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Abstract: Many structural components made of composite materials need an accurate thickness
control during fabrication and/or maintenance. In this regard, various non-destructive techniques
can be used for the online measuring of thickness of large components such as wings and fuselage in
the aerospace industry. In this work, the capabilities of lock-in thermography technique in thickness
measurement of glass fiber reinforced plastic material were investigated and a correct procedure
has been proposed to ensure the best measurement accuracy. An analytical approach and several
tests were carried out on a sample specimen with the aim to study the main test parameters. Finally,
the limits of technique have been discussed.

Keywords: thickness; lock-in thermography; non-destructive testing; composites; glass fiber
reinforced plastic (GFRP)

1. Introduction

Composite components are used in many fields of engineering thanks to a high strength associated
with the low weight. Non-destructive testing (NDT) techniques represent a useful tool for evaluating
defects or damaged areas and then the residual strength of these components.

Another important topic is represented by the verification of the geometric correctness of
composite components with variable thickness. Geometrical and dimensional unconformities can
occur above all during the manufacturing process and could compromise part assembling.

NDT techniques play a key role also in thickness measurements since allow the on-line testing
without destructive tests and then reducing times and costs. In this regard, different techniques can be
used for thickness measurements, such as, eddy current [1], ultrasound [2], and thermography [3].

In the work of Chen et al. [1], the thicknesses of CFRP materials have been measured with eddy
current method in two different way. An excitation frequency of 5 kHz has been used for measuring
thickness up to 4.8 mm. The capability in measuring the thickness of the composite material as the
coating of aluminum plates has been also demonstrated.

Amiri et al. [2] proposed an impact-echo method for thickness measurement of orthotropic
composite plate. In particular, the response of plates subjected to low velocity impact has been used
and the limits of technique has been investigated.

Lamb waves have been used in the work of Moreno et al. [4,5]. This method is based on the
identification of the antisymmetrical Lamb modes in pulse propagation in plates.

All the techniques just described generally require the contact with components and a scanning
approach in order to cover the whole component with consequent increasing of the testing time. In this
regard, stimulated or active thermographic techniques [6] represent a valid tool for measuring the
thickness of material since they provide a full-field information with a simple experimental set-up also
suitable for on-line measurements.

Pulsed (PT) [7–12] and lock-in (LT) [13–22] thermography are the techniques used in the last years
for defect depth, thickness or more in general defect/damage measurement.
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The potential and limits of the flash thermography technique have been investigated by
Shepard et al. [7,8]. In particular, the capability of the TSR® algorithm in evaluating the thickness of
Thermal Barrier Coatings has been demonstrated. Zeng et al. [9] investigated the defect depth by using
a theoretical one-dimensional solution of pulsed thermography and comparing four representative
methods for the non-air interface situation.

A comparative study of pulsed and lock-in thermography was performed in the works of
Shrestha et al. [21,22]. Results show that PT is faster and more accurate than LT in coating
thickness measurement.

The capability of LT in coating in defect depth and thickness measurement has been shown
in several papers [14–25]. In the work of Maierhofer et al. [17] a systematic investigation has been
performed on isotropic and CFRP material. In particular, it has been shown as the lateral thermal
diffusion influences the results of LT technique. A new procedure for obtaining the enhancement of
the depth resolution is shown in the work of Subhani et al. [18]. By using the frequency modulated
thermal wave imaging, a linear relation between phase signal and depth allows for obtaining a depth
resolution in defect detection of 0.2 mm.

The limits of defect detectability were examined with LT on a steel specimen in [19]. By considering
the phase contrast at a fixed excitation frequency, the defect detectability shows an exponential trend as
function of the defect depth. In the work [20] has been shown as a third order polynomial regression can
be used to relate the coating thickness and the phase signal. The proposed procedure allows to obtain
an error of about 5% in thermal barrier coating thickness measurement. Substantially, two methods have
been used for defect depth or coating thickness prediction: the blind frequency method and the phase
contrast method, each of one with own limits and peculiarities. In fact, this topic has been less explored
than PT technique in literature. Moreover, the papers in which the accuracy has been evaluated, do not
describe the procedure or method to choose the best excitation frequency (or period).

