller than 10%). The numerical research could be used to satisfactorily predict the mechanism and
magnitude of the deformation of the roughness summits after milling (the Rp differences were around
21%). Unfortunately, the characteristic of the valley filling in the roughness profile defined by the Rv
parameter yielded a difference of almost 10%. Just like before, the reasons for such a great magnitude
of errors can be found in the FEM model discretization, which was ten times smaller than that used in
the experimental research.

The point distributions of the burnished profile were characterized by different directions of
asymmetry (parameter Rsk). The high resolution of the measuring equipment also played a role in this
respect. High resolution could be used to better scan and map the narrow and deep valleys of the real
burnished surface.

The developed FEM model could satisfactorily determine the Rmr and Rdc parameters of the core
ratio of the material. Values based on the profile ordinate distribution given by the Abbott–Firestone
curve are often used by technologists to define the required tribological properties of a product surface.
To determine the material core parameters, the extreme points at a profile’s summits and valleys
are rejected.
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5. Summary and Conclusions

The following conclusions can be drawn based on a comparison of the numerical research data
and empirical experiment data.

Because of hardware and software limitations, only one pass of burnishing was modeled in the
initial research. This is why the surface residual deformation results from the numerical experiment
and experimental research were somewhat divergent. The origin of the observed differences lay in
the propagation of the residual deformation and stress outside the direct contact zone between the
workpiece and burnishing tool. This practically means that each successive burnishing pass occurred
on a surface that had already been burnished.

In its present state, the developed numerical burnishing model is a good prognostic tool for
predicting the condition of a surface layer. It is particularly useful for residual stress forms and values,
which are difficult to measure.

In the numerical research, we assumed the real condition of a milled surface scanned with
0.002 mm steps. The first simulation attempts showed that 0.02 mm steps would be good enough
for computer modeling. This simplification did not significantly affect the surface height parameters
obtained in the study.

The differences in the parameters typically used to define SG were in most cases below 20%. The
assumed simplification made it possible to reduce the computing time and did not significantly affect
the ability to predict the SG conditions.

The developed model of the treatment process could also be used to predict the fundamental
tribological properties of a surface. The profile point distributions generated with the model were
consistent with the experimental data.

In special cases, amplitude parameters, defined by individual points with extreme height values,
could not yet be estimated. However, our research is ongoing. First, we plan to increase the resolution
for the mesh discretization in the FEM model. Then, we want to introduce additional burnishing
passes so that stereometric SG parameters (defined by EN-ISO 25178) can be determined.

Only 3D simulations will provide a reliable tool for the optimization of technological parameters
in a hybrid treatment that includes milling and burnishing. A 3D model with improved resolution will
enable the prediction of other functional surface properties such as isotropy, wetting, or the ability to
maintain lubricants and lacquer coatings.
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and ball burnishing on shaping complex 3D surfaces. Surf. Topogr. Metrol. Prop. 2017, 5, 1. [CrossRef]
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