In this work, the capabilities of LT technique in thickness verification of composite material were
investigated and a procedure is proposed to choose the best excitation frequency (period) in order to
estimate the resolution in thickness measurement variation. An approach based on analytical models
and experimental tests have been carried out by considering a sample specimen made of glass fiber
reinforced plastic (GFRP) material. Finally, the limits of technique have been discussed.

2. Theory

Lock-in thermography is based on the generation of thermal waves inside the specimen, for example,
by periodically exciting the specimen surface [6]. The resulting oscillating temperature field in the
stationary regime can be recorded remotely through its thermal infrared emission by an IR camera.
Thermal wave can be reconstructed by measuring temperature evolution over the specimen surface: by
a suited algorithm, information about magnitude and phase of the thermal wave can be obtained.

In the works of Rosencwaig et al. [23] and Bennet et al. [24], the theory of the photoacoustic effect
and then of thermal wave interferometry has been presented by means a one-dimensional model of the
heat flaw in the cell resulting from the adsorbed light energy. If a sinusoidal heat source is considered,
the amplitude modulus (A) and the phase (ϕ) difference between the reference and the sample signals
(Phase) are given by [24]:

A =

√√√√ [
1+R2e−2hn

1−R1R2e−2hn

]2
− F sin2(hn)

R1

1+F sin2(hn)

ϕ = arctg
{

−R2(1+R1)e−2hn sin(2hn)

1−R1(R2e−2hn)
2
+R2(1−R1) cos(2hn)

} (1)

where
F = 4R1R2e−2hn

[1−R1R2e−2hn ]
2 , hn = h

µ , µ =
√

2α
ω =

√
α

π f =
√

α
π T (2)
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with h specimen thickness, µ thermal diffusion length, hn normalized thickness, R1 and R2 reflection
coefficients at the surface and at the interface to the defect, respectively [24]. α is the thermal diffusivity,
f and T, the modulation frequency and period.

It is important to underline as Equation (1) are valid if the specimen is thermally thick [23] and in
the case of 1-D heat transfer model.

3. Material and Methods

3.1. Material and Experimental Set-Up

A specimen consisting in a plate with simulated defects was manufactured by means of the
vacuum infusion resin process. An epoxy-type (i.e., EC 157 by ELANTAS) resin was employed,
reinforced with a double layer of quadriaxial glass fiber of the type 0◦/+45◦/90◦/−45◦, Figure 1.
In Table 1 are reported the thermo-physical constants of material (GFRP).

Thermography tests were performed by IR camera FLIR A655sc (FLIR® Systems, Inc., Wilsonville,
OR, USA) with thermal sensitivity (NETD) < 30 mK and based on a micro-bolometer detector with
640 × 480 pixels.

The set-up used is shown in Figure 1 (reflection mode). Two halogen lamps with a power of
500 W were controlled by MultiDES® system (Des srl, Bari, Italy) in order to heat specimens with
a series of square waves. IR camera and lamps were placed to 980 mm and 560 mm from the specimen,
respectively. The geometrical resolution obtained is 0.65 mm/pixel.

Thermal data were processed by IRTA® software [12,13,26] in order to obtain amplitude and phase
images from lock-in tests. IRTA algorithms [26] for lock-in take into account the thermal transient in
the very first cycles. So, there is no need to reach stationary behavior of the thermal response of the
material to the excitation source.

A modulated square wave has been used as a heat source in order to reduce the testing time.
In fact, as demonstrated in [12], the thermal response of material contains information about higher
frequencies proportional to the main frequency. Several tests have been carried out as shown in Table 2.
Three exciting cycles were acquired for each sequence with different frame rate depending on the
modulated period, as indicated in Table 3.

By decomposing the thermal response in time domain as the sum of a singular sinusoidal wave,
we can write:

Tm(t) = a + bt +
∞
∑

n=1
∆Tn sin(nωt + ϕn) n = 1, 3, 5, 7 (3)

where t is the time, a and b are two constants used to model the average temperature growth of the
material, ω is the modulated frequency of the main harmonic (first Fourier component), ∆Tn and ϕn

are the amplitude and the phase angle (as defined in Equation (1)) of n-th Fourier component. As it
shown in Equation (3), any odd number (n) can be set to obtain information about the relative Fourier
component. However, the Fourier components will be gradually affected by a higher noise level as
n value increases. So, in this paper the analysis has interested only the first, third and fifth Fourier
component. IRTA software allows for obtaining information about the first, 3-rd and 5-th Fourier
components from the analysis of one thermal sequence by setting the values of harmonics [12].

The phase data derived from the analysis with the IRTA software were then processed with
MATLAB software (R20171b, The MathWorks, Inc., Natick, MA, USA) in order to extract for each step
the phase information. In particular, one area (ROI, Region Of Interest) has been considered for each
step, as shown in Figure 2 (areas with the flat bottom holes have been excluded) and the mean and
standard deviation values have been calculated. The last step (green ROIs in Figure 2) has been used
as reference one. So, the phase values for experimental data for each step are:

Phase = mean(Phase)ROIi − mean(Phase)ROI9 (4)

where ROIi refers to the ROI of i-th step.
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In Table 4, is reported the thickness of each step (the blind holes are not considered).
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Table 1. Thermo-physical constants of material, explored thicknesses, and modulated periods used
for simulation.

k (W/m K) ρ (kg/m3) cp (J/kg K) α (m2/s) × 10−7 R1 = R2 h (m) × 10−3 T (s)

0.3 1900 1200 1.3 0.99 0.5–5
(step 0.5)

10–490
(step 10)

Table 2. Parameters used for lock-in thermography (LT) tests.

Test
Number

Modulation
Period (s)

Modulation
Frequency (Hz) Heat Source Number of

Cycles Harmonics

1 48 0.021 square 3 0.021; 0.062; 0.105
(Hz)

48; 16; 9.6
(s)

2 72 0.014 square 3 0.014; 0.042; 0.069
(Hz)

72; 24; 14.4
(s)

3 80 0.013 square 3 0.013; 0.038; 0.063
(Hz)

80; 26.7; 16
(s)

4 120 0.008 square 3 0.008; 0.025; 0.042
(Hz)

120; 40; 24
(s)

5 240 0.004 square 3 0.004; 0.013; 0.021
(Hz)

240; 80; 48
(s)

6 360 0.003 square 3 0.003; 0.008; 0.014
(Hz)

360; 120; 72
(s)

7 450 0.002 square 3 0.002; 0.007; 0.011
(Hz)

450; 150; 90
(s)
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Table 3. Acquisition parameters used for lock-in tests.

Test Number 1 2 3 4 5 6 7

Frame rate (frame/s) 3 2 2 1 1 1 1
Total frames (3 cycles) 432 432 480 720 720 1080 1350

Table 4. Thickness of each analyzed step of the sample specimen.

Step 1 2 3 4 5 6 7 8 9

Thickness (mm) 0.6 1.6 3.5 5.8 7.9 9.8 11.80 13.50 16.2

3.2. Proposed Procedure

In this section, a new method/procedure is proposed for identifying the best frequency/period
value that allows to verify the thickness with the best accuracy. The proposed procedure starts from
the model proposed by Rosencwaig [23] and Bennet [24].

In Figure 3, the theoretical trends of Amplitude (A) and Phase (ϕ) obtained from Equations (1) and (2)
are shown. The explored thicknesses and modulated periods used for the analytical simulation by using
Equations (1) and (2).

Figure 3c, shows as the amplitude signal decreases very quickly as the thickness increases.
This behavior makes the amplitude signal less suitable for evaluating deeper defects. In this regard,
the phase signal is considered more appropriate for investigating the defects depth or thicknesses with
the lock-in technique [15,17,25].

Materials 2019, 12, x FOR PEER REVIEW 5 of 12 

 

(Hz) (s) 

4 120 0.008 square 3 
0.008; 0.025; 0.042 

(Hz) 
120; 40; 24 

(s) 

5 240 0.004 square 3 0.004; 0.013; 0.021 
(Hz) 

240; 80; 48 
(s) 

6 360 0.003 square 3 
0.003; 0.008; 0.014 

(Hz) 
360; 120; 72 

(s) 

7 450 0.002 square 3 0.002; 0.007; 0.011 
(Hz) 

450; 150; 90 
(s) 

Table 3. Acquisition parameters used for lock-in tests. 

Test number 1 2 3 4 5 6 7 
Frame rate (frame/s) 3 2 2 1 1 1 1 

Total frames (3 cycles) 432 432 480 720 720 1080 1350 

Table 4. Thickness of each analyzed step of the sample specimen. 

Step 1 2 3 4 5 6 7 8 9 
Thickness (mm) 0.6 1.6 3.5 5.8 7.9 9.8 11.80 13.50 16.2 

3.2. Proposed Procedure  

In this section, a new method/procedure is proposed for identifying the best frequency/period 
value that allows to verify the thickness with the best accuracy. The proposed procedure starts from 
the model proposed by Rosencwaig [23] and Bennet [24]. 

In Figure 3, the theoretical trends of Amplitude (A) and Phase (φ) obtained from Equations (1) 
and (2) are shown. The explored thicknesses and modulated periods used for the analytical 
simulation by using Equations (1) and (2).  

Figure 3c, shows as the amplitude signal decreases very quickly as the thickness increases. This 
behavior makes the amplitude signal less suitable for evaluating deeper defects. In this regard, the 
phase signal is considered more appropriate for investigating the defects depth or thicknesses with 
the lock-in technique [15,17,25]. 

As shown in Figure 3, each thickness presents a characteristic value of the period in which the 
phase signal become zero. This occurs in correspondence of the so called “blind frequency” [15–17] 
(in our case, blind period). Moreover, for a fixed value of the period, each thickness presents different 
values of phase signal. 

 
(a) (b) 

Materials 2019, 12, x FOR PEER REVIEW 6 of 12 

 

 

(c) (d) 

Figure 3. Amplitude and phase signal derived with Equation (1): (a) Amplitude signal versus period, 
(b) phase signal versus period, (c) amplitude signal versus thickness, and (d) phase signal versus 
thickness. 

Blind frequency and phase contrast methods are widely used in literature [15–17] for depth or 
thickness quantification by means of lock-in thermography. The first method is based on the 
following equation [15]: 

ℎ = ඨܥ ߨߙ ௕݂ = ߨߙටܥ ௕ܶ (5) 

where C is a constant that depends on material and can be derived from experimental tests and fb and 
Tb are the blind frequency and period respectively. This method is not immediately applicable since 
it is not easy to find the blind frequency from the thermographic data. Moreover, it has been 
demonstrated as the blind frequency depends on the defect size, shape and depth [15].  

The phase contrast method is based on the phase contrast values evaluation in correspondence 
of a single value of frequency/period. Also, this method requires an accurate calibration procedure 
for obtaining acceptable errors in depth evaluation [15,20]. 

A different point of view is provided in this work since the attention was focused on verifying 
the thickness or more in general the geometry of components made of composite material. So, the 
focus is the excitation frequency (period) and the method or procedure to obtain it to estimate the 
resolution in thickness measurement variation. 

By starting to the phase signal trend as function of the thickness, Equation (1) and Figure 3, it is 
simple to notice as for a fixed value of period, the phase presents a point in which its variation with 
respect to thickness is maximum. This point coincides with the one in which the first derivative of 
phase is maximum. In other words, this means that for a fixed thickness value, the best period is the 
one that provides the maximum of the first derivative of the phase signal. In fact, in this condition, 
the higher sensitivity is obtained since phase signal variations will be measured also in 
correspondence of little thickness variations.  

Starting from Equation (1), the first derivative of the phase signal is: ݀߮݀ℎ௡ = − ଵ݂(ℎ௡) − ଶ݂(ℎ௡) + ଷ݂(ℎ௡)ସ݂(ℎ௡)  (6) 

with 

ଵ݂(ℎ௡) = 2ܴଶ(1 + ܴଵ)cos (2ℎ௡)݁−2ℎܴ݊ଶ(1 − ܴଵ) cos(2ℎ௡) − ܴଵ݁−4ℎ݊(ܴଶ)ଶ + 1    (7) 

Figure 3. Amplitude and phase signal derived with Equation (1): (a) Amplitude signal versus
period, (b) phase signal versus period, (c) amplitude signal versus thickness, and (d) phase signal
versus thickness.



Materials 2019, 12, 1185 6 of 12

As shown in Figure 3, each thickness presents a characteristic value of the period in which the
phase signal become zero. This occurs in correspondence of the so called “blind frequency” [15–17]
(in our case, blind period). Moreover, for a fixed value of the period, each thickness presents different
values of phase signal.

Blind frequency and phase contrast methods are widely used in literature [15–17] for depth or
thickness quantification by means of lock-in thermography. The first method is based on the following
equation [15]:

h = C
√

α

π fb
= C

√
α

π
Tb (5)

where C is a constant that depends on material and can be derived from experimental tests and fb
and Tb are the blind frequency and period respectively. This method is not immediately applicable
since it is not easy to find the blind frequency from the thermographic data. Moreover, it has been
demonstrated as the blind frequency depends on the defect size, shape and depth [15].

The phase contrast method is based on the phase contrast values evaluation in correspondence of
a single value of frequency/period. Also, this method requires an accurate calibration procedure for
obtaining acceptable errors in depth evaluation [15,20].

A different point of view is provided in this work since the attention was focused on verifying the
thickness or more in general the geometry of components made of composite material. So, the focus is
the excitation frequency (period) and the method or procedure to obtain it to estimate the resolution in
thickness measurement variation.

By starting to the phase signal trend as function of the thickness, Equation (1) and Figure 3,
it is simple to notice as for a fixed value of period, the phase presents a point in which its variation
with respect to thickness is maximum. This point coincides with the one in which the first derivative
of phase is maximum. In other words, this means that for a fixed thickness value, the best period is the
one that provides the maximum of the first derivative of the phase signal. In fact, in this condition, the
higher sensitivity is obtained since phase signal variations will be measured also in correspondence of
little thickness variations.

Starting from Equation (1), the first derivative of the phase signal is:

dϕ

dhn
= − f1(hn)− f2(hn) + f3(hn)

f4(hn)
(6)

with

f1(hn) =
2R2(1 + R1) cos(2hn)e−2hn

R2(1 − R1) cos(2hn)− R1e−4hn(R2)
2 + 1

(7)

f2(hn) =
2R2(1 + R1) sin(2hn)e−2hn

R2(1 − R1) cos(2hn)− R1e−4hn(R2)
2 + 1

(8)

f3(hn) =
R2(1 + R1) sin(2hn)e−2hn

[
2R2(1 − R1) sin(2hn)− 4R1(R2)

2e−4hn
]

[
R2(1 − R1) cos(2hn)− R1e−4hn(R2)

2 + 1
]2 (9)

f4(hn) =
[R2(1 + R1)]

2 sin(2hn)
2e−4hn[

R2(1 − R1) cos(2hn)− R1e−4hn(R2)
2 + 1

]2 + 1 (10)

In Figure 4 is shown the first derivative phase signal as function of thicknesses and for different
values of period, Equation (4). This figure allows for obtaining for each investigating thickness,
the value of period in which the sensitivity of the phase signal is maximum. As expected, the best
period increases if the thickness increases.
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It is interesting to notice as, for a fixed value of thickness, the first derivative of the phase (Figure 4)
and the phase (Figure 3d) reach the maximum value in correspondence of different values of period.
As example, by comparing Figures 3 and 4, in correspondence of 1.5 mm, the maximum of the first
derivative signal is reached for 100 s but, a better phase signal is obtained with higher periods. In other
words, for a fixed value of the thickness, the best period allows to obtain the best phase sensitivity and
not the higher phase signal.
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4. Results and Discussion

In this section, results of the experimental tests and a comparison with the simulation are shown
in order to verify the proposed approach.

Simulations were carried out by adopting Equations (6)–(10), the material constants in Table 1,
modulation periods shown in Table 2 and thicknesses in Table 3. In Figure 5 are reported the results
in terms of phase and first derivative signal. The last step (thicker) has not been reported because
considered as reference to obtain the phase signal from experimental data. As expected, the last period
(450 s) allows to investigate depth until about 6 mm.

It is worth to notice as, in this case, the first derivative of the phase describes for each thickness
the capability to discern contiguous thickness variations.
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Very similar trends were obtained from the experimental data in terms of phase signal
(Figures 3a and 5a). However, it is clear as (Figure 6a) different values of the phase were obtained in
correspondence of higher periods (from 150 to 450 s). In Figure 7 is shown a comparison between
theoretical and experimental data for three values of the modulation period. As expected, the phase
signal values obtained from experimental data are lower than simulations ones. In particular, results
differ as the modulation period increases. Indeed, in these conditions the hypotheses of the 1-D
model used for simulations are no longer valid since, the in-plane heat diffusion cannot be neglected,
and the specimen cannot be considered thermally thick.
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To obtain a comparison with simulations in terms of first derivative signal, an approximate
derivative of experimental data has been calculated (named Diff Phase) by simply differencing adjacent
values of phase. Figure 6b provides immediately an indication of the best periods and of investigable
thicknesses. In this regard, it is important to underline as the analysis of the signal to noise ratio is
necessary to know the sensitivity of the phase signal for the thickness variations measurement.

Various sources of noise can affect the phase signal although it is less susceptible than amplitude
to non-uniform heating and surface irregularities. They depend on the experimental set-up and the
state of the specimen surface. In the first case, a non-uniform heating of the surface due to an incorrect
lamp positioning or incorrect lamps operation can induce phase signal variations. In particular,
a non-uniform heating of the specimen can generate significant in-plane heat diffusion with consequent
in-plane phase variations.
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In the second case, the surface can present local emissivity variations due to scratches or little
humps and cavities. These irregularities also represent a local variation of the absorption coefficient
and then local non-uniform heating. In any case, it is not simple to predict the noise of the phase signal.
The noise should be evaluated from time to time depending on the particular application. Moreover,
it is worth underlining as an additional source of noise can be added to the algorithm used for the
signal processing to obtain phase data. In other words, each algorithm presents an own characteristic
level of noise. However, a simple way for estimating the noise is to consider the Standard Deviation of
the phase signal.

In Figure 8, the value of the phase Standard Deviation (SD) is reported for each area (ROI) of each
step and for different values of the modulated period. As expected, the SD decreases while period
increase since long periods means more heat and then more signal with respect to the noise. The SD
increases as the thickness increases. Also, in this case, for a fixed period, higher thicknesses give
a lower value of the signal to noise ratio.

If we consider the mean value as representative of the phase SD, 2.5◦ can be considered as
conservative value. In this regard, a threshold value equal to three times the phase SD can be
considered for evaluating the minimum phase signal associated with the thickness variation. In other
words, a phase signal of about 8◦ is necessary for measuring a thickness variation.

Materials 2019, 12, x FOR PEER REVIEW 9 of 12 

 

To obtain a comparison with simulations in terms of first derivative signal, an approximate 
derivative of experimental data has been calculated (named Diff Phase) by simply differencing 
adjacent values of phase. Figure 6b provides immediately an indication of the best periods and of 
investigable thicknesses. In this regard, it is important to underline as the analysis of the signal to 
noise ratio is necessary to know the sensitivity of the phase signal for the thickness variations 
measurement. 

Various sources of noise can affect the phase signal although it is less susceptible than amplitude 
to non-uniform heating and surface irregularities. They depend on the experimental set-up and the 
state of the specimen surface. In the first case, a non-uniform heating of the surface due to an incorrect 
lamp positioning or incorrect lamps operation can induce phase signal variations. In particular, a 
non-uniform heating of the specimen can generate significant in-plane heat diffusion with 
consequent in-plane phase variations.  

In the second case, the surface can present local emissivity variations due to scratches or little 
humps and cavities. These irregularities also represent a local variation of the absorption coefficient 
and then local non-uniform heating. In any case, it is not simple to predict the noise of the phase 
signal. The noise should be evaluated from time to time depending on the particular application. 
Moreover, it is worth underlining as an additional source of noise can be added to the algorithm used 
for the signal processing to obtain phase data. In other words, each algorithm presents an own 
characteristic level of noise. However, a simple way for estimating the noise is to consider the 
Standard Deviation of the phase signal.  

In Figure 8, the value of the phase Standard Deviation (SD) is reported for each area (ROI) of 
each step and for different values of the modulated period. As expected, the SD decreases while 
period increase since long periods means more heat and then more signal with respect to the noise. 
The SD increases as the thickness increases. Also, in this case, for a fixed period, higher thicknesses 
give a lower value of the signal to noise ratio. 

If we consider the mean value as representative of the phase SD, 2.5° can be considered as 
conservative value. In this regard, a threshold value equal to three times the phase SD can be 
considered for evaluating the minimum phase signal associated with the thickness variation. In other 
words, a phase signal of about 8° is necessary for measuring a thickness variation. 

 
Figure 8. Phase Standard Deviation versus thickness of each step for different values of the 
modulation period. 

In this way, it is immediate from Figure 6 to understand which thickness variations can be 
measured by the phase data (thickness resolution). As expected, the sensitivity of lock-in technique 
and then of the phase signal, decreases as the thickness increases. It follows that with adopted periods 
the range of measurable thickness is 0.6–5.8 mm. It is important to underline as these results depend 
on the adopted set-up and test parameters. These results are confirmed in qualitative way form the 

Figure 8. Phase Standard Deviation versus thickness of each step for different values of the
modulation period.

In this way, it is immediate from Figure 6 to understand which thickness variations can be
measured by the phase data (thickness resolution). As expected, the sensitivity of lock-in technique
and then of the phase signal, decreases as the thickness increases. It follows that with adopted periods
the range of measurable thickness is 0.6–5.8 mm. It is important to underline as these results depend
on the adopted set-up and test parameters. These results are confirmed in qualitative way form the
Figure 9 in which the phase maps at different modulated period are reported. Theoretically, higher
periods would allow to see more deeper thickness (as predicted from Equation (1)) but, as already said,
the in-plane diffusivity limits the investigable thicknesses.
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In Figure 10 the phase profile along steps is reported for 6 values of periods. It has been obtained
as mean value of 20 phase profiles along the red line in Figure 10. It is clear the effect of the in-plane
diffusivity that does not allow to reach a steady-state value of phase within each step and reduces the
sensitivity with respect to the theoretical model.
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Summarizing, the first derivative of the phase signal can represent a useful tool for detecting the
best period for verifying the thickness. In this regard, a procedure can be set-up to obtain information
the measurable thickness variations with phase data. The nominal values of thickness are known.

• Firstly, if the material constants are known, the 1-D model can be used for estimating the correct
periods in terms of the phase and first derivative of the phase. This latter provides information
about the period for which the phase signal has the maximum sensitivity. To obtain a better
accuracy in evaluation of the best period, diffusivity and effusivity of material can be retrieved
from a sample specimen by means of experimental tests.

• Evaluating the noise of the technique by considering the Standard Deviation of the phase signal
on a sample specimen.

• Estimating the sensitivity of technique by fixing a threshold value equal to two or three time the
value of SD.

• Estimating the thickness variations that can be measured by the phase data.
• Verifying the thickness or thickness variations by means of the phase signal by adopting the

best period.

It is important to underline as if a sample specimen is not available, the described procedure is
still valid, but the accuracy will be strongly related to the hypothesis of 1-D model (semi-infinite plate
and thermally thick specimen). In this case, the noise must to be estimated by measuring the SD on the
same component under analysis.

5. Conclusions

In this work the capabilities of lock-in thermography technique in thickness verification of
composite plates were investigated. In particular, a procedure has been proposed for estimating the
best periods of excitation, based on the first derivative of the phase signal.

A sample specimen made of GFRP material has been used to verify the results obtained by using
a theoretical 1-D model. The main results obtained were:

• the possibility to estimate the resolution in thickness measurement variation as a function of the
thickness by using a 1-D model,

• the accuracy (in period evaluation) of the proposed method depends on the hypothesis of the 1-D
theoretical model,

• proposed approach can be a useful tool in the case of a sample specimen is not available. The first
derivative analysis and then the best period can be obtained by estimating the thermo-physical
constants on the same component under analysis since the nominal thicknesses are known.
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